A Review: Photonic Devices Used for Dosimetry in Medical Radiation
Abstract
:1. Introduction
2. Photodiodes/LEDs
2.1. Structure
2.2. Functionality and Operational Principle
2.3. Present Literature
2.4. Benefits, Limitations and Challenges as Potential dosimeters
3. Phototransistors
3.1. Structure
3.2. Functionality and Operational Principle
3.3. Present Literature
3.4. Benefits, Limitations and Challenges as Potential Dosimeters
4. Photovoltaic sensors/Solar Cells
4.1. Structure and Operational Principle
4.2. Present Literature
4.3. Benefits, Limitations and Challenges as Potential Dosimeters
5. Charge Couple Devices (CCD)/Charge Metal Oxide Semiconductors (CMOS)
5.1. Structure and Operational Principle
5.2. Present Literature
5.3. Benefits, Limitations and Challenges as Potential Dosimeters
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Knoll, G.F. Radiation Detection and Measurement; John Wiley and Sons: Hoboken, NJ, USA, 2010; ISBN 0-471-07338-5. [Google Scholar]
- Hofstetter, M.; Howgate, J.; Sharp, I.D.; Stutzmann, M.; Thalhammer, S. Development and evaluation of gallium nitride-based thin films for x-ray dosimetry. Phys. Med. Biol. 2011, 56, 3215. [Google Scholar] [CrossRef]
- Rivera-Montalvo, T. Radiation therapy dosimetry system. Appl. Radiat. Isot. 2014, 83, 204–209. [Google Scholar] [CrossRef]
- Kron, T.; Lehmann, J.; Greer, P.B. Dosimetry of ionising radiation in modern radiation oncology. Phys. Med. Biol. 2016, 61, R167. [Google Scholar] [CrossRef] [PubMed]
- Ptw. Ionising Radiation Detectors Including Codes of Practice Freiburg, Germany: PTW. 2018. [2018/2019, [PTW Detector Mannual]. Available online: https://www.ptw.de/fileadmin/data/download/catalogviewer/DETECTORS_Cat_en_16522900_11/blaetterkatalog/blaetterkatalog/pdf/complete.pdf (accessed on 30 November 2018).
- Vatnitsky, S.; Jarvinen, H. Application of a natural diamond detector for the measurement of relative dose distributions in radiotherapy. Phys. Med. Biol. 1993, 38, 173. [Google Scholar] [CrossRef] [PubMed]
- Lépy, M.C. Detection Efficiency. Laboratoire National Henri Becquerel, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France. 2010. Available online: http://www.nucleide.org/ICRM_GSWG/Training/Efficiency.pdf (accessed on 7 May 2019).
- Kang, J.; Parsai, E.; Albin, D.; Karpov, V.; Shvydka, D. From photovoltaics to medical imaging: Applications of thin-film CdTe in x-ray detection. Appl. Phys. Lett. 2008, 93, 223507. [Google Scholar] [CrossRef]
- Romei, C.; Di Fulvio, A.; Traino, C.A.; Ciolini, R.; d’Errico, F. Characterization of a low-cost PIN photodiode for dosimetry in diagnostic radiology. Phys. Med. 2015, 31, 112–116. [Google Scholar] [CrossRef]
- Diab, H.; Ibrahim, A.; El-Mallawany, R. Silicon solar cells as a gamma ray dosimeter. Measurement 2013, 46, 3635–3639. [Google Scholar] [CrossRef]
- Bryant, J. Photodiodes and Other Light Sensors. Analog Com. 2014. Available online: https://wiki.analog.com/university/courses/electronics/text/light-sensors-photodiodes (accessed on 27 March 2019).
- Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Gayral, B. LEDs for lighting: Basic physics and prospects for energy savings. Comptes Rendus Phys. 2017, 18, 453–461. [Google Scholar] [CrossRef]
- Oliveira, C.N.; Khoury, H.J.; Santos, E.J. PiN photodiode performance comparison for dosimetry in radiology applications. Phys. Med. 2016, 32, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Anđelković, M.S.; Ristić, G.S. Feasibility study of a current mode gamma radiation dosimeter based on a commercial PIN photodiode and a custom made auto-ranging electrometer. Nucl. Technol. Radiat. Prot. 2013, 28, 73–83. [Google Scholar] [CrossRef]
- Andjelković, M.S.; Ristić, G.S. Current mode response of phototransistors to gamma radiation. Radiation Measurements 2015, 75, 29–38. [Google Scholar] [CrossRef]
- Bryant, J. LEDs are Photodiodes Too. 2014. Available online: https://www.analog.com/en/analog-dialogue/raqs/raq-issue-108.html (accessed on 27 March 2019).
- Pandharipande, A.; Li, S. (Eds.) Illumination and light sensing for daylight adaptation with an LED array: Proof-of-principle. Industrial Electronics Society. In Proceedings of the 39th Annual Conference of the IEEE IECON, Vienna, Austria, 10–13 November 2013. [Google Scholar] [CrossRef]
- O’Toole, M.; Diamond, D. Absorbance based light emitting diode optical sensors and sensing devices. Sensors 2008, 8, 2453–2479. [Google Scholar] [CrossRef]
- Bui, D.A.; Hauser, P.C. Absorbance measurements with light-emitting diodes as sources: Silicon photodiodes or light-emitting diodes as detectors? Talanta 2013, 116, 1073–1078. [Google Scholar] [CrossRef]
- Morcheeba. Photodiode-Closeup2.jpg. 2006. Available online: https://en.wikipedia.org/wiki/File:Photodiode-closeup2.jpg (accessed on 4 December 2018).
- wdwd. High Power COB-LED with Low Current at 5pct.JPG 2015 [High Power COB LEDs Supplied at a Low Current Level with 5% of Maximum Current. Showing 40 Single Blue Power LEDs below the Yellow Surface]. Available online: https://commons.wikimedia.org/wiki/File:High_Power_COB-LED_with_low_current_at_5pct.JPG (accessed on 4 December 2018).
- BrentMauriello. SMD-LED-Comparison-5050-2835-3528-3014-Flexfireleds.jpg 2015 [Comparison of SMD LED Modules on Strip Lights]. Available online: https://commons.wikimedia.org/wiki/File:SMD-LED-comparison-5050-2835-3528-3014-Flexfireleds.jpg (accessed on 12 February 2019).
- Vilella Figueras, E.; Vilà i Arbonès, A.M.; Palacio, F.; López de Miguel, M.; Diéguez Barrientos, À. Characterization of linear-mode avalanche photodiodes in standard CMOS. Procedia Eng. 2014, 87, 728–731. [Google Scholar] [CrossRef]
- Zhao, S.; Lioliou, G.; Barnett, A. Temperature dependence of commercial 4H-SiC UV Schottky photodiodes for X-ray detection and spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. SpectrometersDetect. Assoc. Equip. 2017, 859, 76–82. [Google Scholar] [CrossRef]
- Manufacturer, S.M.S.L. Difference between LED Light: COB and SMD Dongyang Street—Jinhua City—Zhejiang China. 2018 [Product Manufacturer Website]. Available online: https://www.solarlightsmanufacturer.com/cob-led-smd-led/ (accessed on 3 December 2018).
- Singh, Y. Semiconductor Devices; IK International Pvt Ltd.: Delhi, India, 2010; ISBN 10 9380026129. [Google Scholar]
- Andjelković, M.S.; Ristić, G.S.; Jakšić, A.B. Using RADFET for the real-time measurement of gamma radiation dose rate. Meas. Sci. Technol. 2015, 26, 025004. [Google Scholar] [CrossRef]
- Singh, R.; Kainth, H.S. Effect of heating rate on thermoluminescence output of LiF: Mg, Ti (TLD-100) in dosimetric applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 426, 22–29. [Google Scholar] [CrossRef]
- Yukihara, E.; McKeever, S. Optically stimulated luminescence (OSL) dosimetry in medicine. Phys. Med. Biol. 2008, 53, R351. [Google Scholar] [CrossRef] [PubMed]
- Van Zeghbroeck, B. Principles of semiconductor devices. 2004. Available online: http://ecee.colorado.edu/~bart/book/ (accessed on 13 May 2019).
- Kester, W.; Bryant, J.; Jung, W.; Wurcer, S.; Kitchin, C. Sensor signal conditioning. Sens. Technol. Handb. 1999, 2, 31–136. [Google Scholar]
- Zygmanski, P.; Abkai, C.; Han, Z.; Shulevich, Y.; Menichelli, D.; Hesser, J. Low-cost flexible thin-film detector for medical dosimetry applications. J. Appl. Clin. Med. Phys. 2014, 15, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Nazififard, M.; Suh, K.Y.; Mahmoudieh, A. Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology. Rev. Sci. Instrum. 2016, 87, 073502. [Google Scholar] [CrossRef]
- Paschoal, C.M.M.; Souza, D.d.N.; Santo, L.A.P. Characterization of three photo detector types for computed tomography dosimetry. World Acad. Sci. Eng. Technol. 2011, 56, 92–95. [Google Scholar] [CrossRef]
- Nikolić, D.; Vasić-Milovanović, A. Comparative study of gamma and neutron irradiation effects on the silicon solar cells parameters. FME Trans. 2016, 44, 99–105. [Google Scholar] [CrossRef]
- Lischka, H.; Henschel, H.; Kohn, O.; Lennartz, W.; Schmidt, H. (Eds.) Radiation effects in light emitting diodes, laser diodes, photodiodes, and optocouplers. Radiation and its Effects on Components and Systems, 1993, RADECS 93. In Proceedings of the 2th IEEE European Conference on RADECS, Saint-Malo, France, 13–16 September 1993. [Google Scholar] [CrossRef]
- Omar, N.I.C.; Hasbullah, N.F.; Rashid, N.K.A.M.; Abdullah, J. (Eds.) Effects on electrical characteristics of commercially available Si and GaAs diodes exposed to californium-252 radiation. Computer and Communication Engineering (ICCCE). In Proceedings of the IEEE International Conference on ICCCE, Kuala Lumpur, Malaysia, 3–5 July 2012. [Google Scholar] [CrossRef]
- Santos, L.A.; Araujo, G.G.; Oliveira, F.L.; Silva, E.F., Jr.; Santos, M.A. An alternative method for using bipolar junction transistors as a radiation dosimetry detector in breast cancer treatment. Radiat. Meas. 2014, 71, 407–411. [Google Scholar] [CrossRef]
- Pejovic, M.M. Application of p-channel power VDMOSFET as a high radiation doses sensor. IEEE Trans. Nucl. Sci. 2015, 62, 1905–1910. [Google Scholar] [CrossRef]
- Sedra, A.S.; Smith, K.C. Microelectronic Circuits, 7th ed.; Oxford University Press: New York, NY, USA, 2014; ISBN 9780199339136. [Google Scholar]
- Dybek, M.; Kozłowska, B. Evaluation of the applicability of MOSFET detectors in radiotherapy. Radiat. Meas. 2014, 71, 412–415. [Google Scholar] [CrossRef]
- Ehringfeld, C.; Schmid, S.; Poljanc, K.; Kirisits, C.; Aiginger, H.; Georg, D. Application of commercial MOSFET detectors for in vivo dosimetry in the therapeutic x-ray range from 80 kV to 250 kV. Phys. Med. Biol. 2005, 50, 289. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Barros, F.; Filho, J.; da Silva Jr, E. Precise dose evaluation using a commercial phototransistor as a radiation detector. Radiat. Prot. Dosim. 2006, 120, 60–63. [Google Scholar] [CrossRef]
- Knoll, G. Radiation Detection and Measurement; John Willey and Sons Inc.: New York, NY, USA, 2000; ISBN 978-0-470-13148-0. [Google Scholar]
- Dixon, R.L.; Ekstrand, K.E. Gold and platinum doped radiation resistant silicon diode detectors. Radiat. Prot. Dosim. 1986, 17, 527–530. [Google Scholar] [CrossRef]
- Srour, J.; Palko, J. Displacement damage effects in irradiated semiconductor devices. IEEE Trans. Nucl. Sci. 2013, 60, 1740–1766. [Google Scholar] [CrossRef]
- Omar, N.I.C.; Hasbullah, N.F.; Rashid, N.K.A.M.; Abdullah, J. (Eds.) Electrical properties of neutron-irradiated silicon and GaAs commercial diodes. Industrial Electronics and Applications (ISIEA). In Proceedings of the IEEE Symposium on ISIEA, Bandung, Indonesia, 23–26 September 2012. [Google Scholar] [CrossRef]
- Holmes-Siedle, A.; Adams, L. RADFET: A review of the use of metal-oxide-silicon devices as integrating dosimeters. Int. J. Radiat. Appl. Instrum. Part. C Radiat. Phys. Chem. 1986, 28, 235–244. [Google Scholar] [CrossRef]
- Yau, L. A simple theory to predict the threshold voltage of short-channel IGFET’s. Solid-State Electron. 1974, 17, 1059–1063. [Google Scholar] [CrossRef]
- Arora, N. MOSFET Models for VLSI Circuit Simulation: Theory and Practice; Springer: Berlin, Germany, 1993; pp. 230–324. ISBN 978-3-7091-9247-4. [Google Scholar]
- Sedra, A.S.; Smith, K.C. Microelectronic Circuit, 5th ed.; Oxford University Press: New York, NY, USA, 2004; Available online: http://fuuu.be/polytech/ELECH402/Microelectronic%20Circuits%20by%20Sedra%20Smith,5th%20edition.pdf (accessed on 13 May 2019).
- Yadav, A.; Kumar, P.; RPSGOI. Enhancement in efficiency of PV Cell through P&O algorithm. Int. J. Technol. Res. Eng. 2015, 2, 2642–2644. [Google Scholar]
- Sharma, S.; Jain, K.K.; Sharma, A. Solar cells: In research and applications—A review. Mater. Sci. Appl. 2015, 6, 1145. [Google Scholar] [CrossRef]
- Brahme, A. Development of radiation therapy optimization. Acta Oncol. 2000, 39, 579–595. [Google Scholar] [CrossRef]
- Lambert, J.; Yin, Y.; McKenzie, D.R.; Law, S.H.; Ralston, A.; Suchowerska, N. A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields. Phys. Med. Biol. 2010, 55, 1115. [Google Scholar] [CrossRef]
- Nordstrom, R.; Cherry, S.; Azhdarinia, A.; Sevick-Muraca, E.; VanBrocklin, H. Photons across medicine: Relating optical and nuclear imaging. Biomed. Opt. Express 2013, 4, 2751–2762. [Google Scholar] [CrossRef]
- Shvydka, D.; Parsai, E.; Kang, J. Radiation hardness studies of CdTe thin films for clinical high-energy photon beam detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 586, 169–173. [Google Scholar] [CrossRef]
- Sellin, P.J. Recent advances in compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 513, 332–339. [Google Scholar] [CrossRef]
- Garrido, J.; Monroy, E.; Izpura, I.; Munoz, E. Photoconductive gain modelling of GaN photodetectors. Semicond. Sci. Technol. 1998, 13, 563. [Google Scholar] [CrossRef]
- Abbene, L.; Del Sordo, S. CdTe detectors. Compr. Biomed. Phys. 2014, 285–314. [Google Scholar]
- Pallas-Areny, R.; Webster, J.G. Sensors and Signal. Conditioning; John Wiley and Sons: New York, NY, USA, 2012; ISBN 0-471-33232-1. [Google Scholar]
- Mehta, S.; Patel, A.; Mehta, J. (Eds.) CCD or CMOS Image sensor for photography. In Proceedings of the IEEE International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, 2–4 April 2015. [Google Scholar] [CrossRef]
- Chang, H.-C.; Chung, C.-K. The Development of Fluorescence Imaging Systems for Clinical Applications-Part I, Broad-Field Fluorescence Imaging. Int. J. Instrum. Sci. 2012, 1, 16–20. [Google Scholar] [CrossRef]
- Reibel, Y.; Jung, M.; Bouhifd, M.; Cunin, B.; Draman, C. CCD or CMOS camera noise characterisation. Eur. Phys. J. Phys. 2003, 21, 75–80. [Google Scholar] [CrossRef]
- Ciarrocchi, E.; Belcari, N. Cerenkov luminescence imaging: Physics principles and potential applications in biomedical sciences. Ejnmmi Phys. 2017, 4, 14. [Google Scholar] [CrossRef]
- Čerenkov, P. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 1937, 52, 378. [Google Scholar] [CrossRef]
- Chin, P.T.; Welling, M.M.; Meskers, S.C.; Olmos, R.A.V.; Tanke, H.; van Leeuwen, F.W. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1283–1291. [Google Scholar] [CrossRef]
- Robertson, R.; Germanos, M.S.; Li, C.; Mitchell, G.S.; Cherry, S.R.; Silva, M.D. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol. 2009, 54, N355. [Google Scholar] [CrossRef] [PubMed]
- Roussakis, Y.; Zhang, R.; Heyes, G.; Webster, G.; Mason, S.; Green, S.; Pogue, B.; Dehghani, H. Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy. Phys. Med. Biol. 2015, 60, N419. [Google Scholar] [CrossRef]
- Tanha, K.; Pashazadeh, A.M.; Pogue, B.W. Review of biomedical Čerenkov luminescence imaging applications. Biomed. Opt. Express 2015, 6, 3053–3065. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.S.; Taschereau, R.; Olma, S.; Liu, K.; Chen, Y.-C.; Shen, C.K.; Dam, R.M.; Chatziioannou, A.F. Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys. Med. Biol. 2009, 54, 6757. [Google Scholar] [CrossRef]
- Miao, T.; Bruza, P.; Pogue, B.W.; Jermyn, M.; Krishnaswamy, V.; Ware, W.; Rafie, F.; Gladstone, D.J.; Williams, B.B. Cherenkov imaging for linac beam shape analysis as a remote electronic quality assessment verification tool. Med Phys. 2019, 46, 811–821. [Google Scholar] [CrossRef]
- Mobley, J.; Vo-Dinh, T. Optical properties of tissue. Biomed. Photonics Handb. 2003, 2, 1–2. [Google Scholar]
- Jelley, J. Cerenkov radiation and its applications. Br. J. Appl. Phys. 1955, 6, 227. [Google Scholar] [CrossRef]
- Elrick, R.; Parker, R. The use of Cerenkov radiation in the measurement of β-emitting radionuclides. Int. J. Appl. Radiat. Isot. 1968, 19, 263–271. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Jia, J.M.; Bruza, P.; Vinogradov, S.; Jiang, S.; Gladstone, D.J.; Jarvis, L.A.; Pogue, B.W. Radiotherapy-induced Cherenkov luminescence imaging in a human body phantom. J. Biomed. Opt. 2018, 23, 030504. [Google Scholar] [CrossRef] [Green Version]
- Orlova, K.; Gradoboev, A.; Asanov, I. (Eds.) Gamma degradation of light-emitting diodes based on heterostructures AlGaInP. Strategic Technology (IFOST). In Proceedings of the 7th IEEE International Forum on IFOST, Tomsk, Russia, 18–21 September 2012. [Google Scholar] [CrossRef]
- Bateman, J. A solid state scintillation detector for high-energy charged particles. Nucl. Instrum. Methods 1969, 71, 261–268. [Google Scholar] [CrossRef]
- Andolino, D.L.; Johnson, C.S.; Maluccio, M.; Kwo, P.; Tector, A.J.; Zook, J.; Johnstone, P.A.S.; Cardenes, H.R. Stereotactic body radiotherapy for primary hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e447–e453. [Google Scholar] [CrossRef]
- Schipani, S.; Wen, W.; Jin, J.-Y.; Kim, J.K.; Ryu, S. Spine radiosurgery: A dosimetric analysis in 124 patients who received 18 Gy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, e571–e576. [Google Scholar] [CrossRef]
Dosimetric Parameter | Dosimetric Device | |||
---|---|---|---|---|
Photodiodes | Phototransistors/ MOSFETs | Photovoltaic Sensors/Solar cells | CCD/CMOS (In relation to CLI) | |
Susceptibility to post-radiation lattice structural damages | Low [35] | High [16,35,38] | Negligible [2,10,59] | Not Applicable |
Post-radiation dark currents/Noise | Low [35] | High [16] | Low [2,8] | Low -noise [68,70] |
Post-radiation sensitivity loss | Negligible [15] | High [16,35,44] | Negligible [33,58,59] | Radioactive half-life leads to signal loss [68] |
Quantum efficiency | High [14,15,78] | Adjustable [16] | High [33] | High [68] |
Angular dependence | High [35] | High [35] | Almost independent [2,33] | Not applicable |
Reproducibility/Repeatability | High [9,15] | Varies with absorbed dose [16] | Feasible [2,33] | Low [66,70] |
Sensitivity to radiation | Low/varies with energy [35] | High [16,45] | High | Low [69] |
Read-out type | Real-time [14,15] | Indirect/passive [28] | Direct [8,54] | Indirect [68,69] |
Medical Procedure Analysed | Tested/Reviewed Dose Range (cGy) | |||||
---|---|---|---|---|---|---|
Dosimetry | Radiation Type | Dose Type | Photodiodes/LEDs | Phototransistors/ MOSFETs | Photovoltaic sensors/Solar cells | CCD/CMOS |
Diagnostic Radiology | X-rays | Air Kerma | 0.003–0.450 [9] | – | – | – |
X-rays | Air Kerma | 0.001–0.043 [34] | – | – | – | |
X & Gamma rays | Air Kerma | 0.006–0.400 [14] | – | – | – | |
Computed Tomography | X-rays | Air Kerma | 0.340–8.30 [35] | 0.340–8.30 [35] | – | – |
Not specified | Gamma rays | Air Kerma | 47.2–330 [15] | – | – | – |
Not specified | Gamma rays | Air Kerma | – | 10,000–50,000 [40] | – | – |
Breast Cancer Radiotherapy | X-rays | Alderson Rando Absorbed Dose | – | 200 [39] | – | – |
Radiotherapy | X-rays | Anthropomorphic phantom Absorbed Dose | – | 4,000 –18,500 [42] | – | – |
Imaging | X-rays | Human wrist and index finger phantom (one pixel) | – | – | 0.086 [2] | – |
Radiotherapy | Gamma rays | Air Kerma | – | – | 50–200 [10] | – |
General Medical Dosimetry | X-rays | Solid Water Phantom | – | – | 0.1–500 [33] | – |
Radiotherapy | X-rays | Human Body phantom | – | – | – | 500 [77] |
Photonic Device | Approximate Unit-Price (USD-$) | Online Store |
---|---|---|
Photodiodes | ||
S2506-02 | 0.0001–1.5 | Alibaba |
BPW34 | 1.6–2.45 | Amazon |
BPW34FS | 1.98 | Amazon |
SFH206 | 1.6 | Mouser Electronics |
SFH205 | 0.79–1.92 | Amazon |
BPX90F | 0.1–10 | Alibaba |
S1223 | 0.1–9.9 | Alibaba |
PS100-6-CER2PIN | 78.38 | Mouser Electronics |
Phototransistors | ||
OP501 | 0.10–9.80 | Alibaba |
OP505A (Optek) | 0.84–2.02 | Amazon |
BPW85 (Vishay) | 0.10–18.80 | Alibaba |
OP521 | 0.001–10.00 | Alibaba |
Transistors | ||
BCV47 Darlington type BJT | 0.20–0.23 | Alibaba |
MOSFETs | 0.12–113 | Mouser Electronics |
Photovoltaic Sensors | ||
Solar cell | 0.46–1.20 | Alibaba |
Cameras | ||
CCD | 8.42–7000 | Amazon |
CMOS | 9.99–6500 | Amazon |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damulira, E.; Yusoff, M.N.S.; Omar, A.F.; Mohd Taib, N.H. A Review: Photonic Devices Used for Dosimetry in Medical Radiation. Sensors 2019, 19, 2226. https://doi.org/10.3390/s19102226
Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH. A Review: Photonic Devices Used for Dosimetry in Medical Radiation. Sensors. 2019; 19(10):2226. https://doi.org/10.3390/s19102226
Chicago/Turabian StyleDamulira, Edrine, Muhammad Nur Salihin Yusoff, Ahmad Fairuz Omar, and Nur Hartini Mohd Taib. 2019. "A Review: Photonic Devices Used for Dosimetry in Medical Radiation" Sensors 19, no. 10: 2226. https://doi.org/10.3390/s19102226
APA StyleDamulira, E., Yusoff, M. N. S., Omar, A. F., & Mohd Taib, N. H. (2019). A Review: Photonic Devices Used for Dosimetry in Medical Radiation. Sensors, 19(10), 2226. https://doi.org/10.3390/s19102226