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Abstract: This paper considers satellite communication networks where each satellite terminal
is equipped with energy harvesting (EH) devices to supply energy continuously, and randomly
transmits bursty packets to a geostationary satellite over a shared wireless channel. Packet replicas
combined with a successive iteration cancellation scheme can reduce the negative impact of packet
collisions but consume more energy. Hence, appropriate energy management policies are required to
mitigate the adverse effect of energy outages. Although centralized access schemes can provide better
performance on the networks’ throughput, they expend extra signallings to allocate the resources,
which leads to non-negligible communication latencies, especially for the satellite communication
networks. In order to reduce the communication overhead and delay, a distributed random access
(RA) scheme considering the energy constraints is studied. Each EH satellite terminal (EH-ST) decides
whether to transmit the packet and how many replicas are transmitted according to its local energy
and EH rates to maximize the average long-term network throughput. Owing to the nonconvexity of
this problem, we adopted a game theoretic method to approximate the optimal solution. By forcing
all the EH-STs to employ the same policy, we characterized and proved the existence and uniqueness
of the symmetric Nash equilibrium (NE) of the game. Moreover, an efficient algorithm is proposed
to calculate the symmetric NE by combining a policy iteration algorithm and the bisection method.
The performance of the proposed RA scheme was investigated via numerous simulations. Simulation
results showed that the proposed RA scheme is applicable to the EH devices in the future low-cost
interactive satellite communication system.

Keywords: satellite communication networks; random access; energy harvesting; distributed
optimal policy

1. Introduction

In recent years, the packet-oriented Internet protocol (IP) traffic and machine-to-machine (M2M)
applications supported by satellite communication networks have received increasing attention in the
research community, which is significant for complementing the terrestrial infrastructure to provide
global seamless coverage [1]. For emerging applications, satellite networks need to efficiently tackle
bursty traffic with a low duty cycle generated by a massive number of terminals, with constrain energy
and limit computational resource. However, this presents a significant challenge for the multiple access
protocols in satellite communication networks. Traditional solutions for resource allocation based
on fixed assignment and demand assignment are obviously not applicable to this type of traffic [1].
Random access (RA) protocols have become a candidate multiple access scheme in interactive satellite
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networks, because they are insensitive to the network size and traffic characteristics, as well as easy
to be implemented for satellite terminals. Specifically, RA is a kind of distributed uplink access
scheme. Terminals upload their data packets directly via a shared wireless channel, and they do
not need to request resources. For bursty traffic, it is inefficient for massive terminals to request
resources frequently, especially for the network made up by a geosynchronous orbit (GEO) satellite.
Moreover, centralized resource allocation and scheduling for massive terminals are really complicated
and impractical, and the extra communication delay brought by resource allocation is intolerant. Thus,
RA can be well applicable to the large network size and bursty traffic.

Aloha and slotted Aloha (S-Aloha) are the classical RA protocols, and they are widely applied in
satellite communication networks [2]. However, their performance in terms of network throughput is
really poor due to packet collisions. Satellite communication networks suffer from large propagation
delay, especially for the geostationary satellite. Packet collisions decrease the throughput of the network
and further enlarge the access delay caused by packet retransmission, which is intolerant to interactive
applications. Therefore, the research for more efficient satellite RA schemes is triggered by this issue.
Thanks to the evolution and implementation of a physical layer forward error correction (FEC) coding
scheme and iterative signal processing [3] at the gateway station, the performance of random access
is improved greatly, which is more practical for interactive satellite networks. Contention resolution
diversity slotted Aloha (CRDSA) [4,5] as a candidate RA scheme for the next generation of interactive
satellite systems [6] adopted the concept of time diversity and successive interference cancellation (SIC)
to enhance the performance of RA, where the maximum throughput could reach up to 0.55 packets/slot.
More specifically, a packet is transmitted two or more times within a frame, and each packet contains
the location information of the replicas in the packet header, which is used to resolve the collisions.
CRDSA promotes the research on Aloha-based RA schemes, especially for the satellite communications
scenario. Indicatively, some variants of CRDSA were presented in References [7–10]. These RA schemes
inherited the concept of time diversity by changing the packet repetition rate or combining with suitable
coding schemes to further improve the throughput. Moreover, some RA protocols that adopted the
train of thought of CRDSA but without time synchronization were researched in References [11–13].
The asynchronous mechanism makes the received packets probably collide partially with a specific
packet. Consequently, the throughput of the network can be further boosted by adopting powerful
FEC coding schemes, which are used to recover the packets with limited interference. These enhanced
RA protocols exploited packet replicas to recover the collided packets, but transmitting extra replicas
consumed more energy.

Recent advances in energy harvesting (EH) technologies enable the devices supplying sustained
energy by collecting energy from the surrounding environment, e.g., solar, wind, heat, etc. [14]. Many
systems, such as wireless sensor networks (WSNs) and satellite communication networks, can take
advantages of EH technologies [15]. Satellite terminals equipped with EH devices can execute tasks
such as data acquisition and data transmission autonomously over a long period of time. Therefore,
energy management for the satellite terminals is one of the significant and realistic issues in the
RA procedure. Moreover, due to the unpredictable and random energy harvested, the design of
appropriate RA schemes considering energy management is essential to minimize the negative impact
of energy outage and to optimize the long-term network overall throughput. Unfortunately, the EH
process and the problem of energy efficiency of the satellite terminals were not taken into consideration
in the aforementioned satellite RA schemes.

Various multiple access schemes with optimal energy management policies in terrestrial networks
have been researched in the literature [16–19]. In Reference [16], authors studied the tradeoff between
throughput and the delay of a sensor node with an EH source. The authors of [17] proposed a policy
to determine whether the EH device should transmit the data or not, according to its current energy
level, so as to maximize the utility of the networks. The authors of [18,19] characterized the stable
region in the scenario of two bursty nodes with EH capability randomly accessing a common receiver.
These studies are suitable for only one or two terminals, which are not realistic in the satellite networks.
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The design of medium access control (MAC) protocols that can support multiple EH sensors was
presented in References [20–23], focusing on time division multiple access (TDMA), framed Aloha,
and dynamic framed Aloha. An EH contention tree-based access (EH-CTA) protocol was addressed
in Reference [24], which exploited a tree-splitting algorithm to recover collisions and considered the
energy availability. The authors of [25] put forward an EH aware reservation dynamic framed slotted
Aloha (EH-RDFSA) protocol for the case of wireless M2M networks. The above works [20–25] are
considered in the terrestrial EH-WSNs scenario, and the access policies are decided by a central
controller according to the energy levels of each EH sensor. The centralized schemes are expected
to achieve the best performance because packet collisions can be avoided by proper management
at the central controller. However, this kind of centralized policies is only appropriate for relatively
small scales of networks [26]. For satellite communication networks, the number of EH satellite
terminals (EH-STs) is much larger than that of sensor nodes in terrestrial EH-WSNs, and the energy
state information uploaded by massive EH-STs to the central controller in every slot will lead to
unaffordable communication overhead. Furthermore, the resource allocation procedure will cause
additional communication delay, which is unacceptable in satellite communication networks, especially
for the networks made up by geosynchronous orbit (GEO) satellites.

Some studies on multiple access schemes with distributed energy management policies were
presented in References [27–29]. In this respect, a distributed dynamic optimal policy which maximized
the sum throughput by adjusting each EH node’s transmission power was introduced in Reference [27].
A decentralized access scheme was designed in Reference [28], where each EH node decided to
transmit or discard a packet according to the packet’s utility and the energy level independently by a
game theoretic analysis method. A distributed scheduling scheme adopting an iterative technique
to find the efficient rate and power scheduling for boosting the average throughput was proposed in
Reference [29].

The terrestrial RA schemes with energy management policies mentioned above are based on
pure S-Aloha, where no contention resolution mechanisms are applied to improve the performance
of the networks. The S-Aloha scheme suffers a high collision probability, especially for the heavy
traffic load. Without contention resolution mechanisms, colliding frequently requires a large number
of retransmissions, which yields very large latencies in the satellite networks. Therefore, those RA
schemes based on pure S-Aloha cannot be applied to the satellite scenario directly. In addition,
the population of the satellite terminals in the satellite coverage range is much larger than that in the
terrestrial cell, which makes the RA schemes with centralized energy management policies unpractical.
Thus, the design of RA schemes with efficient energy management policies for the interactive satellite
communication networks is urgent.

Driven by these requirements, this paper introduces a distributed optimal RA scheme based on
the CRDSA protocol for EH-STs in satellite communication networks. Unlike some asynchronous
and spread spectrum based RA protocols, such as enhanced spread spectrum Aloha (E-SSA) [30] and
minimum mean square error enhanced spread spectrum Aloha (ME-SSA) [31], CRDSA is a non-spread
spectrum protocol but requires time slot synchronization. The reason for choosing CRDSA as the
basic protocol is its robustness and simplicity of implementation compared with spread spectrum
systems [12]. Moreover, CRDSA is a candidate RA protocol for the next generation of interactive
satellite systems [6], which is interested in practice. The main contributions of this paper can be
summarized as:

• Propose a distributed optimal RA scheme in satellite communication networks with the
consideration of energy management policies by extension of the CRDSA protocol towards
an EH scenario. Each EH-ST determines whether to transmit the packet and how many replicas
are sent according to its local energy information so as to maximize the average long-term
network throughput;

• develop an analytical model of the average long-term throughput with constraints of packet loss
ratio and energy. A game theoretic method is adopted to tackle the nonconvex optimization
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problem. By employing the same access scheme to all EH-STs, the symmetric Nash equilibrium of
this game is characterized, and its existence and uniqueness are proved;

• exploit a policy iteration algorithm combined with a bisection method to approximate the optimal
solution of the game. The performance of the proposed RA scheme by both numerical analysis and
extensive simulations is investigated under different EH rates for different metrics as throughput,
packet loss ratio, and data delivery probability.

The rest of this paper is organized as follows. Section 2 introduces the system model and
performance metrics. Problem descriptions and formulation are presented in Section 3. Section 4
analyzes and solves the optimization problem. Simulation results are shown in Section 5. Finally,
Section 6 concludes this paper and indicates future work.

Notations: Uppercase boldfaces, lowercase boldfaces and normal letters denote the matrices,
vectors and scalars respectively, such as X, x and x.

2. System Model

The scenario under consideration in this paper consists of U wireless EH-STs, where EH-STs send
data packets via a shared wireless channel to a GEO satellite, as shown in Figure 1. These EH-STs are
placed in the outdoor field to monitor the environment and post the acquired data to the satellite [32].
The data packets received by the satellite are forwarded to the ground gateway station transparently
with independent backhaul channels, which are assumed to be error free. The energy harvested by
each EH-ST from the environment is stored in a rechargeable battery for the radio frequency unit and
sensing apparatus. Each EH-ST is equipped with a processing unit to manage the available energy.
The following parts of this section introduce the data model, MAC protocol, energy consumption,
energy storage, and energy harvesting models of the system in detail.

2,k
B

4,k
B

8,k
B

7,k
B

6,k
B

5,k
B

1,k
B

3,k
B

Figure 1. Satellite communication networks with energy harvesting terminals.

2.1. MAC Protocol Operation and Performance Metrics

(1) MAC Protocol Operation: The adopted MAC protocol is based on the idea of CRDSA and its
frame structure is shown in Figure 2 [4]. Time is slotted, and each RA frame consists of N time slots.
The duration of each time slot is assumed to be equal to the packet transmission time, which is denoted
as Ts. Once the EH-STs have registered in the network, they will keep time synchronization via the
procedures described in Reference [33] or in Reference [34]. An EH-ST can transmit only one MAC
packet per RA frame. In fact, the EH-ST will transmit l replicas of the same MAC packet physically,
where l ∈ Z+ and l ≤ N. These replicas carry the same preamble and payload information and are
randomly put in l slots of an RA frame. For a specific replica, the payload should contain the location
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information of other replicas within the frame. Once a packet is detected successfully at the gateway
station (e.g., the first packet of user 3 in Figure 2), it will use the location information to cancel the
interference caused by other replicas on other slots (e.g., the second packet of user 3 in Figure 2).
Most of the packets that are collided initially can be recovered by iterating the above approach.

User 1

User 2

User 3

User 4

t

RA Frame

Time slot

Clear

Interfered

1

2

3

S
T

Figure 2. Contention resolution diversity slotted Aloha (CRDSA) frame structure and interference
cancellation procedure (Packet replica l = 2).

For packets decoded at the gateway station, it is assumed that channel information is always
available, which can be acquired by the methods mentioned in References [4,10]. For every frame, the
EH-STs will always have a packet to send, and all packets are with equal importance. Each EH-ST
decides whether to transmit the packet independently following the policy ω, which is only related
to its current energy level and EH rate. Specifically, ω indicates two parts. One is the number of
packet replicas to send, which is denoted as l, and the other one is the probability of transmitting
these replicas, which is denoted as η. For simplicity, this paper only considers stationary policies
independent of each frame, and ω = (ω1, ω2, . . . , ωU) denotes as the joint transmission policy of the
network. If the packet is not transmitted at the current frame, or it fails to be transmitted successfully,
it will be transmitted in the next frame.

(2) Performance Metrics: The performance of the RA scheme is measured by the packet loss ratio
(PLR), the throughput T of the system, and data delivery probability pd, where PLR and T are related
to the normalized traffic load L, number of packet replicas l, and number of time slots in a frame
N [4]. Similar to the definition of throughput in Reference [10], for given l and N, which are usually
predefined in the network, the relationship between PLR and T is defined as:

T (L, l, N) = (1− PLR (L, l, N)) L, (1)

where L = M/N, and M is the number of the co-transmitted EH-STs within the duration of one frame
(M ∈ Z+). Moreover, PLR is supposed to be a continuous increasing function with respect to (w.r.t)
the traffic load L [4], and the traffic load increases with the increase of packet transmission probability.

The data delivery probability is the probability of the data of any EH-ST u to be successfully
delivered and correctly received by the satellite during the kth frame when there are new packets
ready to be reported at the start of the frame k. This metric, denoted as pd, measures the ability
of the RA scheme to successfully transmit the packets from EH-STs to the satellite in every frame,
without depleting their energy. pd is expressed as:

pd(k) = Pr [u transmits successfully in frame k|u has new data in frame k]. (2)

Note that the successfully transmitted packets by EH-ST u in Equation (2) include both the
noncollided packets from the beginning and the packets that have been resolved during its frame time.
Moreover, the statistical probability (Equation (2)) is made by each EH-ST independently. Since EH
technologies can provide EH-STs with potentially perpetual operation, the average long-term data
delivery probability can be expressed as pLT

d = limk→∞ pd(k).
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Packet delay is another metric to describe the average delay of a packet that is successfully received
at the gateway station. Each EH-ST transmits l packet replicas with the probability η independently.
If there is not enough energy in the battery, it will wait until it has enough energy to transmit the
packets. The evolution of the available energy in the battery can be modeled as a Markov chain,
which is introduced in detail in Section 3. Moreover, if a packet fails to be received at the gateway
station, it will be retransmitted with the same policy ω, according to the residual energy. Therefore,
the packet delay Dpk is measured as the number of frames that elapse from the start of one frame where
the packet was transmitted for the first time, until the end of the frame where the packet was received
successfully. According to the description above, the packet delay distribution can be expressed as [35]:

Pr (Dpk = f ) =



emax

∑
e=0

πη(e)η(e)(1− PLR), for f = 1

emax

∑
e=0

{ [
πη(e)η(e)PLR

]
·
[
(πη(e)η(e)·(1− PLR))

]
×
[
(1−πη(e)η(e))+PLR·πη(e)η(e)

] f−2
}

, for f > 1

, (3)

where πη(e) is the steady-state probability of the available energy e, and the derivation of πη(e) is
presented in the next section. η(e) is the packet transmission probability and emax is the capacity of the
battery. Specifically, the term πη(e)η(e)(1− PLR) represents that the packet is received successfully.
For f > 1, the term πη(e)η(e)PLR means the packet is transmitted in the first frame, but it is not

received by the gateway station. Furthermore, the term
[
(1−πη(e)η(e))+PLR·πη(e)η(e)

] f−2 can be
explained as that the packet is still not received in the next f − 2 frame periods due to the energy
shortage or packet collisions. Thus, the long-term average packet delay DLT

pk is given by:

DLT
pk =

∞

∑
f=1

f · Pr (Dpk = f ). (4)

2.2. Energy Consumption and Storage Models

In this paper, the rechargeable battery of each EH-ST is modeled as a buffer [36], and each position
in the buffer can hold one energy unit. It is assumed that packets are transmitted with equal power,
which will consume one energy unit for transmitting one physical packet in a frame, and the other
energy expenditures due to battery leakage or data collecting, etc. are not taken into consideration.
The number of energy units that are stored in a battery of an EH-ST is denoted by E ∈ {0, 1, 2, . . . , emax},
where emax represents the capacity of the battery. Denote the amount of energy units of EH-ST u at the
frame k as Eu,k, where k ∈ Z+, and the evolution of Eu,k is formulated as follows:

Eu,k+1 = min
{

Eu,k − lu,k ·Qu,k + Bu,k, emax
}

, (5)

where Qu,k is the packet transmission action of EH-ST u. Qu,k = 1 if the EH-ST determines to transmit
the current packet with lu,k replicas, which will consume lu,k energy units, otherwise the EH-ST u will
remain idle for Qu,k = 0. Bu,k represents the amount of energy that the EH-ST u harvested within the
duration of frame k, and the harvested energy within the duration of frame k can only be used for the
next frame. Thus, if there is no energy left in the battery, then the EH-ST u will remain idle (Qu,k = 0).

2.3. Energy Harvesting Model

The communication scenario under consideration in this paper is mainly applied to environmental
monitoring, and each EH-ST can harvest different amounts of energy units from the ambient energy
sources. For instance, for a solar source, EH-STs in the direct sunlight situation will harvest more
energy than those in a cloudy situation. Therefore, we assume the energy harvester of EH-ST u acquires
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Bu,k energy units from the environment within the duration of frame k. Based on the energy harvesting
models mentioned in References [22,24,25], the energy arrival process in this paper is assumed to
follow Poisson distribution during one frame transmission time with parameter bk, which represents
the stochastic and intermittent nature of the ambient energy sources. Thus, the probability of Bu,k
energy units arrived within the duration of frame k is:

β (Bu,k, bk) =
bBu,k

k exp (−bk)

Bu,k!
. (6)

The energy arrival process of the components of Bk = (B1,k, B2,k . . . , BU,k) is considered to be
identically and independently distributed (i.i.d) over time and all EH-STs. β denotes the average
energy units harvested within a long period of time, which reflects the average long-term EH rate,
and β = E [Bu,k].

3. Problem Descriptions and Optimization

This paper focuses on designing a distributed RA policy for EH-STs in satellite communication
networks. Following this way, all the EH-STs in the networks are considered to have their own local
information, i.e., the energy level at the current time and the EH rate. Therefore, EH-ST u decides
whether to transmit the packet in the current frame k or keep idle based only on Eu,k, independent of
the energy level of other EH-STs (Ei,k, i 6= u). For the given Eu,k, the probability of EH-ST u transmitting
its current packet (Qu,k = 1) with lu,k replicas is η (Eu,k), which is the transmission policy of our design.

Supposing there are M EH-STs transmitting packets in the same frame duration, given the initial
state of energy levels E0 = e0 ∈ EU , the policy ω, the number of packet replicas l, and the number of
time slots in a frame N, the average long-term throughput contributed by the specific EH-ST u can be
denoted as follows:

T(u)
ω (e0)= lim

K→∞

1
K

[
K−1

∑
k=0

(
(1−PLR (M, l, N)) ηu,k ·

(
U
M

)
× ∏

i 6=u,j
ηi,k ∏

j 6=u,i

(
1− ηj,k

) )
| e0, ω

]
, (7)

where i indicates the other co-transmitted EH-STs in addition to EH-ST u, and j represents the rest
of the EH-STs which keep idle. The term 1−PLR (M, l, N) represents the throughput contributed
by EH-ST u, and the term (U

M)∏i 6=u,j ηi,k ∏j 6=u,i

(
1− ηj,k

)
is a binomial operator which stands for

the probability of M EH-STs transmitting packets. Specifically, the average probability of EH-ST u
transmitting lu,k replicas in energy level e is denoted as:

ηu (e) = Pr [Qu,k = 1 | Eu,k = e] . (8)

Furthermore, the expected throughput contributed by EH-ST u in energy level e is denoted as
g (ηu (Eu,k)), which is given by:

g (ηu (Eu,k)) = E [1− PLR(M, l, N) | Eu,k = e] . (9)

g (ηu (e)) is a concave function w.r.t the traffic load, which is related to the transmission probability
ηu (e). Therefore, Equation (7) can be restated as:

T(u)
ω (e0) = lim

K→∞

1
K

[
K−1

∑
k=0

(
g (ηu (Eu,k)) ηu,k ·

(
U
M

)
× ∏

i 6=u,j
ηi,k ∏

j 6=u,i

(
1− ηj,k

) )
| e0, ω

]
. (10)
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Moreover, the average long-term throughput of the network is defined as the number of the
packets successfully uploaded to the satellite, which can be represented as:

Tω (e0) =
M

∑
u=1

T(u)
ω (e0) . (11)

This paper aims to design the packets transmission policies ω to maximize the throughput of the
network, i.e.,

ω∗ = arg max
ω

Tω (e0) . (12)

However, the design of transmission policies ω for the EH-STs in the satellite communication
networks needs to consider the following trade-offs:

• More packet replica EH-STs transmitting seems to provide a better performance of packet
detection [7]; nonetheless, too many replicas will cause channel saturation easily in the heavy
traffic load [35] and battery depletion occurs more frequently;

• larger transmission probability makes EH-STs transmit more often, which yields large access
latencies due to packet collisions, especially for the heavy traffic load [4,28]; hence, a lower
network throughput is accrued;

• smaller transmission probability results in a lighter traffic load, which increases the packet
transmission success rate; however, as Equation (1) indicated, smaller network throughput may
be acquired.

Thus, the optimal transmission policy ω∗ reflects an optimal trade-off among energy consumption,
access delay, and network overall throughput. In order to keep balance between the performance
of packet detection and energy consumption, this paper assumes that each EH-ST can transmit lmax

packet replicas in one frame at most. A specifically admissible policy Ω that indicates the number
of transmission packet replicas and transmission probability independent of initial energy state e0 is
defined below.

Definition 1. A specifically admissible policy Ω is defined as:

Ω =

η :


η (0)=0, e = 0

η (e)∈ (0, 1) and l= e, e < lmax

η (e)∈ (0, 1] and l= lmax, lmax ≤ e ≤ emax

 . (13)

Remark 1. Note that the set of the specific policy Ω is made up of two parts. One is the number of transmission
packet replicas l and the other one is the probability of transmitting these l packet replicas η(e). In fact, l can
be an arbitrary positive integer, and it is no larger than the current energy level e. However, considering the
complexity of the analysis procedure and the algorithm design, we predefine a reasonable transmission policy in
terms of the number of transmission packet replicas. Specifically, each EH-ST will transmit lmax replicas with
probability η(e) if lmax ≤ e ≤ emax, or it will keep idle with probability 1− η(e). If the current energy level
of an EH-ST is less than lmax, the EH-ST will transmit e replicas with probability η(e). Therefore, we mainly
focus on the design of the optimal transmission probability η∗. Since there is a one-to-one mapping between the
specific policy Ω and the transmission probability η, without loss of generality, we refer to ηu as the policy of
EH-ST u in the following parts of this paper.

Under the policy η ∈ ΩU , the evolution of the energy available in the battery {Ek} can be
modeled as a Markov chain. For each EH-ST, the state in the chain is defined by {Ek}, where Ek ∈
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{0, 1, 2, . . . , emax} represents the available energy units stored in frame k. The transition matrix of the
Markov chain is denoted by P = [pmn], where pmn is the probability of one-step transition given by:

Pr {E (k + 1) = en | E(k) = em} . (14)

According to the energy harvesting model, energy consumption model, and the defined policy,
the transition probability from state em to state en is formulated by:

pmn =



β (en, bk) , if em = 0 and en 6= emax

1−
emax−1

∑
n=0

β (n, bk) , if em =0 and en = emax

η(em)β (en, bk) , if em 6=0 and em≤ lmax and em > en

η(em)β (en, bk) + [1− η(em)]β (en − em, bk) , if em 6=0 and em≤ lmax and em≤ en and en 6= emax

η(em)

[
∞

∑
n=emax

β(n, bk)

]
+ [1− η(em)]

[
∞

∑
n=en−em

β(n, bk)

]
, if em 6=0 and em≤ lmax and em = emax

η(em)β(en − em + lmax, bk), if em 6=0 and em > lmax and em > en

η(em)β(en−em+lmax, bk)+[1−η(em)]β (en−em, bk) , if em 6=0 and em > lmax and em≤ en and en 6= emax

η(em)

[
∞

∑
n=en−em+lmax

β(n, bk)

]
+[1−η(em)]

[
∞

∑
n=en−em

β(n, bk)

]
, if em 6=0 and em > lmax and em = emax

0, otherwise

(15)

which indicates the Markov chain is irreducible under this transmission policy. Therefore, there exists
a unique steady-state probability distribution, which is denoted by πη(e), e ∈ EU , and it satisfies
both (P′ − I)π′η(e) = 0 and ∑emax

e=0 πη (e) = 1, where P and I are transition probability and identity
matrices [37]. Thus, the steady-state probability πη(e) can be acquired by solving the linear equations.
Moreover, the steady-state probability distribution is independent of the initial state e0, so Equation (10)
can be further deduced as:

T(u)
η = E

[
∑

e∈EU

πη(e)g (ηu (eu))

(
U
M

)
∏

i 6=u,j
ηi (ei)× ∏

j 6=u,i

(
1− ηj

(
ej
)) ]

. (16)

Since the packet transmission action Qu,k is based only on the current available energy unit in
EH-ST u, the energy harvesting process is i.i.d for all EH-STs. Moreover, the energy level of each EH-ST
is independent, so πη(e) can be represented as:

πη(e) = ∏
u

πηu(eu), (17)

where πηu(eu) is the steady-state probability of EH-ST u at energy level eu. Letting:

G(ηu) =
emax

∑
e=1

πηu(eu)g (ηu (e))

P(ηu) =
emax

∑
e=1

πηu(eu)ηu(e),
(18)

Equation (16) can be rewritten as:

T(u)
η =E

[
G(ηu)

(
U
M

)
∏

i 6=u,j
P(ηi) ∏

j 6=u,i

(
1−P(ηj)

)]
. (19)

In Equation (19), G(ηu) is the average long-term throughput of EH-ST u, assuming there are
M EH-STs co-transmitting packets in the same frame. ∏i 6=u,j P(ηi) is the steady-state probability of
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other M− 1. EH-STs are also transmitting packets, and ∏j 6=u,i
(
1−P(ηj)

)
represents the steady-state

probability of the rest of the U − M EH-STs being in an idle state. According to Equation (11),
the network overall throughput under the packet transmission policy η becomes:

Tη=E
[

M

∑
u=1

G(ηu)

(
U
M

)
∏

i 6=u,j
P(ηi) ∏

j 6=u,i

(
1−P(ηj)

)]
. (20)

In order to keep the packet transmission procedure fair, this paper adopts symmetric control
policies [28], i.e., all EH-STs employ the same RA policy ηu = η, ∀u. Therefore, Equation (20) can be
rewritten as:

Tη=E
[

MG(η)

(
U
M

)
P(η)M−1 (1−P(η))U−M

]
. (21)

The total number of EH-STs (U) registered in the network can be acquired from the satellite
broadcast information. The optimization problem (Equation (12)), under the admissible symmetric
policies, can be represented as:

η∗ = arg max
η∈Ω

E
[

MG(η)

(
U
M

)
P(η)M−1 (1−P(η))U−M

]
. (22)

4. Optimization and Analysis

The optimization problem (Equation (22)) can be separated into two parts. The term M · G(η)

represents the expected network total throughput when there are M EH-STs co-transmitting packets in
the same frame, and the term (U

M)P(η)M−1 (1−P(η))U−M is the probability of M EH-STs transmitting
packets concurrently in the same frame, which can be regarded as a binomial operator. Moreover,
g(η) is concave; thus, Equation (22) is a nonconvex optimization problem. In order to determine
the approximated solutions of Equation (22), this paper exploits a game theoretic method which is
mentioned in Reference [36] to formulate the random access procedure. Specifically, we use a game
theoretic method to model the optimization problem, where each EH-ST u acts as a player which
optimizes its own transmission policy ηu to maximize the network throughput (Equation (19)).

This section first analyzes the characteristics of the general Nash equilibrium (NE) of this game.
The transmission policy profile is defined as η∗ = (η∗1 , η∗2 , . . . , η∗U), which is the joint policy. According
to the definition of NE, if any EH-ST u adopts the policy ηu 6= η∗u, while all the other EH-STs use the
policy η∗i (i 6= u) to achieve the NE, then a smaller network throughput is obtained. The NE condition
must satisfy all the EH-STs, and no player can improve the throughput by deviating unilaterally, i.e.,

Tη∗u ,η∗−u
≥ Tηu ,η∗−u

, ∀u ∈ U, ∀ηu ∈ ΩU . (23)

By the definition of NE, if an NE (not necessarily symmetric) exists for the game, it must solve ∀u:

η∗u = arg max
ηu∈Ω

Tηu ,η∗−u

= arg max
ηu∈Ω

E
[(

U
M

)[
G(ηu) ∏

i 6=u,j
P(η∗i ) ∏

j 6=u,i

(
1−P(η∗j )

)

+ (1− P(ηu))

(
∑

n 6=u,i
G(η∗n) ∏

i 6=u,j
P(η∗i ) ∏

j 6=u,i,n

(
1−P(η∗j )

)

− ∑
m 6=u,j

G(η∗m) ∏
i 6=u,j,m

P(η∗i ) ∏
j 6=u,i

(
1−P(η∗j )

))]]

= arg max
ηu∈Ω

G(ηu)−P(ηu)

(
∑

n 6=u,i

G(η∗n)

1− P(η∗j )
− ∑

m 6=u,j

G(η∗m)

P(η∗i )

)
.

(24)
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In the last step, the optimization formula is divided by the term

(U
M)∏i 6=u,j P(η∗i )∏j 6=u,i

(
1−P(η∗j )

)
, and we remove the additive term, which is independent of

ηu. Furthermore, we impose the symmetric policy η∗u = η∗, ∀u, and obtain the symmetric NE
as follows:

η∗ = arg max
η∈Ω

G(η)− Γ(η∗)P(η), (25)

where Γ(η) is defined as:

Γ(η) = G(η)

(
U −M

1− P(η)
− M− 1

P(η)

)
. (26)

η∗ in Equation (25) is the policy that is simultaneously optimal for all the EH-STs, and any single EH-ST
unilaterally deviates from the equilibrium condition η∗ yielding a smaller network throughput. G(η)

in Equation (25) is the throughput contributed by EH-ST u when there are M EH-STs accessing the
channel simultaneously. The term Γ(η∗) can be regarded as a Lagrange operator, which is associated
to control the transmission probability of EH-ST u and further controls the number of concurrent
EH-STs and packet loss rate due to packet collisions. Therefore, the overall objective of Equation (25)
is to maximize the individual throughput, so as to maximize the network throughput. Meanwhile,
constraints on the average transmission and number of concurrent EH-STs need to be taken into
consideration. For a fixed network size U, the Lagrange operator decreases with the increase of M;
however, due to the concavity of g(η), larger M will increase the packet loss rate, which is negative to
network throughput. Moreover, the larger the throughput or transmission probability of other EH-STs,
i.e., G(η∗) or P(η∗), the larger the Lagrange operator Γ(η∗); thus, a stringent transmission probability
is needed to reduce the packet collisions. The Lagrange operator optimally controls the transmission
probability of each EH-ST. Therefore, in order to achieve the maximum throughput of the network,
the average transmission probability needs to be properly designed based on the Lagrange operator.

To solve Equation (25), we simplified it to a more general optimization problem, which is
represented as follows. For γ ≥ 0:

η(γ) = arg max
η∈Ω

[G(η)− γP(η)] , (27)

and G(η)− γP(η) = ∑emax
e=1 πη(e) [g(η(e))− γη(e)]. Based on this simplified optimization problem,

we can further prove the existence and uniqueness of the symmetric NE in Equation (25),
thus finding the solution of Equation (25), which is locally optimal for the original optimization
problem (Equation (22)).

Due to the concavity of g(η) [10], η(γ) has the following properties.

Proposition 1. (1) η(γ) is uniquely defined, i.e.,

G(η(γ))− γP(η(γ)) > G(η)− γP(η), ∀η 6= η(γ); (28)

(2) η(γ) is continuous in γ;
(3) 0 < P(η) ≤ β(B ≥ l), G(η) ≥ G(ηPLRth).

Remark 2. The first property can be proved by the concavity of g(x); thus, x∗γ = arg maxx∈[0,1] g(x)− γx has

a unique solution. Due to the continuity of g(x), η(γ) is continuous in γ. For the third property, the transmission
probability η ∈ Ω cannot be larger than the energy harvesting rate β(B ≥ l), where B is number of acquired
energy units and l is the number of transmitted packet replicas. Moreover, g(η) is a concave function which is
related to PLR, and the relationship between g(η) and PLR is dictated in Equation (9). Since PLR increases
with the traffic load increasing, PLR should be below a PLR threshold. Because a large PLR means more
packets cannot be detected successfully, which will cause a large delay penalty for the satellite networks, ηPLRth
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is the maximum packet transmission probability that ensures the PLR of the network the being below the
PLR threshold.

From Equations (25) and (27), we can obtain that η∗ is optimal for Equation (25) if and only if
η∗ = η(γ∗), for γ∗ > 0, and Γ(η(γ∗)) = γ∗. In order to prove the existence of the unique solution of
Equation (25), we need to prove the following propositions first.

Proposition 2. P(η(γ)) is a non-increasing function of γ, and P(η(0)) > 0, P(η(∞)) = 0.

Proof of Proposition 2. See Appendix A.

Proposition 3. Γ(η(γ)) is a non-decreasing, continuous function of γ, and Γ(η(0)) > 0, Γ(η(∞)) = g′(0).

Proof of Proposition 3. See Appendix B.

Since the proposed policy is a symmetric policy, we further analyze the characteristics of the
symmetric NE condition for the game. According to the above propositions, the following theorem
proves the existence and uniqueness of the symmetric NE, i.e., the solution of Equation (25).

Theorem 1. There exists a unique solution of the optimization problem (Equation (25)), i.e., ∃!η∗ ∈ Ω,
such that MG(η∗)− Γ(η∗)P(η∗) > MG(η)− Γ(η∗)P(η), ∀η 6= η∗. Additionally, the average transmission
probability P(η∗) ≤ min

{
β(B ≥ l), P(ηPLRth)

}
.

Proof of Theorem 1. See Appendix C.

Generally, the symmetric NE may be a suboptimal solution of the original optimization
problem (Equation (22)), because it is optimal only for the case that EH-ST deviates from the network
unilaterally, not symmetrically. Contrarily, if all the EH-STs change the policy by the same quantity
(the policy is still symmetric), then it may improve the throughput of the system. Therefore, in this
situation, the obtained policy holds for the symmetric NE may not be globally or locally optimal.
In the following theorem, we show that the obtained symmetric NE is a locally optimal solution of the
optimization problem proposed in this paper.

Theorem 2. The obtained symmetric NE in Equation (25) is locally optimal for the original optimization
problem (Equation (22)).

Proof of Theorem 2. See Appendix D.

In this paper, we also present an algorithm to determine the optimal policy η∗. From the analysis
above, we need to determine the unique γ∗, s.t. f (γ∗) = 0, where we have previously defined
f (γ) = Γ(η(γ)) − γ. Then, according to γ∗, we can obtain the optimal policy η∗ as η∗ = η(γ∗).
Since f (γ) is a continuous decreasing function of γ, f (0) > 0, and f (∞) → −∞, we can use the
bisection method [38] to search the unique γ∗ which makes f (γ∗) = 0. Thus, upper bounds γup and
lower bounds γlow are needed to approach γ∗, where γlow <γ∗<γup. By computing the value of f (γ)
for the updated γ = (γup + γlow)/2, the upper and lower bounds are updated and refined recursively
until f (γ) satisfies the expected accuracy. In order to compute f (γ), we also need to determine Γ(η(γ)),
which can be computed efficiently by a policy iteration algorithm [39]. The lower bound is initialized
by γlow = 0. For the upper bound, note that M ≈ UP(η), and the average throughput gain G(η) is
measured by packet/slot which is less than 1. Therefore, the upper bound is initialized by γup = U.
The algorithm is described in detail in Algorithm 1.

The policy iteration algorithm employed in Algorithm 1 is able to determine the optimal policy
η(γ) when δPIA → 0. The optimality and convergence of the policy iteration algorithm is proven in
Reference [39]. Particularly, in the policy improvement step of Algorithm 1, the optimization function
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has a unique optimal solution, since dγ(η(e)) is a concave function of η(e). The optimal solution can
be obtained by taking the derivative of the optimization function w.r.t η(e).

Remark 3. Algorithm 1 is combined policy iteration algorithm with a bisection method, which can be operated
efficiently. For the policy iteration part, we need to calculate the Markov steady state probability distribution
πη[i](e), which can be solved by linear programming using the transition probability (Equation (13)) , and its
computing complexity is O(emax). Furthermore, in order to obtain the value function v(e), we also need to solve
the linear system, whose computing complexity is O(emax). For the policy improvement step, it needs to take the
derivative of the optimization function and then solve the linear function. Thus, the complexity of this step scales
as O(emax). Finally, these steps are needed to iterated Niter(δPIA) times until it converges. Typically, Niter(δPIA)

is no larger than 10 [28]. Therefore, the overall computing complexity of policy iteration algorithm scales as
O(emax Niter(δPIA)). For the bisection method, the maximum iterations to achieve the expected accuracy δBM
are log2(U/δBM). Thus, the overall complexity of Algorithm 1 is about O(emax Niter(δPIA)log2(U/δBM)).

Algorithm 1 (Optimal γ∗ via bisection method )

(1) Initialization: Initialize the accuracy of policy iteration algorithm δPIA > 0 and of bisection

method δBM >0, γ
[i]
low =0 and γ

[i]
up =U, η[j](e)∈ (0, min

{
β(B ≥ l), ηPLRth

}
); i= j=0;

(2) Policy Optimization: Let γ[i] = (γ
[i]
up + γ

[i]
low)/2 and determine η(γ) by the following policy

iteration steps:

• Policy Evaluation: Calculate the value function vη(e) for e>0, where vη(e) is the solution
of the linear system vη[j](e)−∑ε∈E Pη[j](ε | e)−vη[j](ε)= dγ[i](η[j](e))−Dγ[i](η[j]), e∈E, where
Dγ(η)=MG(η)−γP(η), dγ(η)=Uη(e)g(η(e))−γη(e) and Pη[j](ε | e) is the Markov transition
probability from energy level e to ε.

• Policy Improvement: Determine the new policy by solving the following optimization
problem η[j+1](e)= arg max

η∈
(

0,min
{

β(B≥l),ηPLRth

})dγ[i](η[j](e))

+ Pη[j](ε | e). If η[j+1](e)>min
{

β(B ≥ l), ηPLRth

}
, then η[j+1](e)=min

{
β(B ≥ l), ηPLRth

}
.

• Termination Test for Policy Iteration Algorithm: If
∣∣∣Dγ[i](η[j])− Dγ[i](η[j+1])

∣∣∣ < δPIA,

η[j+1] is the optimal policy and η(γ[i]) = η[j+1]. Otherwise, i := i + 1, and repeat from
the policy evaluation step.

(3) Calculation f (γ[i]): Calculate f (γ[i]) = Γ(η(γ[i]))− γ[i] under the policy η(γ[i]).
(4) Termination Test for Bisection Method:

• If
∣∣∣ f (γ[i])

∣∣∣<δBM, η∗=η(γ[i]);

• If f (γ[i]) < −δBM, update the bounds γ
[i+1]
up := γ[i] and γ

[i+1]
low := max

{
γ
[i]
low, Γ(η(γ[i]))

}
respectively, repeat from step (2) and update the counter i := i + 1;

• If f (γ[i]) > δBM, update the bounds γ
[i+1]
low := γ[i] and γ

[i+1]
up := min

{
γ
[i]
max, Γ(η(γ[i]))

}
respectively, repeat from step (2) and update the counter i := i + 1.

5. Simulation Results

This section provides some simulation results to evaluate the proposed random access policy. It is
assumed that the number of time slots in a frame N is 200 and each packet occupies one time slot.
The length of each packet is 100bits and the data are modulated by QPSK. The received energy per
symbol noise power spectral density ratio Es/N0 of each packet is assumed to be equal with 10 dB.
Additive white Gaussian noise (AWGN) is added before CRDSA demodulating, and the maximum
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decoding iteration is to set Nmax
iter = 15 . For CRDSA, a packet is either clear (not collided with other

packets) or interfered with other packets entirely [4]. For the clear packets, they can be decoded easily
even without FEC, since Es/N0 is large enough to decode the packets correctly. For the entirely collided
packets, they can hardly be decoded correctly even with FEC, since the power of the overlapped packets
is nearly the same [11]. Thus, we do not consider FEC in this paper. Actually, a power unbalance
scenario and proper transmission power selection schemes combined with FEC can further boost the
performance of the CRDSA [40], but the analytical model needs to be redesigned, which is out of the
scope of this paper. This paper aims to provide a common but effective train of thought of designing
a distributed RA policy for energy harvesting devices in satellite communication networks. Thus,
the application of FEC is left for future research together with the power unbalance scenario and some
variant CRDSA protocols. The main simulation parameters in this section are listed in Table 1.

Table 1. Simulation parameters. EH-ST: Energy harvesting satellite terminal.

Parameters Settings

Number of time slots in a frame N = 200
Length of each packet 100 bits
Modulation scheme QPSK

Energy per symbol noise power spectral density ratio Es/N0 = 10 dB
Maximum decoding iteration Nmax

iter = 15
Number of EH-STs U = [0:20:200]

Number of replicas in CRDSA l ≤ 3
Energy harvesting rates β̄ ∈ {1, 2, 3}

Battery capacity emax = 10

Since CRDSA adopts the scheme of successive interference cancellation, the value of PLR is
obtained by an iteration method for a specific traffic load [4,10]. Therefore, the expression of PLR(L)
cannot be obtained directly. This paper uses the method of curve fitting to approximate the PLR
function. In order to guarantee the PLR(L) increasing and g(η) concave in the range (0, 1), we adopt
a Gaussian model with 8 terms to fit the curve, and the simulation results are shown in Figure 3.
PLR value of CRDSA is computed by the method mentioned in Reference [10]. The traffic load is
normalized by M/N, where M is the number of concurrent terminals. Figure 3 shows the fitted curves
are well matched with CRDSA PLR curves for both 2 and 3 replicas.

Figure 3. Packet loss ratio PLR curves comparison of the fitted curves and CRDSA with 2 and 3 replicas,
number of time slots N = 200, QPSK modulation, Es/N0 = 10 dB.
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5.1. Throughput and PLR

Figure 4 illustrates the network throughput of the proposed policy obtained by simulation and
theoretical analysis. We plot the relationship between the normalized network throughput and the
number of EH-STs in the network U, and consider different scenarios by varying the energy harvesting
rate β̄ ∈ {1, 2, 3}. The normalized throughput is defined as T(L) = (1− PLR(L))L, where the traffic
load L is normalized by M/N. The capacity of the battery is assumed to be emax = 10 and the PLR
threshold is set 10−3. The simulation results indicate that the analytical network throughput in different
EH rate scenarios is well matched with that simulated in the same scenario. For the lower EH rates
β̄ = 1 and β̄ = 2, the network throughput increases with the number of EH-STs in the network linearly,
because in these scenarios, the transmission probability is constrained by the EH rate. Moreover, under
a lower EH rate, although the network size increases, the average number of concurrent EH-STs is
still less than what CRDSA can support, i.e., the achieved PLR does not exceed the threshold. Due to
the properties of g(η), the network throughput increases with the network size for the lower EH rates.
As the EH rate grows, each EH-ST has more transmission opportunities. Since the CRDSA protocol has
a good performance on recovering collided packets under moderate traffic load, the network will gain
higher throughput under a higher EH rate. When the EH rate is high enough (β̄ = 3), the throughput
of the network increases with the network size first, but afterwards it tends to be flat. This is because
when the network size becomes larger, more EH-STs have enough energy to transmit the packet.
For the larger network size, packet collisions become the bottleneck of the performance. The policy
will control the transmission probability of each EH-ST to guarantee the PLR is under the threshold.

Figure 4. Normalized network throughput for different network sizes, under different EH rates
β̄ ∈ {1, 2, 3}, emax = 10. For random access (RA) schemes, number of time slots in each frame N = 200,
QPSK modulation, Es/N0 = 10dB.

In addition, we also plot the upper bounds (UB) of the network throughput for different
scenarios, which are represented by the black dashed line in Figure 4. Since g(η) is a concave
function, G(η) ≤ g(P(η)) from Jensen’s inequality [41]. Moreover, P(η) ≤ min

{
β(B ≥ l), P(ηPLRth)

}
;

thus, the upper bound of the network throughput can be obtained as:

Tη ≤ arg max
x∈
[
0,min

{
β(B≥l),P(ηPLRth

)
}]E
(
Mg(x)

(
U
M

)
xM−1(1−x)U−M

)
. (29)
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We notice that the proposed policy calculated by Algorithm 1 closely approaches the upper bound
under each scenario and the performance degradation for each case is within 5% w.r.t the upper bound.
This indicates the locally optimal solution achieved by the symmetric NE is a near-global optimum.

In addition to the proposed policy, we also evaluated the performance of the following policies,
which are based on the baseline mentioned in Equation (12): The energy-balanced policy (EBP),
where each EH-ST transmits the packets with the probability of β(B ≥ l); the network-balanced policy
(NBP), where each EH-ST transmits the packets with the probability of ηPLRth so as to maximize the
throughput of the network; and the greedy policy (GP), where each EH-ST transmits the packets with
the probability of 1 as long as it has enough energy. The simulation results for throughput and packet
loss ratio are represented in Figures 5 and 6, respectively. In addition, we also present the performance
of CRDSA (without consideration of the EH process and the limitation of energy) with 2 and 3 replicas
to compare with other policies.

For the lower EH rates β̄ = 1 and β̄ = 2 cases, the normalized throughput of the proposed
policy, EBP and NBP all increase linearly with the increase of network size. The performance of EBP is
nearly the same as that of the proposed policy, because in these scenarios, the transmission probability
of each EH-ST is limited by the EH rate. The performance of NBP is a little worse than that of the
proposed policy and EBP, because in these scenarios, ηPLRth > β(B ≥ l), which means the transmission
probability of each EH-ST is larger than the energy arrival rate. Therefore, more EH-STs are in the state
of energy exhausted. From the perspective of PLR, all these three policies are able to control the PLR
under the PLR threshold in the lower EH rate cases. Interestingly, the performance of GP seems better
than the other three policies. In fact, under GP, EH-STs will always transmit packets as long as they
have energy, which increases the traffic load; thus, GP can achieve a higher throughput. However,
due to the low EH rate, most EH-STs have no energy to transmit packet replicas, which makes the
collided packets unable to be recovered and increases the PLR. Actually, Figure 6 shows the PLR
of GP is beyond the threshold even though the traffic load is light. A large PLR leads to packets
retransmission frequent, which will cause unacceptable large communication latencies in the satellite
networks and expand more energy units for the EH-STs.

Figure 5. Normalized throughput of different policies comparison for different network sizes,
under different EH rates β̄ ∈ {1, 2, 3}, emax = 10. For RA schemes, number of time slots in each
frame N = 200, QPSK modulation, Es/N0 = 10 dB.

On the other hand, when β̄ = 3, the performance of NBP and EBP is close to the proposed
policy for the light and moderate traffic load. When the traffic load becomes heavier, the normalized
throughput of NBP and the proposed policy tends to be flat at 0.6 packets/slot, while the performance
of EBP drops dramatically. This is because for the lighter traffic load, β(B ≥ l) < ηPLRth ,
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the performance of these three policies is still constrained by the EH rate. As the network size grows
larger, packet collisions become severe. EH-STs employ NBP and the proposed policy transmitting the
packets with probability of ηPLRth , but those who employ EBP transmit the packets with a probability
of β(B ≥ l). At this time, β(B ≥ l) > ηPLRth , which results in the PLR of EBP, exceeds the threshold.
Thus, the performance of EBP becomes worse for the larger network size. GP seems to behave better
than the other three policies in the small and medium network size scenario. However, as mentioned
above, the PLR of GP exceeds the threshold even for the light traffic load. Moreover, the maximum
normalized throughput of EBP and GP is similar with that of CRDSA with 3 replicas, which almost
reaches 0.64 packets/slot. However, when the performance achieves the peak, the PLR is beyond the
threshold. Notice that all the policies cannot perform as well as the CRDSA protocols for the small
and medium network size, because conventional CRDSA does not consider the limitation of energy
and the EH process. Therefore, terminals employing conventional CRDSA protocols are assumed to
always have enough energy to transmit their packet replicas. In other words, if the EH rate is high
enough, the proposed RA scheme can perform as well as CRDSA protocols.

Figure 6. Comparison of packet loss ratio of different policies for different network sizes, under different
EH rates β̄ ∈ {1, 2, 3}, emax = 10. For RA schemes, number of time slots in each frame N = 200, QPSK
modulation, Es/N0 = 10 dB.

5.2. Data Delivery Probability

The trade-off between the average long-term data delivery probability and the network
normalized throughput is shown in Figure 7 under different EH rates β̄ ∈ {1, 2, 3}. System parameters
are the same with the previous simulations. We evaluated the performance of two centralized
access protocols, which are time division multiple access (TDMA) and dynamic frame slotted Aloha
(DFSA) [20,21], to compare with that of the proposed distributed RA scheme. TDMA and DFSA
are centralized access protocols, while the proposed policy is based on a random access scheme,
which is different from the other two protocols in terms of the nature of mechanisms. In fact,
the centralized schemes are expected to achieve higher throughput performance than the RA schemes,
because packet collisions can be avoided by proper management at the central controller. However,
in the energy-constrained networks, the centralized access schemes cannot always achieve such high
data delivery probability and throughput due to energy shortage. In the simulations, we compare
the performance of these three schemes from the perspective of energy constraint, which seems
reasonable. The packet delivery probability of all these three schemes increases with the increase
of β̄. TDMA always outperforms DFSA and the proposed RA scheme in terms of data delivery
probability. Since time slots have been preallocated to each EH-ST, it does not suffer packet collisions.
Therefore, the data delivery probability of TDMA is determined by the EH rate. DSFA can adjust the
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length of frame dynamically according to the number of active EH-STs, and it offers retransmission
opportunities for the EH-STs. For the lower EH rates, many EH-STs are in a state of energy shortage;
thus, the data delivery probability of DSFA is limited by the EH rate. Moreover, a larger frame makes
more EH-STs deliver their data to the satellite successfully, but causes lower throughput. Unlike DSFA,
the proposed distributed RA scheme balances well for both data delivery probability and throughput.
This is because the delivery probability of the proposed scheme is restricted not only by β̄, but also by
ηPLRth . Thanks to the interference cancellation mechanism, the maximum throughput of the proposed
RA scheme is higher than that of DFSA. However, transmitting more packet replicas will consume
more energy. Compared with TDMA and DFSA (they only transmit one physical packet once), more
EH-STs do not have enough energy to deliver the data. That is why the data delivery probability of
the proposed RA schemes is only about 0.26 when β̄ = 1. For the lower EH rates (e.g., β̄ = 1 and
β̄ = 2), the EH rate dominates the delivery probability. When EH rates become higher, almost every
EH-ST has enough energy to send data. At this time, the proposed policy needs to guarantee the PLR
being not beyond the PLR threshold; thus, ηPLRth determines the delivery probability. Specifically,
when β̄ = 3, the delivery probability of the proposed scheme presents to be flat for the lower and
moderate throughput but drops dramatically to control the PLR for the higher throughput.

Figure 7. Trade-off between average long-term data delivery probability and network normalized
throughput under different EH rates β̄ ∈ {1, 2, 3}, emax = 10. For access schemes, number of time
slots in each frame N = 200 (only for time division multiple access (TDMA) and the proposed
scheme, since the frame length of dynamic frame slotted Aloha (DFSA) is dynamic), QPSK modulation,
Es/N0 = 10 dB.

Notice that both TDMA and DFSA are centralized access protocols, and the central controller will
allocate the time slots or adjust the frame length to improve the performance. However, the proposed
distributed RA scheme can achieve acceptable throughput under the higher data delivery probability,
which even performs better than DFSA. In addition, the proposed distributed RA scheme does not need
the procedure of resource allocation and controls the PLR strictly, which reduces the communication
delays caused by resource assignment and packet retransmission. Therefore, the proposed distributed
RA scheme is more suitable for the future low-cost interactive satellite communication scenario with a
large network size and high EH rate.

5.3. Packet Delay Assessment

The metric of packet delay is assessed for the proposed scheme and DFSA protocol in a heavy
traffic load, and the results are shown in Figure 8. For the proposed scheme, we evaluate the
performance of packet delay via both simulation (solid lines) and analytical method (dash lines),
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and they are well matched under different energy harvesting rates. Moreover, as the energy harvesting
rate increases, the performance of packet delay becomes better. For instance, the probabilities of a
packet being received successfully within 2 frames are about 0.48, 0.8, and 0.85 under the EH rates
β̄ = 1, 2, and 3 respectively. This is because the (re)transmission probability is not only constrained by
the current energy level, but also the PLR threshold, regardless of the packet being transmitted for
the first time or being retransmitted. Therefore, with the constraint of PLR threshold, almost all the
packets can be correctly received as long as they are transmitted, and retransmissions will not block
the channel. According to the analysis in Section 5.2, for the lower EH rates (e.g., β̄ = 1 and β̄ = 2),
the EH rate dominates the delivery probability, while for the higher EH rate, ηPLRth determines the
delivery probability. Thus, the packet delay when β̄ = 3 performs slightly better than when β̄ = 2.

Figure 8. Packet delay cumulative distribution for the proposed scheme and DFSA with number of
EH-STs U = 200 under different EH rates β̄ ∈ {1, 2, 3}, emax = 10. For access schemes, number of time
slots in each frame N = 200 (only for the proposed scheme. For DFSA, the packet delay in frames is
normalized, since the frame length of DFSA is dynamic), QPSK modulation, Es/N0 = 10 dB.

Since TDMA is a collision-free protocol, no retransmissions occur in this system. Therefore,
we only adopt DFSA to compare with the proposed scheme in terms of packet delay. For DFSA,
packets are transmitted as long as EH-STs have energy, and no replicas are used, which will consume
less energy. For different EH rates β̄ ∈ {1, 2, 3}, almost every EH-ST has energy to transmit its packet;
thus, their performances of packet delay are nearly the same. Since each packet is only transmitted once
in a frame, EH-STs applying DFSA have more energy and chances to retransmit their data when the EH
rate is low (β̄ = 1) compared with those applying the proposed scheme. Therefore, the packet delay
performance of DFSA is better than that of the proposed scheme when β̄ = 1. However, without a
packet collision resolution mechanism, EH-STs applying DFSA have to retransmit their data more
times. Therefore, when the EH rate becomes higher, EH-STs applying the proposed scheme have more
opportunities to transmit their data, and the packet delay performance of the proposed scheme is
superior to that of DFSA.

6. Conclusions

This paper considers a satellite communication network made up by a GEO satellite and multiple
EH-STs. The EH-STs transmit data packets to the satellite randomly over a shared wireless collision
channel. Packet replicas and a successive interference cancellation mechanism are adopted to improve
the network throughput. Considering the EH process and energy constraints of EH-STs, we have
designed a distributed RA scheme aiming to maximize the average long-term network throughput.
Firstly, we developed an analytical model of the average long-term throughput with constraints
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of packet loss ratio and energy and adopted a game theoretic method to approximate the solution
of the nonconvex optimization problem. Then, we characterized the symmetric NE of the game
and proved its existence and uniqueness, which indicated it is a locally optimal solution of the
original optimization problem. A policy iteration algorithm combined with a bisection method was
used to compute the symmetric NE. Finally, we evaluated the proposed RA scheme by simulations.
Simulation results showed that the proposed RA scheme is more suitable for the large network size
and high EH rate scenario, which is applicable to EH devices in the future low-cost interactive satellite
communication system.

This paper provides a common but effective train of thought of designing a distributed RA policy
for energy harvesting devices in satellite communication networks, but it is based on a simplified
version of CRDSA. In order to further improve the policy, we will concentrate on researching the
following works in the future. First, we will extent the policy to an asynchronous version, since it is
more suitable to the energy constrained system (time synchronization will cost extra signalings and
energy). Second, we will investigate the performance of using irregular replicas based on the analysis
method in this paper. In addition to the number of packet replicas, the effect of power imbalance and
transmission power selection are also important factors that need to be taken into consideration in
future work.
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Appendix A

Proof of Proposition 2. We prove this proposition by contradiction. Assume γ1 > γ2, and P(η(γ1)) >

P(η(γ2)). Then, according to the first property of Proposition 1 and the hypothesis, we have:

G(η(γ2))−γ2P(η(γ2))≥G(η(γ1))−γ1P(η(γ1))+(γ1−γ2)P(η(γ1))

> G(η(γ1))− γ1P(η(γ1)) + (γ1 − γ2)P(η(γ2))

≥ G(η(γ2))− γ1P(η(γ2)) + (γ1 − γ2)P(η(γ2))

= G(η(γ2))− γ2P(η(γ2)).

(A1)

Hence, we obtain a contradictory result. For the second part, when γ = 0, the policy η(0) is
not an idle policy. Thus, P(η(0)). When γ → ∞, in order to maximize the optimization problem
(Equation (26)), P(η(∞))→ 0. Thus, the proposition is proved.

Appendix B

Proof of Proposition 3. The continuity of the function follows the first property of Proposition 1.
When γ = 0, we have:

Γ
(

η(0)
)
=G

(
η(0)

)( U −M
1− P

(
η(0)

)− M− 1
P
(
η(0)

))∈ (0, 1) . (A2)

Since G(η) means the average throughput, 0 < G
(

η(0)
)
≤ 1. From Propositions 1 and

2, we know that 0 < P
(

η(0)
)
≤ β(B ≥ l) and M ≤ U. Therefore, Γ

(
η(0)

)
is positive and

bounded. On the other hand, when γ → ∞, P
(

η(∞)
)
→ 0 and G

(
η(∞)

)
→ 0. Since the expected

number of co-transmitting EH-STs M can be approximated by η(γ)U, Γ
(

η(γ)
)

can be simplified
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as G
(

η(γ)
)

/P
(

η(γ)
)

. By L’Hospital’s rule, Γ
(

η(∞)
)

= g′(0). Then, we prove Γ
(

η(γ)
)

is a

nondecreasing function of γ, i.e., Γ
(

η(γ1)
)
≥ Γ

(
η(γ2)

)
for γ1 > γ2 ≥ 0. Since Γ

(
η(γ)

)
can be

simplified as G
(

η(γ)
)

/P
(

η(γ)
)

, we only need to prove G
(

η(γ2)
)

P
(

η(γ1)
)
− G

(
η(γ1)

)
P
(

η(γ2)
)
≤

0 which can be represented as:[
G(η(γ2))−γ2P(η(γ2))

]
P(η(γ1))−

[
G(η(γ1))−γ1P(η(γ1))

]
× P(η(γ2)) +γ2P(η(γ2))P(η(γ1))− γ1P(η(γ1))P(η(γ2)) ≤ 0.

(A3)

According to the fact that η(γ2) is optimal for Equation (27), when γ = γ2. Therefore,
G(η(γ2))−γ2P(η(γ2)) ≥ G(η(γ1))−γ2P(η(γ1)). A sufficient condition that holds for Equation (A3)
is that

[
G(η(γ2))−γ2P(η(γ2))

]
P(η(γ1))−

[
G(η(γ2))−γ1P(η(γ2))

]
× P(η(γ2)) +γ2P(η(γ2))P(η(γ1)) −

γ1P(η(γ1))P(η(γ2)) ≤ 0, which is equivalent to
[

G(η(γ2))−γ2P(η(γ2))
] [

P(η(γ1))− P(η(γ2))
]
≤ 0. It is

obviously true for P(η(γ2))≥ P(η(γ1)), which has been proven in Proposition 2. Thus, this proposition
is proven.

Appendix C

Proof of Theorem 1. The existence and uniqueness of the solution of Equation (25) can be proven
by Proposition 3. We define f (γ) , Γ

(
η(γ)

)
− γ. Based on Proposition 3, f (γ) has the properties

of f (γ) = Γ
(

η(0)
)
> 0 and limγ→∞ f (γ) = g′(0)−∞. Since g(η) is concave, and g′(0) is a limited

positive number [10], limγ→∞ f (γ) = −∞ and there exists a unique γ∗ ∈ (0, ∞) satisfying f (γ∗) = 0,

i.e., Γ
(

η(γ∗)
)
= γ∗, which guarantees η(γ∗) is optimal for Equation (24).

Then, we explain the second part of the theorem that P(η(γ∗)) ≤ min
{

β(B ≥ l), P(ηPLRth)
}

.
From the third property of P1, the average transmission probability should not be larger than the
energy harvesting rate, i.e., P(η(γ∗)) ≤ β(B ≥ l). Moreover, according to the nature of the MAC
protocol CRDSA, as the traffic load increases, PLR increases as well. On the other hand, the throughput
of the network increases with the increase of traffic load first but decreases sharply when the traffic
load is larger than a threshold value [4]. The traffic load is directly related with the transmission
probability and the raffic load threshold value mentioned above corresponds to a PLR threshold value.
In order to maximize the network throughput, the average transmission probability should not be
larger than the transmission probability that makes the network PLR larger than the PLR threshold, i.e.,
P(η(γ∗)) ≤ P(ηPLRth) , where ηPLRth is the policy that achieves the PLR threshold. Thus, the theorem
is proven.

Appendix D

Proof of Theorem 2. As mentioned above, the obtained policy η∗ is a global optimum for
Equation (25); thus, the gradient of the objective function in Equation (25) w.r.t η (denoted as ∆η(·)) is
zero when η = η∗. Moreover, its Hessian matrix w.r.t η (denoted as Hη(·)) is semidefinite negative
when η = η∗ [36]. Therefore, for the symmetric policy η∗, we have:[

∆η (G(η))− Γ(η∗)∆η (P(η))
]

η=η∗ = 0, (A4)

[
Hη (G(η))− Γ(η∗)Hη (P(η))

]
η=η∗ � 0. (A5)
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The gradient of the original optimization problem (Equation (22)) is derived as:

∆η(Rη) = E
{(

U
M

)
M
[

P(η)M−1(1− P(η))U−M∆η(G(η))

+ (M− 1)G(η)(1− P(η))U−MP(η)M−2∆η(P(η))

− (U −M)G(η)(1− P(η))U−M−1P(η)M−1∆η(P(η))
]}

=E
{(

U
M

)
M
[

∆η(G(η))−G(η)

(
U−M

1−P(η)
−M−1

P(η)

)
∆η(P(η))

]}
.

(A6)

When η = η∗, substituting Equation (A4) in Equation (A6), we can obtain that [∆η(Rη)]η=η∗ =

0. On the other hand, by further deriving Equation (A5), the Hessian matrix can be derived as
Equation (A7).

Hη(Rη) =

(
U
M

)
M
[
P(η)M−1(1− P(η))U−MHη(G(η))

+ (M− 1)P(η)M−2(1− P(η))U−M∆η(G(η))∆η(P(η))T

− (U −M)P(η)M−1(1− P(η))U−M−1∆η(G(η))∆η(P(η))T

+ (M− 1)G(η)P(η)M−2(1− P(η))U−MHη(P(η))

+ (M− 1)P(η)M−2(1− P(η))U−M∆η(P(η))∆η(G(η))T

+ (M− 1)(M− 2)G(η)P(η)M−3(1−P(η))U−M∆η(P(η))∆η(P(η))T

− (M− 1)(U −M)G(η)P(η)M−2(1−P(η))U−M−1∆η(P(η))∆η(P(η))T

− (U −M)G(η)P(η)M−1(1−P(η))U−M−1Hη(P(η))

− (U −M)P(η)M−1(1− P(η))U−M−1∆η(P(η))∆η(G(η))T

− (M− 1)(U −M)G(η)P(η)M−2(1− P(η))U−M−1∆η(P(η))∆η(P(η))T

+ (U −M)(U−M−1)G(η)P(η)M−1(1−P(η))U−M−2∆η(P(η))∆η(P(η))T].

(A7)

From Equation (A5), we know that Hη∗(G(η)) � Γ(η∗)Hη∗(P(η)), and based on the fact that
[∆η(Rη)]η=η∗ = 0, we can get:

∆η(G(η))=G(η)

(
U−M

1−P(η)
−M−1

P(η)

)
∆η(P(η)). (A8)

Substitute Equations (A5) and (A8) in Equation (A7), the Hessian matrix is simplified as:

[Hη(Rη)]η=η∗�
−G(η∗)

P(η)(1− P(η))
∆η∗(P(η))∆η∗(P(η))T . (A9)

Since ∆η∗(P(η))∆η∗(P(η))T is semidefinite positive, [Hη(Rη)]η=η∗ � 0. Therefore, follow the
fact that [∆η(Rη)]η=η∗ = 0 and [Hη(Rη)]η=η∗ � 0 , η∗ is locally optimal for the original optimization
problem (Equation (22)). From Equation (A5), we know that Hη∗(G(η)) � Γ(η∗)Hη∗(P(η)), and based
on the fact that [∆η(Rη)]η=η∗ = 0, we can get:

∆η(G(η))=G(η)

(
U−M

1−P(η)
−M−1

P(η)

)
∆η(P(η)). (A10)

Substitute Equations (A5) and (A8) in Equation (A7), the Hessian matrix is simplified as:

[Hη(Rη)]η=η∗�
−G(η∗)

P(η)(1− P(η))
∆η∗(P(η))∆η∗(P(η))T . (A11)
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Since ∆η∗(P(η))∆η∗(P(η))T is semidefinite positive, [Hη(Rη)]η=η∗ � 0. Therefore, follow the
fact that [∆η(Rη)]η=η∗ = 0 and [Hη(Rη)]η=η∗ � 0 , η∗ is locally optimal for the original optimization
problem (Equation (22)).
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