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Abstract: In this review, we describe current Machine Learning approaches to hand gesture
recognition with depth data from time-of-flight sensors. In particular, we summarise the achievements
on a line of research at the Computational Neuroscience laboratory at the Ruhr West University of
Applied Sciences. Relating our results to the work of others in this field, we confirm that Convolutional
Neural Networks and Long Short-Term Memory yield most reliable results. We investigated several
sensor data fusion techniques in a deep learning framework and performed user studies to evaluate
our system in practice. During our course of research, we gathered and published our data in
a novel benchmark dataset (REHAP), containing over a million unique three-dimensional hand
posture samples.

Keywords: neural networks; hand gesture recognition; time-of-flight sensors; automotive
human–machine interaction

1. Introduction

Humans may communicate nonverbally with hand movements carrying certain symbolic
meanings, a behaviour we want to abstract, formalise and use for driver–vehicle interaction. Several
hand sign languages exist and usually feature sets’ context-sensitive hand gestures. In order to
ground hand sign symbolism, we may use visual information about hand postures as well as depth
data obtained by adequate Time-of-Flight (ToF) sensors like the Camboard Nano sensors we used.
Uprising Machine Learning (ML) methods offer various ways to design systems which improve
human–machine interaction.

Prominent examples of such research lie in the fields of driver assistance and autonomous driving,
which require reliable control interfaces to ensure passenger comfort and pedestrian safety. Ideally,
a vehicular human–machine interface should empower drivers to interact intuitively with their in-car
devices while staying focussed on the road ahead. To ensure that the drivers focus on the environment,
a driver assistance system must require a minimum cognitive load to provide an advantage in safety
and comfort. Freehand gestures, as means of easy non-verbal communication, apply well to this and
similar situations.

For our research on hand gesture recognition systems, we aimed to develop a system to control
an infotainment application, which runs on a mobile tablet computer mounted on the vehicles’ central
console. To obtain a reasonable classification model, we started by examining support vector machines
and multilayer perceptrons, which confirmed the advantage of deep learning technologies in terms of
training and execution time. Our later deep learning approaches aimed to suit well for usage in smart
mobile devices by lightness in model design.
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Smart mobile devices, like current mobile phones and tablet computers, provide means of
using different inputs, like touch or attached sensors but usually miss strong computational power,
thus favouring lightweight implementations. Attaching ToF sensors allows us to receive hand gestures
as depth data input in real time. Users usually quickly get accustomed to these smart devices, as they
use them frequently in everyday life for communication, information and entertainment. A holistic
hand gesture control system must meet the individual drivers’ expectations to provide a well-working
interface that feels as natural and intuitive to the user as possible.

Our in-car hand gesture recognition system makes use of one or more low cost ToF sensors
attached to a mobile device, as shown in Figure 1. We recorded our data and performed our experiments
using Camboard nano sensors, which provide depth images of resolution 165 × 120 px at a frame
rate of 90 f ps. These ToF sensors yield illumination independent depth data at a high frame rate.
The extracted three-dimensional point clouds undergo a preprocessing procedure and serve as input
for our investigated machine learning methods. Depending on the number of hand gestures to
recognise and the input data dimensionality, a high-quality classification system demands robust
preprocessing methods, adequate model parameters and fine-grained hyperparameter tuning to
achieve high recognition rates in a low runtime.

Figure 1. A driver performs a hand gesture in the detection range of time-of-flight (ToF) sensors
(red area). This in-car setup uses a mobile tablet computer and two ToF sensors to recognise hand
gestures in order to control an infotainment device.

To extract the full meaning of a given hand pose, we need to consider its temporal context;
we make a conceptual distinction between dynamic hand gestures and static hand poses. A dynamic
hand gesture unfolds in time, while a static hand pose does not. Therefore, a sample of a dynamic
hand gesture consists of consecutive frames containing several hand poses and their transitions in
a sequence. In our early experiments, we only recognised static hand postures with support vector
machines and multilayer perceptrons, while in our later research we proceeded by identifying dynamic
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gestures with first an algorithmic machinery on top of a static hand posture recognition system and
later a recurrent neural network architecture especially designed for dynamic hand gesture recognition.

We start this review by delineating the related work we based our research on and examining
current state-of-the-art technologies in Section 2. In Section 3, we first introduce our data set for
Recognition of Hand Postures (REHAP) and the underlying preprocessing method, then carry on
by explaining our investigations in detail. A short comparison of all our models consolidates our
results. We then close this section by illuminating the usability studies we conducted. In Section 5,
we conclude and discuss this review, proposing future work in Section 5.1.

2. State of the Art

Related work in this field utilises a variety of different models and hand gesture datasets.
In general, depth information helps to distinguish ambiguous hand postures, as described by [1],
yet a lot of related work does not use deep learning methods on depth data, but provides valuable
insights into various ideas of how to approach hand gesture recognition in other ways. For example,
Ref. [2] provided an interesting study that uses electromyographic signals from wearable devices and
deep transfer learning techniques to reliably determine a hand gesture with recognition rates up to
98.31%. For another example, Ref. [3] successfully implemented a recognition system which achieves
up to 87.7% accuracy on the American Sign Language (ASL) and claimed it as “the first data-driven
system that is capable of automatic hand gesture recognition” without any deep learning methods but hidden
Markov models (HMM). Similiarly, Ref. [4] proposed aggregated HMM in a gesture spotting network
(GSN) for navigating through medical data during neurobiopsy procedures. Their contribution
achieves a recognition rate of 92.26% on a set of dynamic gestures like hand waving, finger spreading
and palm movements. Ref. [5] contributed an improved dynamic hand gesture recognition method
based on HMM and three-dimensional ToF data, as sketched in Figure 2. The authors use an adaptive
segmentation algorithm for hand gesture segmentation, combining a frame difference method with
a depth threshold. A hand gesture recognition algorithm based on HMM then takes full advantage of
the depth data. In order to improve the recognition rate of the dynamic hand gesture, the authors feed
the misclassified samples back into training. The authors report high recognition rates around 95% on
dynamic hand gestures with robustness to the different backgrounds and illumination.

Figure 2. Dynamic hand gesture recognition flowchart from [5].

Refs. [6–8] used the Kinect camera for hand gesture recognition purposes, operating
simultaneously on RGB and depth data. On a minimal example of 75 data points, Ref. [9] managed
to obtain a 100% recognition rate by applying first a depth threshold, then contour image algorithms
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and naïve Bayes classification. Ref. [10] achieves 94% accuracy on the ASL dataset with convolutional
neural networks that operate on RGB image sequences only.

Inspired by [11], we isolated the relevant hand part from the rest of the body by a simple depth
threshold in some of our early experiments and used Principal Component Analsysis (PCA) later on.
During our early stage of experiments, state-of-the-art algorithms achieved good performances but
only on very limited datasets, or if designed for a specific application, as pointed out by [12]. Ref. [13]
used a single ToF-sensor and employed the Viewpoint Feature Histogram (VFH) descriptor to detect
hand postures, which confirms the importance of appropriate point cloud descriptors. Improved
results, as achieved when fusing stereo camera information from depth sensors, for example by [14],
lead us to confirm the advantage of using a second sensor and performing sensor fusion.

Dynamic hand gesture recognition poses the problem of spatiotemporal segmentation as pointed
out by [15], who proposed a modular framework to solve this problem. Some but not all colour image
based approaches rely on the detection of certain hand pixels [16] and employ algorithms or finite-state
machines to detect dynamic gestures [17]. Our contributions differ in that we approach this problem
solely data-driven with three-dimensional depth images.

Ref. [18] presented a gesture recognition system that also operates on ToF depth data only, which
proves to save on computational cost. To avoid wearing special devices, the authors proposed a new
algorithm that computes the wrist cutting edges, captures the palm areas and performs finger detection
to judge the number of fingers, which significantly reduces the usage of computational resources. Their
method achieves a recognition rate of 90% on their dataset.

In the last several years, a lot of hand gesture recognition benchmark datasets emerged. Ref. [19]
published a dataset containing a total of 3,000,000 frames of 24,000 egocentric gesture samples
with both colour and depth information, sampled from 50 distinct subjects. Another dataset,
the Cambridge gesture recognition dataset, contains nine hand gesture classes sampled from two
persons in 100 video sequences in five different illumination setups [20]. Ref. [21] reports an accuracy
of 95% by employing a long-term recurrent convolution network to classify dynamic hand gestures
from the Cambridge gesture recognition dataset. Their system extracts most relevant frames by
a semantic segmentation-based deep learning framework, which represents the relevant video parts
in the form of tiled patterns. Ref. [22] published the ChaLearn IsoGD dataset, which contains a total
of 1000 object classes and approximately 1,200,000 training images, including 249 gesture labels
and 47,933 manually labelled dynamic hand gesture sequences with RGB-D information. Ref. [23]
investigated a three-dimensional convolutional neural network with a recurrent layer, shown in
Figure 3. To validate their method, the authors introduced a new dynamic hand gesture dataset
captured with depth and colour data, referred to as the Nvidia benchmark in later research. On this
dataset, their gesture recognition system achieved an accuracy of 83.8%.

Figure 4 shows that distributed spatial focuses on the hands improved gesture recognition,
especially when using a sparse network fusion technique. Using their FOANet architecture, depicted
in Figure 4, the authors improved the performance on the ChaLearn IsoGD dataset from a previous
best of 67.71% to 82.07%, and on the Nvidia dataset from 83.8% to 91.28%, even though the FOANet
does not make use of any temporal fusion but optical flow fields of RGB and depth images. Their
architecture consists of a separate channel for every focus region and input modality. An integrated
focus of attention module (FOA) detects hands, a softmax score layer stacks 12 channels together
and a sparse fusion layer combines the softmax scores according to the gesture type probabilities.
With that architecture, the authors surpass both the previous best result and human accuracy, as shown
in Table 1. The accuracy of FOANet drops when replacing sparse network fusion by average fusion.
From the results listed in Table 2, we can see that the focused RGB flow field channel performs the best.
In addition, we observe a general advantage of focus channels compared to global channels.
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Figure 3. The recurrent three-dimensional convolutional architecture from [23]. As input, the network
uses a dynamic gesture in the form of successive frames. It extracts local spatio-temporal features via
a 3D Convolutional Neural Network (CNN) and feeds those into a recurrent layer, which aggregates
activation across the sequence. Using these activations, a softmax layer then outputs probabilities for
the dynamic gesture class.

Figure 4. The FOANet architecture [24], which consists of a separate channel for every focus region
(global, left hand, right hand) and input modality (RGB, depth, RGB flow and depth flow).
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Table 1. Overall results of FOANet and compared architectures on the Nvidia benchmark.

Method Channels Accuracy

FOANet FOA + Sparse Fusion 91.28%
FOANet FOA + Avg. Fusion 85.26%
Human Colour 88.4%

Molchanov [23] All (including infrared) 83.8%
Molchanov [23] Depth + Flow 82.4%

Table 2. Individual channel performances of FOANet on the Nvidia benchmark.

RGB Depth RGB Flow Depth Flow

Global 43.98% 66.80% 62.66% 58.71%
Focus 58.09% 73.65% 77.18% 70.12%

Concerning user interface design, as important in our later user studies, Ref. [25] investigated
and compared different menu designs. Ref. [26] gives an overview on important aspects of good user
interface design for automotive environments. The question arises what makes up an intuitive user
interface in the context of human–machine interaction. Ref. [27] reminded readers that users need time
to grow accustomed to any new devices; the authors mentioned that most users did not consider the
computer mouse an intuitive device on first encounter.

In a literature review on hand gesture recognition with depth images, Ref. [28] studied 37 papers
with a total of 24 methods. Ref. [29] presented a comprehensive overview of relevant basic ideas
for hand gesture recognition, concerning computer vision in general and various machine learning
techniques in particular. Ref. [30] contributed an overview on several methods leading to good results,
which depend on the concrete application setup. Ref. [31] reviewed literature on various gesture
recognition methods including neural networks, hidden Markov models, fuzzy c-means clustering and
orientation histograms for features representation. More literature reviews, as Refs. [32,33], convey
further information about hand gesture recognition with depth data.

3. Implementations

In this section, we consolidate the line of our own contributions, starting with an introduction
of our REHAP dataset and the underlying preprocessing method. We then examine our line of deep
learning research on hand sign recognition from the beginning to the current state and summarise the
results. At the end of this section, we explain the user studies we have performed in order to assess
the usability of our system in practice. The timeline in Figure 5 shows some but not all important
contributions in the field of hand gesture recognition to which we relate our contributions. The same
set of ten hand pose classes, as depicted in Figure 6, had underlain our whole course of research.

3.1. REHAP Dataset

As we proceeded in our course of research, we gathered the hand gesture depth data to provide
a common basis for data-driven training. Ref. [34] published the REHAP dataset (Recognition of
Hand Postures, REHAP, [35]). The whole dataset contains over a million unique samples of our ten
hand postures shown in Figure 6 and consists of two disjunct parts: 600,000 sample images from
20 different persons (REHAP-1) and 450,000 samples from 15 different persons (REHAP-2). Depth
images in REHAP-1 feature a resolution of 160× 120, resulting in a point cloud size of 19,200 before
cropping. The images in REHAP-2 have a doubled resolution of 320× 240. The data aggregated in our
REHAP-1 dataset consists solely of ToF sensor depth images, while the dataset REHAP-2 also contains
corresponding RGB images. In contrast to some other hand gesture datasets, REHAP also provides
images sampled from different points of view. We sampled our data with a setup as shown in Figure 7
in the form of point clouds, as depicted in Figure 8.
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Figure 5. The timeline consolidates some but not all important contributions in the field of hand gesture recognition with depth data. On the right-hand side, we name
the important contributions of our own line of research; on the left-hand side, we show the most relevant studies from other research teams.
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Figure 6. The set of ten hand posture classed (a–j) that we used throughout our research and provided
samples from in our REHAP if appropriate benchmark dataset [34]. The hand poses in the top row
raise different numbers of fingers, indicating a certain numerical value. The classes in the bottom row
feature other meaningful postures like a fist, a flat hand, a grip, an L-shape and finger pointing, which
form some elements for dynamic hand gestures.

Figure 7. A setup for recording hand gestures with a Camboard Nano sensor. We divide the detection
area into three zones: near (15–30 cm), intermediate (30–45 cm) and far (45–60 cm).
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Figure 8. A raw three-dimensional point cloud of a grip-like gesture. (left and right column): the same
gesture from different points of view; (top row and bottom row): the same gesture a few frames later.

PCA-Based Preprocessing

Data points belonging to the forearm carry no relevant information concerning the hand posture
class, so we used Principal Components Analysis (PCA) to crop our data to the essential part, as shown
in Figures 9 and 10. Ref. [36] contributed a preprocessing method using principal component analysis
(PCA) to effectively crop the data, such that it only contains the palm and the fingers. In contrast to
other possible cropping procedures, as recurrent neural networks or similar models, the strength of
PCA lies in the fact that this unsupervised machine learning methods needs no training and operates
fast, using only lower order statistics.

PCA reduces the dimensionality of high-dimensional data, like our point clouds, by linearly
projecting them onto a lower-dimensional subspace. It estimates the direction of largest variance;
in our case, the essential hand pose part of the depth image, by solving the eigenvector equation for
the depth images’ covariance matrix. For an input vector x with n three-dimensional coordinates,
we compute a mean value x̄ as:

x̄ =
1
n
·

n

∑
j=1

(xj),

and continue by estimating a covariance matrix as scatter matrix S:

S =
n

∑
j=1

(xj − x̄)(xj − x̄)>.
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Solving the eigenvector equation for S and keeping only the eigenvectors with the largest
eigenvalues leaves us with the vector containing most information, the principal components.

Figure 9. A demonstration of our preprocessing method. After applying a depth threshold and
Principal Component Analysis (PCA), the green voxels (left) remain for further processing and serve
to identify the correct hand posture class (right).

Figure 10. Principal component analysis of a raw hand posture point cloud (left) effectively performs
cropping to the essential hand parts (right), which contains the most relevant information for hand
posture classification.

3.2. Investigated Methods

In this section, we describe our investigations in detail. Ref. [37] started by conducting hand
gesture recognition experiments using two ToF sensors, comparing different 3D point cloud descriptors
and testing a multilayer perceptron versus a support vector machine (SVM). Different point cloud
descriptors exist; in our research, we studied the Ensemble of Shape Functions (ESF, [38]), the Point
Feature Histograms (PFH, [39]) and the Viewpoint Feature Histogram (VFH, [40]), implemented in
the Point Cloud Library (PCL). Then, Ref. [41] proposed a simple technique to boost classification
performance of a multilayer perceptron by adding a second multilayer perceptron, which feeds on
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the output of a first multilayer perceptron (MLP) as well as the original input. Ref. [42] designed
a three-dimensional convolutional neural network which outperformed the previous approaches in
static hand pose recognition. Ref. [43] employed a recurrent long short-term memory network in order
to classify upon a coherent sequence of frames of a dynamic hand gesture. Table 3 summarises all the
final results.

Table 3. Support Vector Machine (SVM) classification accuracies for both kernel types, the ESF and
VFH descriptors and two camera set ups in an angle of 30◦ respectively 90◦.

Descriptor ESF 30◦ ESF 90◦ VFH 30◦ VFH 90◦

Classif. rate scalar kernel 98.7% 98.8% 96.9% 94.2%
Classif. rate gauss kernel 99.8% 99.6% 98.8% 93.1%

3.2.1. Early Investigations

In 2014, Ref. [44] examined the performance of support vector machines (SVM) for hand
gesture recognition on depth data in detail. For our SVM research, we studied extensions of large
margin classifiers as in [45–48] and multinomial kernel regression as in [49], focussing on multi-class
decomposition as proposed by [50]. A one-versus-all (OVA) [51,52] approach trains a binary classifier
to distinguish one class from all the other classes, whereas the one-vs.-one (OVO) approach [53–59]
trains a binary classifier for each pair of classes, and more complex graph-based approaches [60,61]
construct decision trees. For our course of research, we used the OVO approach.

With a training time of approximately two days, the best SVM trial resulted in a classification
accuracy of 99.8% with a Gauss kernel. We obtained an optimal SVM parametrisation by performing
a grid search with crossvalidation, which took approximately 16 days. Figure 11 illustrates the
parameter landscape for our Radial Basis Function (RBF) kernel parameter grid search using the VFH
descriptor. The dataset used for training and testing contained a total of 320,000 samples on different
angles, randomly split into two parts of equal size.
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Figure 11. Support vector machine grid search landscape for Radial Basis Function (RBF) kernel
parameters subject to the Viewpoint Feature Histogram (VFH) descriptor. For an increasing penalty
factor C, the kernel parameter γ decreases in significance.
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Later, Ref. [37] investigated two neural network based fusion strategies with a multilayer
perceptron: the early fusion and the late fusion strategy. An early fusion approach classifies a hand
posture given a vector of concatenated descriptors, while a late fusion strategy classifies each data
point individually and later combines predictions. Both strategies proved to perform equally well.

To obtain a reasonably small descriptor size K, a preprocessing algorithm samples 20,000 points
from the input point cloud at random and then continues by repeatedly sampling three random points,
from which it calculates a descriptor histogram. For a descriptor histogram size K and N sensors,
the multilayer perceptron in this experiment has an input layer of size N · K neurons, a hidden layer
with 150 neurons and 10 output neurons, one for each class. To improve predictions, we probed three
different confidence measures for post processing of output neurons activations oi:

confOfMax({oi}) = max oi,

diffMeasure({oi}) = maxi oi −max2
i oi,

varianceMeasure({oi}) =
1
N ∑

i
(oi − E({oi}))2.

Finally, the system decides the class as:

class =

{
argmaxioi, if conf({oi}) > θconf,

no decision, else.

As Figure 12 points out, our con f O f Max and di f f Measure confidence measures show little
difference in performance compared to the varianceMeasure. Although the di f f Measure manifests
a slightly superior curve, we use the con f O f Max measure in further experiments with confidence
thresholds in the range of [0.6, 0.9].
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Figure 12. Classification rates for θconf in the range of [0, 1] for different descriptors and confidence
measures using an MLP. The first row shows the VFH descriptor accuracies for ToF sensors in an angle
of 30◦, respectively in an angle of 90◦ for the second row. The third row concerns the ESF descriptor for
an angle of 30◦ between the two sensors. From left to right, the first two columns show the performance
when using only the first or second ToF sensor; the third column represents the late fusion approach
and the fourth column the early fusion approach.
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Ref. [62] evaluated the impact of varying confidence measures and thresholds. The dataset in this
experiment features a total of 400,000 samples. Our PFH descriptor exploits the fact that the tilt, pan
and yaw angles describe rotation-invariant means of the alignment of two three-dimensional data
points. We construct a histogram as proposed by [63] to further exploit this invariance by subsampling
a certain number of points, calculating angular features and binning them into our histogram.

Testing various hidden layer sizes lead us to use an architecture in three layers of N · K = 1250
input, 16 hidden and 10 output neurons. With an increasing confidence threshold value θconf, both the
systems’ recognition accuracy and rejection rate increases, as illustrated in Table 4. For a high confidence
threshold of θconf = 0.95, we can state that the recognition rate raises close to 100%, but the system
rejects about a third of all samples.

Table 4. The impact of an increasing θconf (top row) on the average classification error (middle row)
and the number of rejected samples (bottom row), averaged over 100,000 samples.

θconf 0 0.65 0.95

Avg. Error 6.3% 3.6% 1.3%
rejected samples 0 6776 34005

Ref. [41] proposed a general technique to boost classification accuracies of multilayer perceptrons.
The idea advises to add a second MLP operating on the first MLPs output activation plus the original
input. Evaluations on a hand gesture dataset, containing a total of 450,000 samples from 15 individuals,
resulted in a classification accuracy improvement of about 3%. In our experiments, we have used
25 neurons in the hidden layer of our primary MLP and 20 neurons in the hidden layer of our secondary
MLP. Table 5 shows the average increase or decrease in recognition rate for all ten gesture classes when
adding the second MLP. Table 6 lists individual predictions accuracies of each MLP.

Table 5. The average change in classification accuracy for each of our ten hand gesture classes when
using the two-stage model. Some but not all classes improve reasonably well, while class d seems to
suffer in terms of recognition accuracy.

a b c d e f g h i j

+0.01 +0.02 +0.01 −0.03 +0.07 +0.01 +0.05 +0.04 +0.01 +0.04

Table 6. Generalisation performance comparison of the primary Multilayer Perceptron (MLP) (upper
row) and the secondary MLP (lower row) using the training procedure depicted in Figure 13.

a b c d e f g h i j

MLP1 90% 90% 89% 87% 87% 95% 92% 92% 89% 95%
MLP2 93% 93% 93% 90% 91% 97% 94% 94% 91% 96%

To investigate generalisation performance, as shown in Table 7, we asked 16 different persons
to perform our ten hand poses and then trained a two-stage MLP to predict on one unknown person
after learning based on the 15 other persons. With an overall generalisation performance of 77.0% the
two-stage MLP with a hidden layer size of 50 neurons slightly surpasses all other models.
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Figure 13. A sketch of our two-stage MLP model (top) and an affiliated training procedure (bottom).
For an input histogram of size n = 625 and an output layer size of m = 10 neurons, the secondary
MLP receives the primary MLPs’ output activation plus another histogram as input. In our training
procedure, we split our dataset D in three parts D1, D2 and D3, such that we may train our two MLPs
on independent parts of the dataset and test it on unseen data.

Table 7. Generalisation results for all 16 persons and both MLPs, each with 30 and 50 neurons,
respectively. Here, column 1 represents the performance of our four MLPs, trained on persons 2 to 16
and tested on person 1.

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Acc.

MLP1-30 81% 50% 69% 55% 76% 59% 56% 68% 79% 68% 88% 72% 95% 72% 87% 79% 72.1%
MLP2-30 83% 51% 72% 60% 79% 62% 58% 72% 85% 74% 89% 73% 97% 75% 91% 83% 75.3%
MLP1-50 83% 49% 69% 58% 79% 62% 57% 68% 84% 70% 89% 75% 90% 74% 90% 80% 74.0%
MLP2-50 86% 52% 74% 63% 83% 65% 60% 72% 89% 74% 90% 75% 98% 75% 93% 82% 77.0%

Ref. [36] demonstrated an in-car dynamic hand gesture recognition system relying on a PCA-based
preprocessing procedure. In these experiments, we considered dynamic hand gestures as listed
in Table 8, each defined by a starting and an ending hand posture sstart and send as illustrated in
Figure 14. A custom version PFH descriptor, which maintains real-time capability while gaining
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descriptive benefits, randomly chooses 10,000 point pairs and uses the quantised point features to
build a global K = 625-dimensional histogram. A two-stage MLP like the one depicted in Figure 13,
implemented using the Fast Artificial Neural Network (FANN) library [64] with 50 neurons in each
hidden layer, recognises a hand pose at each time step t. To recognise a dynamic gesture, we observe
any occurrence of the starting state sstart

t followed by any occurrence of the ending state send
t+m with

m ≥ 1. This simple algorithmic approach allows for misclassification amidst the sequence without
disrupting the recognition and results in an overall classification rate of 82.25% averaged over all
persons and dynamic gestures, with a 100% recognition rate for zooming in, 90% for zooming out, 80%
for release and 59% for grabbing.

Figure 14. An exemplary hand gesture recognition setup. A user performs a dynamic gesture defined
by a starting pose and an ending pose. For a dynamic grabbing gesture, pose class sstart

t = h (grab)
starts the sequence which send

t+m = f (fist) ends. See Figure 6 for an overview of our ten hand pose
classes. Our machine learning systems recognise the individual poses and an algorithm on top tries to
identify the sequence.

Table 8. Every participant performed each hand gesture ten times. An entry names the number of
correctly recognised samples.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

grab 10 6 3 5 5 8 6 7 5 4
release 7 6 9 8 9 8 8 9 9 7

zoom in 10 10 10 10 10 10 10 10 10 10
zoom out 9 10 7 10 9 9 10 8 9 9

3.2.2. Convolutional Neural Network

Ref. [42] contributed a method to transform three-dimensional point cloud input into a fixed-size
format suitable for convolutional neural networks (CNN) by studying three different approaches,
each focusing on the subdivision and normalisation of a three-dimensional input point cloud. The first
approach sums up the points within a cube (PPC), the second approach uses a two-dimensional
projection of input cloud (2DP) and the third approach relies on least-squares plane fitting, calculating
the normal of a plane per cube (NPC). Table 9 lists the performances we measured on our REHAP
dataset as well as the data contributed by [65] for reference. Studies of these different approaches
resulted in a preprocessing method we used for further experiments: first, we apply PCA to crop
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the input to the essential hand part. As our model expects the input space shape as n3 hypercubes
of fixed size, we normalise the point cloud to range (0, 1) on each axis and then stretch it to fit into
the raster. We reshape the input vector component-wise such that each component represents one
slice of the original depth data. The CNN architecture, as depicted in Figure 15, requires an input
matrix of 4× 4× 4 voxels. To obtain optimal parameters for the layers in our convolutional model,
we performed a grid search on a set of parameters, as shown in detail in Table 10:

k1
i ∈ {5, 10, 15, 20} ,

k2
j ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} ,

k1
s ∈ [0, 7] ,

k2
s ∈ [0, 7] ,

k2
mp ∈ [1, 8] .

k1
i and k2

j denoting the number of kernels within respective layers, k1
s a specific combination

for the first layer, k2
s the size of the second kernel and kmp

2 the kernel size in the max-pooling layer.
At this stage of research, our REHAP dataset consisted of 600,000 samples, yet we chose to reduce
the amount of data samples during training to about 2000 samples per gesture, each randomly taken
from the whole sample set. This still yields a training set of 380,000 samples, from which we took
70% for training and 30% for testing. Ref. [66] reports best classification error scores achieved in this
grid-search around 5.6%, averaged across all samples. Achieving classification rates up to 98.5%,
with an average classification error of about 16%, the CNN outperforms our previous approaches on
the REHAP dataset in terms of generalisation capability. Figure 16 shows the kernel activations that
emerged after training.

3.2.3. Long Short-Term Memory

Ref. [43] presented a hand gesture recognition pipeline for mobile devices using a deep long
short-term memory (LSTM) network. As our our REHAP dataset does not contain dynamic gesture
sequences but static frame, we recorded new data. For training and testing, we used a small dataset of
only four hand gesture classes (close hand, open hand, pinch-in and pinch-out). Again, we recorded
with a Camboard Nano ToF sensor at a resolution of 320× 160 pixels and preprocesses the data with
our PCA method, such that the network input consists of a 625-dimensional histogram. For a single
dynamic gesture recording, we collected 40 consecutive snapshots. We gathered a total of 150 dynamic
gesture samples of four classes, each with 40 frames per gesture, summing up to a total of 24,000 data
samples. From this data, we used Ntrain = 480 samples for training and Ntest = 120 for testing.

Using a standard LSTM model with forget gates as described by [67], we perform a grid search
to obtain the optimal model batch size B ∈ {2, 5, 10}, memory block M ∈ {1, 2, 3, 4}, LSTM cells per
memory block C ∈ {128, 256, 512}, number of training iterations I ∈ {103, 5× 103, 104} and learning
rate η ∈ {10−1, 10−3, 10−4, 10−5}. As the stochastic gradient optimiser, we employ the Adaptive
Moment Estimation (ADAM) [68,69]. Measuring the generalisation performance ξ as the percentage of
correctly classified testing labels, we found several parameter combinations achieving high recognition
rates as shown in Table 11. For Pi) denoting the prediction for sample i, we computed ξ as:

p̃i = argmax(Pi),

ξ = 100 · #( p̃i = li)
Ntest

.
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Figure 15. The structure of our CNN model. The first convolution step followed by a reshape (top row)
yields input for the second convolution step, followed by a max-pooling layer (middle row), whose
activation provides input for an MLP with 100 hidden neurons and 10 output neurons, one per hand
pose class (bottom row).

Figure 16. Resulting filter activations for the 20 kernels in the first layer of our CNN model from
Figure 15. This figure shows the filtered activation for each hand gesture, grouped as in Figure 6.

Table 9. Test results of three investigated CNN models on a total of four different datasets in terms of
classification error.

W150 W100 + 50 ROTARM REHAP

CNN-2DP 36.1% 41.8% 62.0% 16.1%
CNN-PPC 17.5% 27.4% 55.6% 16.5%
CNN-NPC 39.5% 40.2% 73.3% 25.2%
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Table 10. The five best results from our Convolutional Neural Network (CNN) parameter grid search
in terms of classification error (CE).

Result Rank k1
i k2

j k1
s k2

s kmp
2 CE

1 20 30 3 6 1 5.557
2 20 20 3 4 1 5.957
3 20 25 3 6 1 5.971
4 20 35 3 6 1 5.971
5 20 35 3 7 1 5.985

Table 11. The best 18 results of our long short-term memory (LSTM) parameter grid search.
We conducted a total of 108 experiments, varying the network topology and training parameters.

B 2 5 10 10 5 2 10 5 5 10 10 5 2 5 2 5 5 2

M 1 1 4 3 2 1 3 2 4 1 2 1 4 4 2 4 2 1
C 512 256 128 512 128 256 256 512 128 128 128 512 128 512 512 256 128 128
I 104 104 5× 103 5× 103 5× 103 104 5× 103 104 104 5× 103 104 104 104 5× 103 104 104 104 104

ξ 100 96.7 100 98.3 100 95 96.7 96.7 100 97.5 99.2 100 100 99.2 100 100 95.8 96.7

As our recurrent LSTM implementation aggregates activation across the temporal dimension of
the sequence, the networks prediction accuracy gets more accurate as more frames it sees. Figure 17
shows an increase in performance plotted over the sequence’s temporal dimension. From this,
we might expect an increase in confidence of classification for an increasing t.

Figure 17. (left): accuracy of LSTM prediction on a single test data sample, with B = 2, M = 1, C = 512
and I = 1000, at different in-gesture time steps t; (right): accuracy of prediction taken at the end of
a gesture, depending on training iterations for a small LSTM network size.

The conducted experiments concern execution speed on a mobile device, generalization capability
and predictive classification ability ahead of time. The recurrent architecture learns a label for
a temporal sequence, which allows us to recognise a dynamic hand gesture already by the first
few frames. As we do not need to wait for completion, our system operates with a natural advantage
in execution time. Thus, high recognition rates above require less than 1ms computation time to detect
a dynamic hand gesture.

4. Results

We state that the neural network outperforms an equivalent SVM implementation in terms of
training and execution time, thus making it the better choice for a real-time driving scenario [37].
We show that the usage of a second ToF sensors improved results tremendously compared to using
only a single sensor [37]. Ref. [42] demonstrates that convolutional neural networks show superior
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performance compared to previous approaches. Research on recurrent LSTM architectures promises
high recognition rates and fast processing [43]. Table 12 summarises our results for the best known
choice of hyperparameters, evaluation modalities and eventual post processing parameters.

Table 12. Summary of the performances of the methods we investigated in our course of research.

Method Data Samples (Train/Test) Training Performance Test Performance

MLP 100,000/100,000 93.7% 98.7%
SVM 160,000/160,000 N/A 99.8%

Two-stage MLP 160,000/160,000/160,000 97% 77%
CNN 266,000/114,000 94.5% 98.5%
LSTM 480/120 100% 100%

The choice of a high confidence threshold leads to higher test performances compared to the
training performance of our simple MLP. For the two-stage MLP, we split our dataset into three parts,
from which we used the first two to train each stage separately. The high test results of the CNN
architecture refer to the best test trial. As we recorded a new set of dynamic hand gestures for our
LSTM network, we had only little data for these experiments.

4.1. Usability Evaluation

To compare our freehand gesture recognition systems with traditional touch control, we performed
intuitiveness studies with an INTUI questionnaire study [70,71] and a standardised Lane Change
Test as explained in this section. Figure 18 shows the graphical user interface used in the evaluation
experiments. We did not implement all screen controls for these tests but focus on using our ten
freehand gestures for navigating the menu screens. Specifying the GUI design to provide a basis for
examining the usability of our system, we did not implement the complete screen control but show
that our ten hand postures suffice the requirements of our usability studies.

Ref. [72] published the results of a user study with an INTUI questionnaire [70,71], which aimed
to measure our systems intuitiveness from the user perspective. Ref. [73] studied the Lane Change
Test (LCT), as described in the ISO 26022 standard, to quantify the drivers distraction when interacting
with our system via touch or freehand gestures.

4.1.1. INTUI Studies

In 2016, Ref. [72] published the results of a user study investigating our systems intuitiveness in
an in-car human–machine interaction setting. In an experiment consisting of three consecutive phases,
as summarised in Figure 19, a total of 20 participants interacted with the infotainment device via
freehand gestures. Participants then answered an INTUI questionnaire [70,71], which tries to capture
different aspects of intuitive interaction. During the experiment, we observed all participants trying
to interact with dynamic gestures at the beginning. After receiving explanation of our hand gesture
symbolism, all our participants managed to purposefully interact with the system. Relevant INTUI
scores, as shown in Table 13, argue for a reasonably well overall acceptance of our system, considering
initial frustration in phase one. As we observed all 20 participants trying to intuitively transfer gestures
they knew from other gesture interaction systems, we state that a straightforward implementation of
a naïve gesture recognition system does not lead to an intuitive human–machine interaction interface.
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Figure 18. Sample screens of a dummy interface design used in our usability studies. The user may
not address all functions via hand gestures but may navigate through the menus (social contacts,
street maps, phone calls and in-car climate control) with gestures a to e from Figure 6 as well as
start/stop (gesture g, j). In later versions, we also implemented controls for zooming.

Phase 1: exploration Observation Phase

● 20 users of age 24 - 40
● minimal information 
● task: interact freely with the 

infotainment system
● 5 minutes of free-hand interaction
● Observer studies the interaction 

without interfering

Phase 2: anticipation Guided Interaction

●
●

● new interaction phase (5mins)
● evaluate user behavior w.r.t. 

anticipation and intuition
● questionnaire + evaluation

Phase 3: interaction Full-feature interaction

●
● last interaction phase (5mins)
● evaluate user behaviour w.r.t. to 

learnings
● connection 2D/3D?
● questionnaire + evaluation

User Observer

explores

guides

interacts

interacts

observe + 
evaluate

present gesture subset
explain infotainment
functionality as a whole

teach complete gesture set

Figure 19. The procedure of our human–machine interaction experiment in three phases. Participants
interacting with an in-car infotainment device start with a free exploration and later receive instructions
on how to actually use the system.
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Table 13. Selected INTUI questionnaire scores from our human–machine interaction experiment.

Mean Standard Deviation

Effortlessness 3.98 0.93
Gut feeling 2.65 1.15

Verbalisation 6.967 0.01
Magic experience 4.85 0.79

Intuition 3.2 1.9

4.1.2. Lane Change Test

Ref. [73] performed the Lane Change Test (LCT), as described in the ISO 26022 standard and
shown in Figures 20 and 21. As LCT presumes a perfectly reliable recognition system, which
we could not provide at that time, we conducted this study in a Wizard-of-Oz setup. This test
aimed to measure the impact of freehand gesture interaction as a secondary task (ST) accompanying
a primary driving task (PT) in terms of human driving performance. To complete the primary task,
a participant drives a simulated vehicle on a predefined course with three lanes at a fixed velocity of
60× 103 m

h . The secondary task requires the participant to redirect his or her attention to interact with
an infotainment system either via touch control (ST A) or mid-air hand gestures (ST B). We measure
the drivers distraction via the vehicles mean deviation (mdev) from an optimal course as shown in
Figure 21 on the right-hand side. With a total of n = 17 participants, all licensed drivers aged from 23
to 44 years, we performed our experiments in two groups: group T, with nine participants, started by
controlling the infotainment system with touch gestures and later switched to mid-air hand gesture
control, while group M with eight participants began with mid-air hand gestures and then used touch
control. As proposed by the ISO standard, we choose four out of the ten available tracks at random and
explain the hand gestures to the participant. The first of the four trials yields a baseline performance
(B1) and the second trial estimates a learning effect via a second baseline (B2). Overall, four of our
17 participants from group T missed a traffic sign, resulting in a large mean deviation from the ideal
route. Removing these four participants reduces the mdev scores for the secondary tasks to 0.49 for
touch gesture interaction and 0.50 for mid-air gestures, respectively. After having performed the LCT,
participants mentioned they perceived memorising the hand gestures as a high effort. Aside from the
fact that both secondary tasks strongly influence the primary task performance, the results in Figure 21
show a slight advantage of touch gesture interaction in terms of driver distraction. This may come
from the fact that the participants did not know any of the freehand gestures and need more learning
time to use them as an intuitive mean of interaction.

Figure 20. A participant performs the Lane Change Test while controlling the infotainment system via
mid-air hand gestures.
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Figure 21. (left): Lane Change Tests results for the nine participants in group T (top) and the eight
participants in Group M (bottom) in terms of mean deviation from the baseline, (right): an exemplary
Lane Change Test track. The green line (baseline) shows the optimal course, the red line the trajectory
actually driven by the participant. A trial lasts for approximately three minutes and contains a total of
18 lane change signs.

5. Conclusions

In this review, we examined current state-of-the-art deep learning technologies for hand gesture
recogniton and consolidated a line of research from the Computational Neuroscience laboratory at the
Ruhr West University of Applied Sciences. Kopinski’s contributions [34,36,37,41–44,62,66,73–79] and
PhD thesis [72] form the basis of our hand gesture recognition research. We investigated deep learning
technologies for the purpose of hand gesture recognition in automotive context with three-dimensional
data from time-of-flight infrared sensors in order to provide new means of controls for driver assistance
systems. Comparing our approaches with related work, we state that our lightweight implementations
suit mobile computing and feature reasonable accurarcy. With an INTUI questionnaire, we tried to
assess the individual drivers feeling of familiarity when using our system the first time. A standardised
Lane Change Test, as described by the ISO 26022 standard, illuminated the impact of our technologies
on motorists driving behaviour. We have published our hand posture dataset (REHAP) as well as the
source code, which compiles with a standard GNU Compiler Collection (GCC) and a make program
under Ubuntu, at [35].
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5.1. Future Work

Future work may examine the generalisation capability of our LSTM approach with larger
datasets. In addition, we may combine our convolutional architecture with the recurrent layer and
search for improvements in generalisation performance. To assess transfer learning capabilities,
future experiments may try to transfer knowledge from our hand gesture symbolism into other hand
sign languages.

We did not compare our freehand gesture traditional control mechanism like on-wheel buttons,
an important comparison which we leave for later research. In addition, more user studies may
yield a more detailed picture which parts of the system we might change to achieve a more intuitive
human–machine interaction. Especially, a lane change test with participants trained our hand gesture
symbolism might provide more realistic insights into advantages of freehand gesture control.

Given more computational resources, models with larger parameter spaces may perform slightly
better, but such a comparison remains for future research. In general, future research may perform
uniform comparisons across the whole zoo of hand gesture recognition systems and their respective
datasets that emerged in the last years.
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Abbreviations

The following abbreviations are used in this manuscript:

ToF time-of-flight
ESF ensemble of shape functions
PFH point feature histogram
VFH viewpoint feature histogram
PCL point cloud library
MLP multilayer perceptron
SVM support vector machine
CNN convolutional neural network
LSTM long short-term memory
ML machine learning
LCT lane change test
PT primary task
ST secondary task
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