Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds
Abstract
:1. Introduction
2. Design of Experiments
3. Support Vector Machine
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
VOC | Volatile Organic Compound |
SVM | Support Vector Machine |
ppm | Parts-Per-Million |
ppb | Parts-Per-Billion |
BG | Blood Glucose |
References
- Center for Disease Control and Prevention. 2017 Statistics on Diabetes. Available online: http://www.cdc.gov/diabetes/statistics/prev/national/gifpersons.htm (accessed on 4 August 2017).
- CDC Featres—Diabetes Latest. 2017. Available online: https://www.cdc.gov/features/diabetesfactsheet (accessed on 4 August 2017).
- Rowley, W.; Bezold, C.; Arikan, Y.; Byrne, E.; Krohe, S. Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Popul. Health Manag. 2017, 20, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.T.; Hoque, A.; Almutairi, A.F.; Asmin, N. Left-Handed Metamaterial-Inspired Unit Cell for S-Band Glucose Sensing Application. Sensors 2019, 19, 169. [Google Scholar] [CrossRef]
- Spada, L.L.; Spooner, C.; Haq, S.; Hao, Y. Curvilinear MetaSurfaces for Surface Wave Manipulation. Sci. Rep. 2019, 9, 3107. [Google Scholar] [CrossRef]
- Liberal, I.; Li, Y.; Engheta, N. Reconfigurable Epsilon-Near-Zero Metasurfaces via Photonic Doping. Nanophotonics 2018, 7, 1117–1127. [Google Scholar] [CrossRef]
- Vakil, A.; Engheta, N. Transformation Optics Using Graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Samadi, S.; Turksoy, K.; Hajizadeh, I.; Feng, J.; Sevil, M.; Cinar, A. Meal Detection and Carbohydrate Estimation Using Continuous Glucose Sensor Data. IEEE J. Biomed. Heath Inform. 2017, 21, 619–627. [Google Scholar] [CrossRef]
- Olarte, O.; Chilo, J.; Pelegri-Sebastia, J. Glucose Detection in Human Sweat Using and Electronic Nose. In Proceedings of the 35th Annual International Conference of the IEEE EMBS, Osaka, Japan, 3–7 July 2013; Universiteit Brussels: Brussels, Belgium, 2013; pp. 1462–1465. [Google Scholar]
- Shichiri, M.; Yamasaki, Y.; Kawamori, R.; Hakui, N.; Abe, H. Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor. Lancet 1982, 320, 1129–1131. [Google Scholar] [CrossRef]
- Rydosz, A. A Negative Correlation between Blood Glucose and Acetone Measured in Healthy and Type 1 Diabetes Mellitus Patient Breath. J. Diabetes Sci. Technol. 2015, 9, 881–884. [Google Scholar] [CrossRef]
- Righettoni, M.; Schmid, A.; Amann, A.; Pratsinis, S. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J. Breath Res. 2013, 7, 037110. [Google Scholar] [CrossRef]
- Gardner, J.; Shin, H.; Hines, E. An electronic nose system to diagnose illness. Sens. Actuators B Chem. 2000, 70, 19–24. [Google Scholar] [CrossRef]
- Peng, G.; Hakim, M.; Broza, Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Mazzone, P.; Hammel, J.; Dweik, R.; Na, J.; Czich, C.; Laskowski, D.; Mekhail, T. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 2007, 62, 565–568. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Krewer, G.; Ji, P.; Scherm, H.; Kays, S. Gas sensor array for blueberry fruit disease detection and classification. Postharvest Biol. Technol. 2010, 55, 144–149. [Google Scholar] [CrossRef]
- Minh, T.; Oliver, S.; Ngo, J.; Flores, R.; Midyett, J.; Meinardi, S.; Carlson, M.; Rowland, F.; Blake, D.; Galassetti, P. Nonivasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects. AJP Endocrinol. Metab. 2011, 300, E1166–E1175. [Google Scholar] [CrossRef]
- Furey, T.; Cristianini, N.; Duffy, N.; Bednarski, D.; Schummer, M.; Haussler, D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16, 906–914. [Google Scholar] [CrossRef] [Green Version]
- Savitzky, A.; Golay, M. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Turner, C.; Walton, C.; Hoashi, S.; Evans, M. Breath in Type I diabetes mellitus patients during hypoglycaemic clamps. J. Breath Res. 2009, 3, 046004. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mbi, A.; Shepherd, M. A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone with Blood Glucose and Glycohemogloving A1C. IEEE Sens. J. 2010, 10, 54–63. [Google Scholar] [CrossRef]
- Galassetti, P.; Novak, B.; Nemet, D.; Rose-Gottron, C.; Cooper, D.; Meinardi, S.; Newcomb, R.; Zaldivar, F.; Blake, D. Breath Ethanol and Acetone as Indicators of Serum Glucose Levels: An Initial Report. Diabetes Technol. Ther. 2005, 7, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Anal. Chem. 2010, 82, 3581–3587. [Google Scholar] [CrossRef]
- Choi, S.-J.; Lee, I.; Jang, B.-H.; Youn, D.-Y.; Ryu, W.-H.; Park, C.O.; Kim, I.-D. Selective Diagnosis of Diabetes Using Pt-Functionalized WO3 Hemitube Networks as a Sensing Layer of Acetone in Exhaled Breath. Anal. Chem. 2012, 85, 1792–1796. [Google Scholar] [CrossRef]
- Salehia, S.; Nikan, E.; Khodadadi, A.A.; Mortazavi, Y. Highly Sensitive Carbon Nanotubes–SnO2 Nanocomposite Sensor for Acetone Detection in Diabetes Mellitus Breath. Sens. Actuators B Chem. 2014, 205, 261–267. [Google Scholar] [CrossRef]
- Shin, J.; Choi, S.-J.; Lee, I.; Youn, D.-Y.; Park, C.O.; Lee, J.-H.; Tuller, H.L.; Kim, I.-D. Thin-Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and Their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes. Adv. Funct. Mater. 2012, 23, 2357–2367. [Google Scholar] [CrossRef]
- Daneshkhah, A.; Shrestha, S.; Siegel, A.; Varahramyan, K.; Agarwal, M. Cross-Selectivity Enhancement of Poly(Vinylidene Fluoride-Hexafluoropropylene)-Based Sensor-Array for detecting Acetone and Ethanol. Sensors 2017, 17, 595. [Google Scholar] [CrossRef]
- Abate, P.; Rodriguez, V.; Macchi, R. Evaporation of solvent in one-bottle adhesives. J. Dent. 2000, 28, 437–440. [Google Scholar] [CrossRef]
- Li, H.; Zhan, H.; Fu, S.; Liu, M.; Chai, X. Rapid determination of mathanol in black liquors by full evaporation headspace gas chromatography. J. Chromatogr. A 2007, 1175, 133–136. [Google Scholar] [CrossRef]
- Netchaev, A.D. Selective Detection of Volatile Organic Compounds Using Metal Oxide Sensor Arrays. Ph.D. Thesis, The University of Southern Mississippi, Hattiesburg, MS, USA, May 2015. [Google Scholar]
- Itoh, T.; Akamatsu, T.; Tsuruta, A.; Shin, W. Selective Detection of Target Volatile Organic Compounds in Contaminated Humid Air Using a Sensor Array with Principal Component Analysis. Sensors 2017, 17, 1662. [Google Scholar] [Green Version]
- Chen, Y.-T.; Shrestha, S. Source Classification of Indoor Air Pollutants Using Principal Component Analysis for Smart Home Monitoring Applications. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 129–133. [Google Scholar]
- Chen, Y.-T.; Samborsky, Z.; Shrestha, S. Electronic Nose for Ambient Detection and Monitoring. In Proceedings of the SPIE Commercial + Scientific Sensing and Imaging, Anaheim, CA, USA, 26–30 April 2017; Volume 10251, pp. 1–9. [Google Scholar]
- Hsu, M.; A Practical Guide to Support Vector Machines. Department of Computer Science, National Taipei, Taiwan. June 2016. Available online: https://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf (accessed on 20 June 2017).
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Belousov, A.; Verzakov, S.; von Frese, J. Applicational aspects of support vector machines. J. Chemom. 2002, 16, 482–489. [Google Scholar] [CrossRef]
- Iovine, R.; Spada, L.L.; Vegni, L. Optical Properties of Modified Nanorod Particles for Biomedical Sensing. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Engheta, N. Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials. Science 2007, 317, 1698–1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Hao, Y.; Li, K.; Gong, S. Radar Cross Section Reduction of a Microstrip Antenna Based on Polarization Conversion Metamaterial. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 80–83. [Google Scholar] [CrossRef]
- Spada, L.L. Metasurfaces for Advanced Sensing and Diagnostics. Sensors 2019, 19, 355. [Google Scholar] [CrossRef]
- Github. radzilu/Arduino-SVM. 2017. Available online: https://github.com/radzilu/Arduino-SVM (accessed on 19 August 2017).
- Ghang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. Available online: http://www.csie.ntu.edu.tw/cjlin/libsvm (accessed on 20 June 2017).
Compound | Low BG Level | High BG Level |
---|---|---|
Acetone | 1–3 ppm | 5–7 ppm |
Methyl Nitrate | 1 ppm | 3 ppm |
Ethanol | 0–20 ppb | 35–50 ppb |
Methanol | 0 ppb | 1 ppb |
Time (min) | Action | Air Flow Rate |
---|---|---|
t = 0–5 | Clean System | 1.5 L/min |
t = 5–6 | Introduce Chem. | 0 L/min |
t = 6–6:45 | Blow Chem. to Sensor | 0.5 L/min |
t = 6:45–12 | Steady State Response | 0 L/min |
t = 12–15 | Clear System | 1.5 L/min |
Feature | Time Segment (s) |
---|---|
Baseline | 0–50 |
Rise | 65–85 |
Steady State | 150–400 |
Fall | 450–500 |
Late Fall | 500–600 |
Acetone | = | = | = | = | = |
---|---|---|---|---|---|
C = | 100% | 82% | 64% | 50% | 50% |
C = | 82% | 82% | 63% | 50% | 50% |
C = | 59% | 50% | 50% | 50% | 50% |
C = | 68% | 59% | 50% | 50% | 50% |
C = | 68% | 59% | 50% | 50% | 50% |
C = | 68% | 59% | 50% | 50% | 50% |
Acetone | Baseline | Rise | Steady State | Fall | Late Fall |
---|---|---|---|---|---|
C | |||||
Accuracy | 100% | 73% | 100% | 77% | 78% |
Acetone | Baseline | Rise | Steady State | Fall | Late Fall |
---|---|---|---|---|---|
C | |||||
Accuracy | 100% | 60% | 100% | 100% | 100% |
Acetone | Baseline | Rise | Steady State | Fall | Late Fall |
---|---|---|---|---|---|
C | |||||
Accuracy | 64% | 60% | 100% | 100% | 76% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubin, M.; Shrestha, S. Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds. Sensors 2019, 19, 2283. https://doi.org/10.3390/s19102283
Boubin M, Shrestha S. Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds. Sensors. 2019; 19(10):2283. https://doi.org/10.3390/s19102283
Chicago/Turabian StyleBoubin, Matthew, and Sudhir Shrestha. 2019. "Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds" Sensors 19, no. 10: 2283. https://doi.org/10.3390/s19102283
APA StyleBoubin, M., & Shrestha, S. (2019). Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds. Sensors, 19(10), 2283. https://doi.org/10.3390/s19102283