Observing the Viscous Relaxation Process of Silica Optical Fiber at ~1000 °C Using Regenerated Fiber Bragg Grating
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Doremus, R.H. Viscosity of silica. J. Appl. Phys. 2002, 92, 7619–7629. [Google Scholar] [CrossRef]
- Mohanna, Y.; Saugrain, J.M.; Rousseau, J.C.; Ledoux, P. Relaxation of internal stresses in optical fibers. J. Lightwave Technol. 1990, 8, 1799–1802. [Google Scholar] [CrossRef]
- Dingwell, D.B.; Webb, S.L. Relaxation in silicate melts. Eur. J. Mineral. 1990, 2, 427–449. [Google Scholar] [CrossRef]
- Johannes, K.; Sonja, U.; Jan, D. Viscosity of fluorine-doped silica glasses. Opt. Mater. Express 2018, 8, 2559–2569. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Pandelaers, L.; Bart, B.; Guo, M.X. Viscosity of heterogeneous silicate melts: A Review. Metall. Mater. Trans. B 2018, 49, 2469–2486. [Google Scholar] [CrossRef]
- Paek, U.C.; Schroeder, C.M.; Kurkjian, C.R. Determination of the viscosity of high silica glasses during fiber drawing. Glass Technol. 1988, 29, 265–269. [Google Scholar]
- Koide, M.; Sato, R.; Komatsu, T.; Matusita, K. Low-temperature deformation of fluoride and oxide glass fibers below their glass transition temperatures. J. Non Cryst. Solids 1994, 177, 427–431. [Google Scholar] [CrossRef]
- Reis, S.T.; Kim, C.W.; Brow, R.K.; Ray, C.S. Deformation, stress relaxation, and crystallization of lithium silicate glass fibers below the glass transition temperature. J. Mater. Sci. 2004, 39, 6539–6549. [Google Scholar] [CrossRef]
- Kirchhof, J.; Unger, S. Viscous behavior of synthetic silica glass tubes during collapsing. Opt. Mater. Express 2017, 7, 386–400. [Google Scholar] [CrossRef]
- Shin, I.H.; Ju, S.; Veetil, S.P.; Han, W.T.; Kim, D.Y. Simple model for frozen-in viscoelastic stress in optical fibers. Opt. Commun. 2008, 281, 2504–2508. [Google Scholar] [CrossRef]
- Koide, M.; Komatsu, T.; Matusita, K. Delayed elasticity and viscosity of silicate glasses below the glass transition temperature. Thermochim. Acta 1996, 282–283, 345–351. [Google Scholar] [CrossRef]
- Webb, S. Silicate melts: Relaxation, rheology, and the glass transition. Rev. Geophys. 1997, 35, 191–218. [Google Scholar] [CrossRef] [Green Version]
- Koide, M.; Sato, R.; Komatsu, T.; Matusita, K. Viscosity and relaxation of glasses below the glass transition temperature. Thermochim. Acta 1996, 280–281, 401–415. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Todoroki, S. Viscosity of silica core optical fiber. J. Non Cryst. Solids 1999, 244, 232–237. [Google Scholar] [CrossRef]
- Shao, L.Y.; Canning, J.; Wang, T.; Cook, K.; Tam, H.Y. Viscosity of silica optical fibres characterized using regenerated gratings. Acta Mater. 2013, 61, 6071–6081. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qiao, X.; Yang, H.; Su, D.; Li, L.; Guo, T. Sensitivity-Improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating. Sensors 2014, 14, 18575–18582. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Ye, L.; Zhou, S.-P.; Tu, S.-T. An improved metal-packaged strain sensor based on a regenerated fiber Bragg grating in hydrogen-loaded Boron–Germanium co-doped photosensitive fiber for high-temperature applications. Sensors 2017, 17, 431. [Google Scholar] [CrossRef]
- Barrera, D.; Sales, S. A high-temperature fiber sensor using a low cost interrogation scheme. Sensors 2013, 13, 11653–11659. [Google Scholar] [CrossRef]
- Mihailov, S.J. Fiber Bragg grating sensors for harsh environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef]
- Canning, J.; Stevenson, M.; Bandyopadhyay, S.; Cook, K. Extreme silica optical fibre gratings. Sensors 2008, 8, 6448–6452. [Google Scholar] [CrossRef] [PubMed]
- Laffont, G.; Cotillard, R.; Roussel, N.; Desmarchelier, R.; Rougeault, S. Temperature resistant fiber Bragg gratings for on-line and structural health monitoring of the next-generation of nuclear reactors. Sensors 2018, 18, 1791. [Google Scholar] [CrossRef] [PubMed]
- Buchenau, U.; Zhou, H.M.; Nucker, N.; Gilroy, K.S.; Phillips, W.A. Structural relaxation in vitreous silica. Phys. Rev. Lett. 1988, 60, 1318–1321. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; McMillen, C.; Singh, R.; Podila, R.; Rao, A.M.; Hawkins, T.; Foy, P.; Morris, S.; Rice, R.; Poole, K.F.; et al. Annealing of silicon optical fibers. J. Appl. Phys. 2011, 110, 093107. [Google Scholar] [CrossRef]
- Bartenev, G.M.; Scheglova, N.N. High-temperature relaxation mechanisms in inorganic glasses. J. Non Cryst. Solids 1980, 37, 285–298. [Google Scholar] [CrossRef]
- Buchenau, U. Mechanical relaxation in glasses and at the glass transition. Phys. Rev. B 2001, 63, 104203. [Google Scholar] [CrossRef]
- Cernoskova, E.; Cernosek, Z.; Holubova, J.; Frumar, M. Structural relaxation near the glass transition temperature. J. Non Cryst. Solids 2001, 284, 73–78. [Google Scholar] [CrossRef]
- Hornboll, L.; Lonnroth, N.; Yue, Y. Energy Release in Isothermally Stretched Silicate Glass fibers. J. Am. Ceram. Soc. 2006, 89, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.L.; Tomozawa, M.; Blanchet, T.A. Tensile stress-acceleration of the surface structural relaxation of SiO2 optical fibers. J. Non Cryst. Solids 1997, 222, 376–382. [Google Scholar] [CrossRef]
- Tomozawa, M.; Hepburn, R.W. Surface structural relaxation of silica glass: A possible mechanism of mechanical fatigue. J. Non Cryst. Solids 2004, 345–346, 449–460. [Google Scholar] [CrossRef]
- Kim, B.H.; Park, Y.; Ahn, T.-J.; Kim, D.Y.; Lee, B.H.; Chung, Y.; Paek, U.C.; Han, W.-T. Residual stress relaxation in the core of optical fiber by CO2 laser irradiation. Opt. Lett. 2001, 26, 1657–1659. [Google Scholar] [CrossRef]
- Tandon, P. Effect of stress on the structural relaxation behavior of glasses. J. Non Cryst. Solids 2005, 351, 2210–2216. [Google Scholar] [CrossRef]
Preannealing Time (min) | 0 | 90 | 180 | 270 |
---|---|---|---|---|
τ0 | 47.17 | 13.90 | 15.55 | 12.35 |
Load (g) | 22.2 | 29.86 | 41.35 |
---|---|---|---|
τ0 | 57.97 | 56.88 | 47.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Gong, J.; Wang, C.; Che, N.; Zhao, Y.; Chai, Q.; Qi, H.; Lewis, E.; Ren, J.; Zhang, J.; et al. Observing the Viscous Relaxation Process of Silica Optical Fiber at ~1000 °C Using Regenerated Fiber Bragg Grating. Sensors 2019, 19, 2293. https://doi.org/10.3390/s19102293
Cui Z, Gong J, Wang C, Che N, Zhao Y, Chai Q, Qi H, Lewis E, Ren J, Zhang J, et al. Observing the Viscous Relaxation Process of Silica Optical Fiber at ~1000 °C Using Regenerated Fiber Bragg Grating. Sensors. 2019; 19(10):2293. https://doi.org/10.3390/s19102293
Chicago/Turabian StyleCui, Zhiru, Jianhui Gong, Chen Wang, Nana Che, Yanshuang Zhao, Quan Chai, Haifeng Qi, Elfed Lewis, Jing Ren, Jianzhong Zhang, and et al. 2019. "Observing the Viscous Relaxation Process of Silica Optical Fiber at ~1000 °C Using Regenerated Fiber Bragg Grating" Sensors 19, no. 10: 2293. https://doi.org/10.3390/s19102293
APA StyleCui, Z., Gong, J., Wang, C., Che, N., Zhao, Y., Chai, Q., Qi, H., Lewis, E., Ren, J., Zhang, J., Yang, J., Yuan, L., & Peng, G. -D. (2019). Observing the Viscous Relaxation Process of Silica Optical Fiber at ~1000 °C Using Regenerated Fiber Bragg Grating. Sensors, 19(10), 2293. https://doi.org/10.3390/s19102293