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Abstract: The laser detection and ranging system (LADAR) is widely used in various fields that
require 3D measurement, detection, and modeling. In order to improve the system stability and
ranging accuracy, it is necessary to obtain the complete waveform of pulses that contain target
information. Due to the inevitable noise, there are distinct deviations between the actual and expected
waveforms, so noise suppression is essential. To achieve the best effect, the filters’ parameters that are
usually set as empirical values should be adaptively adjusted according to the different noise levels.
Therefore, we propose a novel noise suppression method for the LADAR system via eigenvalue-based
adaptive filtering. Firstly, an efficient noise level estimation method is developed. The distributions of
the eigenvalues of the sample covariance matrix are analyzed statistically after one-dimensional echo
data are transformed into matrix format. Based on the boundedness and asymptotic properties of the
noise eigenvalue spectrum, an estimation method for noise variances in high dimensional settings
is proposed. Secondly, based on the estimated noise level, an adaptive guided filtering algorithm
is designed within the gradient domain. The optimized parameters of the guided filtering are set
according to an estimated noise level. Through simulation analysis and testing experiments on echo
waves, it is proven that our algorithm can suppress the noise reliably and has advantages over the
existing relevant methods.

Keywords: LADAR; noise suppression; noise level estimation; guided image filtering

1. Introduction

LADAR is widely used in unmanned aerial vehicles (UAV), terrain mapping, robots,
and automobile auxiliary driving. Recently, through acquiring the distance information between
the receiver and the targets and through capturing the intensity signals of the echo, the LADAR system
can accomplish four dimensional imaging for the targets or scenes [1]. The system emits a pulsed
signal and receives the echo, which is a Gaussian pulse waveform, then a Gaussian voltage is obtained
after circuit transformation [2]. Before transmitting this analog Gaussian signal to the processing
system, it is necessary to use a high-speed analog-to-digital converter (ADC) to digitize the signal into
discrete point data, which are related to the intensity values [1,3]. In order to obtain environment and
target information, echoes need to be further analyzed to get the amplitude, pulse width, and integral
intensity information [4]. All the analyzing methods are based on noise suppression, and a good noise
suppression effect guarantees effective analysis [5,6].
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The noise of LADAR signal is mainly Gaussian white noise, which is generally divided into
internal and external noise, introduced by the avalanche photodiode (APD) in the process of
photoelectric conversion [7,8]. Internal noise, which mainly consists of shot noise, thermal noise [9],
generation-recombination noise, and flicker noise, comes from the electronic noise itself. The generation
mechanism is the random fluctuation of voltage or current caused by the random movement of
carriers [10–12]. External noise that comes from the external interference of the detector includes
circuit noise and background light noise. In the actual photoelectric detection process, the noise of
the amplification circuit is small and usually ignored [4]. Especially in the daytime, background light
noise is usually much larger than the system’s natural noise. Background light noise mainly comes
from natural and artificial light sources, such as the radiation from the Sun, ground, stars, atmosphere,
clouds, and other sources of incidence or reflection to the detector. It also includes the interfering
signal caused by the atmosphere in the transmission process [13].

For Gaussian white noise in an image, the spatial domain and transform domain filtering methods
are usually used to reduce the noise. After one echo has been digitized into a one-dimensional signal,
the image filtering algorithm can be used to suppress the noise of the LADAR signal. The most
widely-used noise suppression methods in image processing are Gaussian algorithm [14], the bilateral
filtering algorithm [15,16], and the guided filtering algorithm [17,18].

Compared with image noise, there are two special characteristics of LADAR. Firstly, multi-echo
superposition will result in multiple positive and negative gradient values. The waveform is usually
integrated in the time domain to analyze the material, texture, roughness, and other information of the
target. Therefore, peaks and valleys need to be protected. Secondly, the light conditions, temperature,
and objects around the LADAR are constantly changing [19]. As a result, it needs dynamic filter
parameters that are associated with noise to adapt to the environment.

To solve the aforementioned problems, we propose a noise suppression algorithm that can
accurately estimate the noise variances in two dimensions. Based on the requirement of preserving
waveform boundaries, the guided filtering algorithm is used to suppress the noise of echoes, and the
actual echoes are taken as the guide images. As a novel contribution, we extract the characteristic
values of noise signals after separating the subspaces between the signals and the noise based on
random matrix theory (RMT) [20], then we set the regularization parameters and window radius in
gradient domain guided filtering. The practical usefulness of our method is illustrated by experiments.

2. Related Works

The echoes of LADAR are converted into digital signals after sampling and digitization by ADC.
Since each echo signal is processed by an ADC of the same frequency, the number of data points of
every echo is the same. Taking all data points of one echo as a one-dimensional orderly array, it can be
processed by image filtering.

Image filtering is a basic module of image preprocessing, which can remove noise from images on
the premise of preserving image details and textures as much as possible. Many spatial image filtering
algorithms have been used for one-dimensional signal filtering [17,21,22]. The key problem of image
filtering is to get a good balance between effectively removing noise and preserving detail and texture.

Image filtering generally includes the following categories: spatial filtering and transform domain
filtering. Spatial image filtering calculates the neighborhood with each pixel in the image as the center
and then replaces the original pixel value with the results obtained. Linear spatial filtering mainly
includes box filtering, mean filtering, and Gaussian filtering, and nonlinear spatial filtering mainly
includes median filtering, bilateral image filtering (BIL), and guided image filtering (GIF).

The box filter is a quick summation of the pixel values in each window within a given sliding
window [23]. In the mean filter, the normalized box filter, each pixel of the output images is the average
of the corresponding pixels of the input image in the window [24]. The mean filtering algorithm is
simple and fast, which has a good suppression effect on the periodic interference noise. However,
it destroys the detailed part of the image, while suppressing noise, thus making the image blurred.
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Gaussian filtering is very effective at suppressing noise that obeys a normal distribution and is widely
used in image processing. It is a process of the weighted average of the whole image. The value of
each pixel is obtained by the weighted average of itself and other pixel values in the neighborhood.
The median filter replaces each pixel of the image with the median value of the neighborhood pixel [25].
It can protect the edge of the signal while filtering the noise, especially the pulse noise, but it will lose
the texture in the uniform medium area. BIF, which has the characteristics of simple, non-iterative, and
local processing, combines the spatial proximity and pixel value similarity of the image. It considers
the spatial information and gray similarity at the same time and achieves the goal of preserving noise
suppression [15]. The BIF is a Gaussian filter function based on the spatial distribution, so the pixels
far away from the edge will not affect the pixel values on the edge much. However, because it saves
high-frequency information, it has a poor effect on high-frequency noise in the color image, and pulse
noise is retained as the edge. Many scholars have proposed a variety of improvement methods, such
as multi-resolution bilateral filtering [26–28], kernel regression [29], cross bilateral filtering [30], etc.
GIF is used to filter the input image through a guide image, so that the final output image is roughly
similar to the initial image, but the texture part is similar to the guide image [17]. GIF can improve the
computing speed while maintain the edge, so it is widely used in image enhancement, high dynamic
range (HDR) compression, image matting, and haze removal [21,22].

Transform domain filtering transforms images from the spatial domain to other domains. Utilizing
the properties of the transform domain, the transform coefficient is further processed to reduce the
noise, and then, the image is reconstructed by inverse transformation, such as discrete cosine transform
(DCT) [31], wavelet transform [32–34], and so on. However, due to its huge computational cost,
the processed image cannot not be acquired in real time. To improve its computing speed, Stockwell
proposed the discrete cosine S transform [35]. Wavelet transform was used for image noise suppression,
which is a more widely-used image noise suppression method in the transform domain [36].

At present, wavelet filtering methods can be divided into the Bayesian method and non-Bayesian
method. Among them, non-Bayesian methods can be divided into three types: modular maximum
reconstruction filtering, wavelet threshold filtering, and the wavelet spatial correlation filtering.
The mode-maximum noise suppression method mentioned by Mallat has a good noise suppression
effect on both Gaussian white noise and impulse noise, but it has a large amount of computation,
and the iteration is prone to instability [37]. The spatial correlation noise suppression method proposed
by Xu selects the coefficients according to the strong and weak performance of the correlation between
the signal and noise in each scale, and the noise filtering effect is very significant [36]. The spatial
correlation noise suppression method is easy to implement, but the error is large. The wavelet threshold
noise suppression method was first mentioned by Donoho [33]. The wavelet coefficient of the signal
is larger than the noise, so selecting the appropriate critical threshold can remove the noise. Because
threshold setting is the key to this method, many scholars devoted themselves to improving the
algorithm by setting various thresholds. To overcome the visual illusion of interference caused by the
critical sampling wavelet coefficient, the over-complete wavelet was used to improve this defect [38].

In combination with the characteristics of the spatial domain and the transform domain, scholars
proposed the gradient domain guided image filter (GGIF) [21,39,40]. It can obtain better effects than
GIF and weighted guided image filtering (WGIF) by using the gradient domain information in guiding
the image as the weight.

However, noise would change the edge part of the image, and the impact is unpredictable, so the
above algorithms suffer from the fixed noise parameter. To address this, we propose an adaptive
gradient-guided filtering (AGGF) algorithm, which was inspired by [21,22], based on noise estimation.
Its framework is shown as Figure 1.
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Figure 1. Framework of the adaptive gradient-guided noise suppression algorithm.

3. Adaptive Gradient-Guided Noise Suppression Technique

In [21], there were a guidance image G and an image to be filtered X, and they could be identical.
Let Ωδ1 (p) be a square window centered at a pixel p of a radius δ1. It was assumed that the output
image Ẑ is a linear transform of the guidance image G in the window Ωδ1 (p′):

Ẑ (p) = ap′G (p) + bp′ , ∀p ∈ Ωδ1

(
p′
)

, (1)

where ap′ and bp′ are two constants in the window Ωδ1 (p′). Cost function E
(

ap′ , bp′
)

with edge-aware

weighting Γ̂G (p′) is as follows:

E = ∑
p∈Ωδ1

(p′)

[(
ap′G (p) + bp′ − X (p)

)2
+

ψ

Γ̂G (p′)

(
a2

p′ − γp′
)]

, (2)

γp′ = 1− 1
1 + eη(χ(p′)−µχ,∞)

, (3)

ψ is a regularization parameter that restrains large ap′ . µχ,∞ is the mean value of all χ (p). η is an
adjustment coefficient that is defined as 4/ (µχ,∞ −min (χ (p))); it makes ap′ less sensitive.

Γ̂G
(

p′
)
=

1
N

N

∑
p=1

χ (p′) + ε

χ (p) + ε
, (4)

Γ̂G (p′) is an edge-aware weighting. The radius of the window is three and δ1 for p′ and p, ε is a small
positive constant. χ (p′) is defined as σG,1 (p′) σG,δ1 (p′). It is usually set to 16 in detailed manipulation
applications. The weighting Γ̂G (p′) measures the importance of pixel p′ with respect to the whole
guidance image [21].

ap′ =
µG�X,δ1 (p′)− µG,δ1 (p′) µX,δ1 (p′) + ψ

Γ̂G(p′)
γp′

σ2
G,δ1

(p′) + ψ

Γ̂G(p′)

, (5)

bp′ = µX,δ1

(
p′
)
− ap′µG,δ1

(
p′
)

. (6)
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where � is the element-wise product of two matrices. µG�X,δ1 (p′), µG,δ1 (p′), and µX,δ1 (p′) are the
mean values of G� X, G, and X in the window Ωδ1 (p′), respectively [22].

According to the influence of noise on the parameters, a new filtering algorithm is proposed.

3.1. Gradient-Guided Filtering

The same as the GGIF, the key assumption of the AGGF is a local linear model between the
guidance image Gand the filtering output Z̃ (p). It is shown that5Z̃ (p) = ap′5G, and the smoothness
of Z̃ (p) in Ωδ depends on ap′ . The optimal values of ap′ and bp′ are computed by minimizing a new
cost function, which is defined as:

E = ∑
p∈Ωδ(p′)

[(
ap′G (p) + bp′ − X (p)

)2
+

ψn

Γ̂G (p′)

(
a2

p′ − αnγp′
)]

, (7)

where ψn is the sensitivity coefficient of guided filtering and γp′ is the same as Equation (3).
The GGIF [21] is less sensitive to the selection of ψ, and edges could be preserved better than both the
GIF and the WGIF. However, GGIF does not define where the edge is; when the overall gradient of the
image does not change much, it will have a negative impact on the filtering effect, shown as Figure 2a.
To avoid this, we add the parameters α to modify γp′ . When the maximum gradient is less than a
threshold TH, αn is zero, and when the maximum gradient is greater than a threshold value, αn is one.
In other words, it uses γp′ to modify ψn when the overall gradient changes a little. TH is defined as:

TH = median
[

abs(σ2
G,δ(p′)) + TH0

]
, (8)

TH0 = 15 ·median
[

abs(σ2
G,δ(p′))−median(σ2

G,δ(p′))
]

, (9)

δ = Kδ

[
Aδ

(
f−1
p · 109

)Bδ
+ Cδ

] (
σ̂2

n
H

)Dδ

, (10)

Kδ =
1
2
+

1
2
(Gradmax − Gradmin) (Gradp − Gradmin), (11)

where δ is the window radius, which is defined as Equation (10). H is the peak value of the echo signal.
Aδ, Bδ, and Cδ are coefficients, which are 2.367, −0.82, and 0.286, respectively. σ̂2

n is the noise level
parameter that will be introduced in detail later. Kδ is the normalized coefficients that can adjust δ

as the pixel gradient changes. Gradmax, Gradmin, and Gradmax are the maximum gradient value of all
pixels, the minimum gradient value, and the gradient value of pixel p in the guided image, respectively.
In addition, due to the box filter in [17], the complexity of Γ̃G (p′) is O(N) for an image with N pixels.

ψn defined as Equation (12) can be adjusted according to the noise level to obtain a better
filtering effect.

ψn = Aψn σ̂2
n + Bψn σ̂n + Cψn , (12)

where Aψn , Bψn , and Cψn are fitting coefficients, which are 5.5, 11, and 66, respectively.

ap′ =
µG�X,δ (p′)− µG,δ (p′) µX,δ (p′) + ψn

Γ̂G(p′)
αγp′

σ2
G,δ (p′) + ψn

Γ̂G(p′)

, (13)

bp′ = µX,δ
(

p′
)
− ap′µG,δ

(
p′
)

, (14)
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The final value of Z̃ (p) is given as follows:

Z̃ (p) = āp′G (p) + b̄p′ , ∀p ∈ Ωδ

(
p′
)

, (15){
āp′ =

1
|Ωδ(p)| ∑p′∈Ωδ(p) ap′

b̄p′ =
1

|Ωδ(p)| ∑p′∈Ωδ(p) bp′
(16)

where āp′ and b̄p′ are the mean values of ap′ and bp′ in the window. |Ωδ (p)| is the cardinality
of |Ωδ (p′)|.

When the pixel p′ is at an edge, the value of Γ̃G (p′) is usually much larger than one, which means
edges can be preserved. In addition, the complexity of the AGGF is O(N) for an image with N pixels,
which is the same as that of the GIF [17].

In order to illustrate the influence of threshold TH on the algorithm, we designed a comparison
scheme. The maximum gradient in Figure 2a is less than the threshold; γp′ is zero. At this time,
the filtering effect is similar to WGIF, but it is not exactly the same. In GGIF, γp′ is one, which causes
excessive correction of ap′ , and the filtering effect is very different.

In Figure 2b, the maximum gradient is larger than the threshold. the filtering effect is similar to
GGIF, when the window is not adjusted adaptively. It should be noted that in the LADAR system,
echo is expected by Gaussian noise, which rarely exceeds the threshold, so γp′ needs to be corrected.
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Figure 2. Comparison of the filtering effect. (a) Signal to noise ratio (SNR) = 25, fp = 5G, ψ = 300. δ = 7,
variance = 0.01955 in weighted guided image filtering (WGIF). δ = 7, variance = 0.09954 in gradient
domain guided image filter (GGIF). δ = 7, variance = 0.01987 in GIF. δ = 6–8, variance = 0.02107 in
adaptive gradient-guided filtering (AGGF). (b) fp = 5G, SNR = 35, ψ = 67. δ = 5, variance = 0.01955 in
WGIF. δ = 5, variance = 0.09954 in GGIF. δ = 5, variance = 0.01987 in GIF. δ = 5–7, variance = 0.02107
in AGGF.

3.2. Noise Level Estimation via Eigenvalue Analysis

In this section, we analyze the asymptotical distribution of the ratio of extreme eigenvalues of a
sample covariance matrix based on the limiting RTMlaw, then the noise level is estimated. To derive
the relationship between the eigenvalues and noise level, we first construct the sample covariance
matrix Σ.

Each element di in the matrix Σ defined as Equation (17) is a data point obtained by sampling
the echo. N is the number of columns in the matrix; S is the number of elements in each column.
All data points of one echo is a column. N echos make the matrix Σ, and dimension of the matrix Σ is S.
This matrix can be equivalent to an image to be processed, each data point being a pixel of the image.
N is greater than S. The pulse width of the commonly-used pulsed laser is 5 ns, and the effective
wavelength of an echo can be approximately 10 ns. The sampling frequency of the commonly-used
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ADC is 2 GHz, and an effective echo can obtain 20 sampling points. Therefore, in this work, N is at
least 20.

Σ =
1
S

S

∑
i=1

(
di · dT

i

)
(17)

According to the symmetric property, this matrix is decomposed into the product of three matrices:
an orthogonal matrix U, matrix Σ, and a transpose matrix UT , which can be selected by satisfying
UTU = I. Here, this transform process is written as:

UT ∑ U = diag (λ1, · · · , λm, λm+1, · · · , λS) (18)

Given λ1 ≥ λ2 ≥ · · · ≥ λS, we exploit the sequence of eigenvalues to enable the separation of
signals from noise. To be more specific, we divide the eigenvalues into two sets S0 = S1 ∪ S2 by finding
the appropriate bound in a spiked population model [41]. The echo signal lies in low-dimensional
subspace, and thus, the leading eigenvalues in set S1 = {λi}m

i=1 are mainly contributed by it.
The redundant-dimension subspace S2 = {λi}S

i=m+1 is dominated by the noise. Because the signals
contribute very little to this latter portion, we take all the eigenvalues of S2 into consideration to
estimate the noise variance while eliminating the influence of the echo signal. Moreover, the random
variables {λi}S

i=m+1 can be considered as the eigenvalues of the pure noise covariance matrix.
Suppose the sample matrix Σ has the form (N −m)Σ = HHT , where the sample entries of H are

independently generated from the distribution N
(
0, σ̂2

n
)
. Then, the real matrix M = HHT follows a

standard Wishart distribution [42]. In the high dimensional situation: N/S→ γ ∈ [0, ∞) as S, N → ∞,
the Tracy–Widom law gives the limiting distribution of the largest eigenvalue of the large random
matrix M [43]. Then, we have the following asymptotic expression:

Pr
{

λm+1/σ̂2
n − µ

ξ
6 Z

}
→ FTW1 (Z) (19)

where FTW1 (Z) indicates the cumulative distribution function with respect to the Tracy–Widom
random variable. In order to improve both the approximation accuracy and convergence rate, even
only with a few signal samples, we need to choose the suitable centering and scaling parameters
µ, ξ [44]. By the comparison between different values, such parameters are defined as:

µ = 1
N−m

(√
S− 1

2 +
√

N − 1
2

)2

ξ = 1
N−m

(√
S− 1

2 +
√

N − 1
2

)
·
(

1√
S− 1

2

+ 1√
N− 1

2

) 1
3 (20)

The empirical distribution of the eigenvalues of the large sample matrix converges almost surely
to the Marchenko–Pastur distribution on a finite support. Based on the generalized result in [45],
when N → ∞ and γ ∈ [0, ∞), with probability one, we derive the limiting value of the smallest
eigenvalue as:

λmin/σ2
n → (1−

√
γ)2 (21)
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According to the asymptotic distributions described in Equations (19) and (21), we further quantify
the distribution of the ratio of the maximum eigenvalue to the minimum eigenvalue in order to detect
the noise eigenvalues. Let Tn be a detection threshold, then we find Tn by the following expression:

Pr
{

λm+1

λmin
6 Tn

}
= Pr

{
λm+1

σ̂2
n

6 Tn ·
λmin
σ̂2

n

}
≈ Pr

{
λm+1

σ̂2
n

6 Tn ·
(

1−
√

N/S
)2
}

= Pr

{
λm+1/σ̂2

n − µ

ξ
6

Tn ·
(
1−
√

N/S
)2 − µ

ξ

}

≈ FTW1

{
Tn ·

(
1−
√

N/S
)2 − µ

ξ

}
(22)

Note that there is no closed-form expression for the function FTW1. Fortunately, the values of FTW1
and the inverse F−1

TW1 can be numerically computed at certain percentile points [41]. For a required
detection probability α1, this leads to:

Tn ·
(
1−
√

N/S
)2 − µ

ξ
= F−1

TW1 (α1) (23)

Plugging the definitions of µ and ξ into Equation (23), we finally obtain the threshold.

Tn =
1

N −m
·

S
(√

S− 1/2 +
√

N − 1/2
)2(√

S−
√

N
)2 ·

((√
S− 1/2 +

√
N − 1/2

)−2/3

(S− 1/2)1/6 (N − 1/2)1/6 · F−1
TW1 (α1) + 1

) (24)

When the detection threshold Tn is known in the given probability, it means that an asymptotic
upper bound can also be obtained for determining the noise eigenvalues of the matrix Σ. In general,
the noise eigenvalues in the set S2 surround the true noise variance as it follows the Gaussian
distribution. The estimated largest eigenvalue λm+1 should be no less than σ̂2

n . The known smallest
eigenvalue λS is no more than σ̂2

n by the theoretical analysis [46]. The location and value of λm+1 in S
are obtained by checking the bound λm+1 ≤ Tn · λS with high probability α1.

Without requiring the knowledge of the signal, the threshold Tn can provide good detection
performance for finite S, N, even when the ratio N/S is not too large. Based on this result, more
accurate estimation can be obtained by averaging all elements in S2. Hence, the maximum likelihood
estimator of σ̂2

n is:

σ̂2
n =

1
S−m

S

∑
j=m+1

λj (25)

Based on the above content, we propose a noise suppression algorithm as Algorithm 1.
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Algorithm 1 Noise suppression algorithm

1: procedure (Input: X, N, S, α1, α2, fp) . X is input waveform; N is the number of echoes; S is the

number of data points in each echo; α1, α2 are probability levels; fp is frequency of the ADC.
2: Σ← {X1, X2, · · · , XN} . Σ is data matrix
3: {λ1, λ2, · · · , λS} ← Σ
4: σ̂2

n ← {λS, · · · , λm+1} . σ̂2
n is the maximum likelihood estimator

5: Tn ← {λmin, λm+1} . Tn is the low-dimensional threshold
6: ψn ← σ̂2

n . ψn is the sensitivity
7: δ← fp . δ is the window radius
8:

{
ap′ , bp′

}
← {δ, ψn} . ap′ , bp′ are the filter kernel parameters

9: Z̃N+1 (p)←
{

ap′ , bp′ ,XN+1

}
. Z̃N+1 (p) is the output image

10: return Z̃N+1 (p)
11: end procedure

4. Experimental Results

We studied the influence of the noise on filter parameters through a large number of data
simulations. Experiments on land and simulation under water were carried out to verify the
effectiveness of the algorithm. As shown in Figure 3a, all measured data in this paper were obtained
by the LADAR system, which used an 8 × 8 array APDas the detector and a 1064-nm pulsed laser as
the detection source to realize target distance detection based on the time-of-flight method. The system
uses a multi-channel preamplifier circuit based on the variable gain amplifier (VGA) and implements
full waveform sampling analysis based on a 2-GHz sampling rate ADC.

(a)

-6 -4 -2 0 2 4 6

10
-8

-5

0

5

10

15

20

25

(b)

Figure 3. (a) LADAR system; (b) window width (2δ+1) changing with gradient.

4.1. Evaluation

As shown in Figure 4a, the maximum deviation of estimation was 1.2%, while the SNR was in the
range of 0–35. When the SNR is low, the eigenvalue of noise in signal matrix is large, which can be
extracted more accurately, and the estimation is better. In Figure 4b, it can be seen that a good noise
suppression effect can be achieved, and the fittings were more than 99% at different SNRs.

4.2. Analysis of the Relationship Between the Noise and Parameters

Table 1 shows the comparison of the filtering effects of these algorithms with different sensitivities
at different SNR. The optimal sensitivity of WGIF, GGIF, AGGF, and GIF were approximately equal at
the same SNR, and this can be obtained by comparing Equations (2) and (7). In other words, all of
them optimized the edge filtering effect by weighting the ψn.
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Table 1. Influence of SNR on ψn for different filtering algorithms, fp = 5G. SNR = 35, ψn = 69, δ = 4 in
WGIF, GGIF and GIF, δ = 3–5 in AGGF; SNR = 30, ψn = 134, δ = 6 in WGIF, GGIF and GIF, δ = 3–7 in
AGGF; SNR = 25, ψn = 295, δ = 7 in WGIF, GGIF and GIF, δ = 4–8 in AGGF; SNR = 20, ψn = 1400, δ = 8
in WGIF, GGIF and GIF, δ = 6–10 in AGGF; SNR = 15, ψn = 5800, δ = 9 in WGIF, GGIF and GIF, δ = 8–12
in AGGF; SNR = 10, ψn = 1,270,000, δ = 20 in WGIF, GGIF and GIF, δ = 12–16 in AGGF. The best results
have been bolded.

SNR ψn
WGIG GGIF GIF AGGF (Proposed)

Fitting Variance Fitting Variance Fitting Variance Fitting Variance

10
5000 0.9896289 0.3320057 0.9294678 2.4700421 0.9899139 0.3224299 0.9899558 0.3200555

150,000 0.9900612 0.3242041 0.9335110 2.3769678 0.9900623 0.3241507 0.9904550 0.3120494
1.27 × 106 0.9899291 0.3223799 0.9323638 2.3626738 0.9899292 0.3223750 0.9901822 0.3134338

15
1500 0.9959852 0.1317777 0.9752516 0.8424215 0.9961218 0.1271757 0.9962622 0.1220978
5000 0.9964259 0.1172305 0.9761854 0.8110346 0.9964482 0.1164678 0.9965838 0.1120026

15,000 0.9962935 0.1218438 0.9757185 0.8274727 0.9962985 0.1216689 0.9963667 0.1190786

20
100 0.9979770 0.0674745 0.9907810 0.3124294 0.9983977 0.0532925 0.9984316 0.0520335

1500 0.9985062 0.0498123 0.9913531 0.2929273 0.9985161 0.0494753 0.9985083 0.0496394
5000 0.9984113 0.0526354 0.9913088 0.2925424 0.9984137 0.0525548 0.9984236 0.0520893

25
10 0.9986424 0.0455014 0.9966124 0.1142694 0.9993092 0.0230704 0.9993714 0.0209918
100 0.9993676 0.0212017 0.9969995 0.1014306 0.9994068 0.0198746 0.9994056 0.0199305

1500 0.9993093 0.0230395 0.9969920 0.1014459 0.9993100 0.0230151 0.9993253 0.0225601

30
10 0.9996188 0.0127846 0.9989465 0.0355396 0.9997132 0.0095981 0.9997371 0.0088228
100 0.9997270 0.0091296 0.9989876 0.0341289 0.9997288 0.0090679 0.9997469 0.0084929

1500 0.9997136 0.0095818 0.9990168 0.0331666 0.9997134 0.0095874 0.9997366 0.0088431

35
10 0.9998705 0.0043549 0.9996337 0.0123681 0.9998903 0.0036829 0.9999041 0.0032282
100 0.9998890 0.0037272 0.9996338 0.0123681 0.9998890 0.0037263 0.9999034 0.0032540

1500 0.9998865 0.0038077 0.9996364 0.0122755 0.9998865 0.0038097 0.9999019 0.0033016

Figure 5a shows the relationship between the optimal ψn and SNR of the AGGF algorithm. Due
to ψn changing with SNR, the proposed AGGF algorithm can achieve a good noise suppression effect
at different noise levels. It can be obtained that the larger the SNR, the smaller the optimal sensitivity.
Figure 5b shows the relationship between ψn, window width (2δ+1), fp, and SNR.
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Figure 4. Algorithm simulation results. (a) Noise estimated result; (b) noise suppression results under
different SNRs.
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Figure 5. The relationship between ψn, window width (2δ+1), fp, and SNR. (a) The relationship
between SNR, optimal ψn in AGGF. (b) Relationship between window width (2δ+1), noise level (σ̂2

∗ ),
and sampling rate ( fp) in AGGF.

For the LADAR waveform, the sampling rate of the ADC determines the number of data points
of one echo, which is directly related to the window radius. The higher the sampling rate, the larger
the window width should be.

At the same time, in order to achieve better filtering, the noise level should also be considered
when setting the window width.

The proposed algorithm can adjust filter parameters according to different noise levels. To make
the comparison fairer, all window radii were optimized by Equation (10). It can be observed that the
effect of indoor experiment was not as good as that of the underwater experiment, and the detailed
reasons will be analyzed later.

Although the filtering effect can be reflected by the two parameters of mean variance and fitting
degree, they cannot fully reflect the filtering effect. For example, at the sampling rate of 2.5 GHz, WGIF
and GIF had the best parameters when δ was three and five, respectively.

The unsmoothed waveform needs to be processed again to obtain the centroid position, which
was used for the accurate calculation of the target distance. In contrast, the proposed adaptive window
width achieved a good filtering effect at different sampling rates and SNR. Specifically, GGIF can
enhance the boundary effect with parameter γ′p, but in the case of Gaussian echo, where the boundary
is not obvious or the overall gradient change is not dramatic, excessive boundary judgment will occur.

In order to obtain a better filtering effect, we make the window radius larger in the part with a
high slope and smaller in the part with a low slope, as Figure 3b shows.

4.3. Analysis of Measurement and Simulation Data

Figure 6a,b is the waveforms measured by the LADAR system on land, in which (a) is about
one object and (b) is the waveform measured by two objects 30 cm apart. Since there was no obvious
gradient change, the noise suppression effect of GGIF was poor, and the effect of the other algorithms
was similar. Figures 7 and 8 show the underwater waveforms simulated at 15 m and 25 m, respectively.
The two echoes before and after were the surface signal and underwater signal, separately. Because
the light beam reflected continuously in the water, the first echo had trailing.

It can be seen in Section 3 that WGIF and GIF had a good filtering effect on waveforms with a
small gradient, and they can maintain edge features well at the same time, but the edge protection
effect was poor in waveforms with a large gradient.
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GGIF enhanced the edge detection based on WGIF and GIF, and it was more sensitive to the
edge. When the gradient was small, there would be excessive protection of the edge, which can be
seen in Figure 2. We hoped that the algorithm can better distinguish the two cases, so we increased
the threshold to judge the gradient change. In the case of a large gradient, the proposed algorithm
approximated the GGIF, as shown in the Figures 7 and 8. In the case of small gradient, the proposed
algorithm approximated the WGIF and GIF, as shown in the Figure 6.
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Figure 6. Measured waveform noise suppression effect. (a) Comparison of noise suppression effect of
one target. (b) Comparison of noise suppression effect of two targets.
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Figure 7. Measured waveform noise suppression effect. Comparison of noise suppression effect.
(a) Filtering effect at fp = 1 GHz, SNR = 30. δ = 4 in WGIF, GGIF, and GIF, δ = 3–5 in AGGF
(proposed). (b) Filtering effect at fp = 7.5 GHz, SNR = 30. δ = 11 in WGIF, GGIF, and GIF, δ =
9–13 in AGGF (proposed).
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underwater
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Figure 8. Measured waveform noise suppression effect. (a) Filtering effect at fp = 1 GHz, SNR = 30.
δ = 4 in WGIF, GGIF, and GIF, δ = 3–5 in AGGF (proposed). (b) Filtering effect at fp = 2 GHz, SNR = 30.
δ = 6 in WGIF, GGIF, and GIF, δ = 4–8 in AGGF (proposed). (c) Filtering effect at fp = 2 GHz, SNR = 20.
δ = 10 in WGIF, GGIF, and GIF, δ = 8–12 in AGGF (proposed). (d) Filtering effect at fp = 7.5 GHz, SNR
= 30. δ = 11 in WGIF, GGIF, and GIF, δ = 9–13 in AGGF (proposed).

In the seabed detection, due to the change of the seabed height covered by the divergence of
the beam and the scattering effect of sea water, the echo gradient will change to different degrees.
When the seawater is shallower, the laser energy absorbed by seawater is less, and the echo power
is larger, which leads to a big gradient of echoes. The gradient of the echo signal varies with the
fluctuation of the seabed. Therefore, the proposed algorithm can achieve better results in different
conditions for seabed echoes. In the laboratory experiment, considering that the echo power is too
large to produce a saturated signal, it is impossible to carry out effective analysis. Therefore, in the
indoor test, it is necessary to add an attenuation lens to the laser transmitting lens to reduce the laser
power and at the same time reduce the gain of the signal processing circuit, which will reduce the echo
gradient. Therefore, in the comparison of the indoor signal filtering effect, the proposed algorithm has
no obvious advantages.

As shown in Figure 8, when the underwater echo is very strong, the advantage of the proposed
algorithm is more obvious, as a result of adjusting parameters reasonably according to the noise
level and gradient. As shown in Figure 7, when the underwater echo is very small, the AGGF noise
suppression effect is still better. Therefore, this proposed method can be better applied to noise
suppression of the LADAR waveform.

Detailed simulation results are shown in Figures 9–12. It can be seen that the algorithm proposed
is more advantageous in the application of a large gradient, such as underwater.
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Figure 9. Indoor experiment, fp = 5 GHz; influence of SNR on filtering effect.
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Figure 10. Indoor experiment, SNR = 30; influence of fp on filtering effect.
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Figure 11. Seabed experiment, fp = 2 GHz; influence of SNR on filtering effect.
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Figure 12. Seabed experiment, SNR = 30; influence of fp on filtering effect.

5. Conclusions

To infer the noise level from a signal matrix, the eigen-spaces of the signal and noise
are transformed and separated well by determining the eigen-spectrum interval. In addition,
the developed estimator can effectively eliminate the estimation bias of a noise variance in a
high-dimensional context. The experimental results have demonstrated that the proposed noise
suppression technique for the LADAR system via eigenvalue-based adaptive filtering can adjust
parameters according to the noise level, and it outperforms the relevant existing methods over a wide
range of noise level conditions for LADAR system.
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