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Abstract

:

Internet of Things (IoT) environments such as smart homes, smart factories, and smart buildings have become a part of our lives. The services of IoT environments are provided through wireless networks to legal users. However, the wireless network is an open channel, which is insecure to attacks from adversaries such as replay attacks, impersonation attacks, and invasions of privacy. To provide secure IoT services to users, mutual authentication protocols have attracted much attention as consequential security issues, and numerous protocols have been studied. In 2017, Bae et al. presented a smartcard-based two-factor authentication protocol for multi-gateway IoT environments. However, we point out that Bae et al.’s protocol is vulnerable to user impersonation attacks, gateway spoofing attacks, and session key disclosure, and cannot provide a mutual authentication. In addition, we propose a three-factor mutual authentication protocol for multi-gateway IoT environments to resolve these security weaknesses. Then, we use Burrows–Abadi–Needham (BAN) logic to prove that the proposed protocol achieves secure mutual authentication, and we use the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool to analyze a formal security verification. In conclusion, our proposed protocol is secure and applicable in multi-gateway IoT environments.
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1. Introduction


Internet of Things (IoT) provides numerous types of services through the internet to exchange data among sensors, embedded systems, and mobile devices. In recent years, IoT environments such as smart buildings, smart factories, smart homes, and smart offices are rapidly becoming a part of our life. A typical IoT architecture consists of heterogeneous micro devices and collects various types of information in real time. However, this is not efficient for practical IoT systems because the communication and computation cost can be increased when the size of IoT networks and the distance between participants are expanded [1,2]. The gateway nodes are deployed to enhance the performance, which provides the ability to communicate with each other efficiently. In a multi-gateway IoT environment, many gateway nodes are deployed and it can process the capability of large-scale IoT networks. IoT environments are also vulnerable to various attacks due to the nature of the open communication channel. Malicious attackers may attempt to insert, delete, and modify the data to obtain users’ sensitive information and masquerade as valid users. Much research has been done to resolve security problems in IoT environments. Secure mutual authentication is a primitive and essential method to provide secure communication and numerous secure mutual authentication protocols for IoT have been presented to provide various security features [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16].



In 2017, Bae et al. [15] proposed a smartcard-based secure authentication protocol in multi-gateway IoT environments to reduce the computational and communication cost. However, we demonstrate that Bae et al.’s protocol is vulnerable to user impersonation, gateway spoofing, and trace and session key disclosure attacks, and does not provide anonymity and a secure mutual authentication. Then, we propose a three-factor authentication protocol that is based on the biometric information of the user, for IoT environments. To analyze the security aspects, we perform an informal security analysis and use Burrows–Abadi–Needham (BAN) logic. Furthermore, we perform a formal security verification using Automated Validation of Internet Security Protocols and Applications (AVISPA) software to check that our protocol can resist man-in-the-middle attacks and replay attacks. We compare the computation cost and security features of our proposed protocol with those of related existing protocols.



The remainder of this paper is as follows. In Section 2 and Section 3, we introduce related works and our preliminary details. In Section 4 and Section 5, we review Bae et al.’s protocol and cryptanalyze its security flaws. Then, we propose a secure three-factor mutual authentication protocol for multi-gateway IoT environments in Section 6. In Section 7, we prove that our proposed protocol provides a secure mutual authentication using BAN logic. We also perform the AVISPA simulation as a formal security verification and compare the computation cost and security properties with related protocols in Section 8 and Section 9. Finally, we conclude with the results of this paper in Section 10.




2. Related Works


Various authentication protocols in single server environments have been proposed [3,4,5]. In 2010, Wu et al. [3] presented a novel authentication protocol for the telecare medical information system (TMIS). Their protocol provides a guarantee to legitimate users. However, Debiao et al. [6] demonstrated that Wu et al.’s protocol cannot withstand several attacks such as impersonation, replay, or man-in-the-middle attacks. Debiao et al. proposed a more safe and efficient remote authentication protocol for TMIS. In 2013, Chang et al. proposed a secure authentication protocol that provided users privacy. But, in 2103, Das et al. [7] showed that their protocol cannot provide several security features and proper authentication. Furthermore, these authentication protocols are not suitable for distributed systems that consist of multiple servers, such as IoT environments, because the users who want to access the IoT services have to know as many identities and passwords as the number of servers [8,9]. In addition, the physical performance of a single server has limitations [17], and IoT environments are resource-constrained. Therefore, multi-gateway (multi-server) IoT environments are more efficient and useful than the traditional IoT structure [1,2,10,13,14,15,16].



In 2014, Turkanovic et al. [5] presented an authentication protocol for IoT environments. However, in 2016, Amin and Biswas [10] pointed out that Turkanovic et al.’s protocol does not withstand several attacks such as offline identity and password guessing, impersonation, and stolen smartcard attacks. They also demonstrated that Turkanovic et al.’s protocol has an inefficient authentication phase. Then, Amin and Biswas proposed an authentication protocol for multi-gateway wireless sensor networks. In 2017, Wu et al. [1] proved that Amin and Biswas’s protocol does not resist sensor capture, offline guessing, session key disclosure, impersonation, and desynchronization attacks. They also proved that Amind and Biswas’s protocol does not withstand user tracking attacks and does not achieve mutual authentication. Then, Wu et al. proposed a mutual authentication and key agreement protocol for multi-gateway wireless sensor network in IoT. In the same year, Srinivas et al. [13] also proved that Amin and Biswas’s protocol has security flaws. Srinivas et al. pointed out that sensor devices have low power, limited memory, and limited battery. Thereafter, Srinivas et al. proposed a more secure and efficient remote user authentication protocol for multi-gateway wireless sensor networks that are suitable for IoT environments.



In 2016, Das et al. [10] presented a three-factor multi-gateway-based user authentication protocol for wireless sensor networks. Das et al. suggested the multi-gateway environment for wireless sensor networks because the generalized wireless sensor networks can bring a lot of overhead to the gateway and have more power consumption than multi-gateway-based wireless sensor networks. They demonstrated that their protocol can withstand attacks such as sensor capture, privileged-insider, offline password guessing, and impersonation attacks. However, Wu et al. [1] pointed out that Das et al.’s protocol does not resist user tracking attacks and does not have a same session key for all three participants.



In 2018, Wu et al. [14] proposed an authentication protocol for healthcare systems in multi-gateway wireless medical sensor networks. Their protocol prevents malicious attacks such as patient tracking, insider, and offline guessing attacks. Wu et al. demonstrated that multi-gateway environments are suitable for collecting patients’ health data through wireless health sensors because the gateway in each area collects the information of patients in the area and then sends it to the doctor. They also demonstrated that their protocol is suitable for transferring data with low time and communication costs.



In 2017, Bae et al. [15] proposed a smartcard-based secure authentication protocol in multi-gateway IoT environments to reduce the computational and communication cost. However, their protocol does not resist impersonation, gateway spoofing, traceability, and session key disclosure attacks and does not guarantee secure mutual authentication and anonymity.




3. Preliminaries


In this section, we introduce a threat model for cryptanalyzing Bae et al.’s protocol, the fuzzy extraction that we use for the cryptographic system in our authentication protocol, and the system model of our protocol in multi-gateway IoT environments. Finally, we present the notations used in this paper.



3.1. Threat Model


We adopt the Dolev–Yao (DY) threat model [18] to analyze Bae et al.’s protocol and our proposed protocol. This model is popularly applied to estimate security. The general assumptions of the DY threat model are as below:




	
An attacker can eavesdrop, delete, modify, or insert the transmitted messages via an insecure channel.



	
An attacker can steal the smartcard or use a lost smartcard to extract the sensitive information stored in the smartcard [19].



	
An attacker can perform various attacks such as trace, impersonation, smartcard lost, man-in-the-middle, replay attacks, and so on.









3.2. Fuzzy Extraction


We briefly show a description of the fuzzy extractor [20] that can extract key information from the given biometric data of users. Biometric information is weak to noises and it is hard to reproduce the actual biometrics from biometric templete in common practice. Moreover, the hash function is sensitized to input, so completely different outputs may come out. Because of these problems, we use the fuzzy extractor method [21,22], which is a type of key generating designed to convert noisy data to public information and a secret random string. The fuzzy extractor restores the original biometric information for noisy biometric data using public help information. The algorithms of the fuzzy extractor are as follows:




	
Generate(BIOi)=<Ri,Pi>. This algorithm is for generating key information. It uses biometric data BIOi as an input and then outputs secret key data Ri, which is a uniformly random string, and a public reproduction Pi as a helper string.



	
Reproduce(BIOi′,Pi)=Ri. This algorithm reproduces the secret data Ri. The inputs of this algorithm are a noisy biometric BIOi′ and Pi. The algorithm reproduces the secret biometric key Ri. To recover the same Ri, the metric space distance between BIOi and BIOi′ should be within a given error tolerance.









3.3. System Model


We introduce a system model of with our proposed protocol for multi-gateway IoT environments. The model consists of three entities: Users, Gateways, and a Control Server. The multi-gateway IoT system model is illustrated in Figure 1.



	
Users: A user who wants to use the IoT service receives a smartcard from the control server to access the multi-gateway. After registration, login, and authentication, the user has access to use the IoT service. The users’ smartcard can be lost or stolen by an attacker.



	
Gateways: The gateways consist of IoT environments such as smart homes, smart buildings, smart offices, and gateways. We assume that the gateway and IoT environments are connected in advance by a wireless network through a secure authentication. The performance of the gateways is approximately the performance of the server computer.



	
Control Server: The control server is a trusted authentication server with sufficient computation power to compute complicated hash and exclusive functions or store security parameters. The control server stores the identities of the legitimate gateways in advance, and we assume that an attacker can never attack the control server.







3.4. Notations


Table 1 shows the notations used in this paper.





4. Review of Bae et al.’s Protocol


In this section, we overview Bae et al.’s authentication protocol in multi-gateway IoT environments, which consists of three phases: user and server registration phase, user login and authentication phase, and password update phase. In Bae et al.’s protocol, they assumed that the authentication server CS is trusted.



4.1. Registration Phase


If a new user Ui or server Sj requests registration to the authentication server CS, CS issues the smartcard to Ui and sends the necessary value to Sj. This phase and verifier table is shown in Figure 2 and Table 2, respectively, and the details are as follows.



	Step 1:

	
Sj requests registration to the CS. Sj sends its identity SIDj to CS through a secure channel, then CS computes Serinforj and sends this to Sj.




	Step 2:

	
Ui chooses the IDi, and PWi, computes EncPassi=h(IDi‖h(PWi)) and sends the message (IDi,EncPassi) and UIDi, which is an anonymity value of Ui, to CS through a closed channel.




	Step 3:

	
CS receives the message from Ui. CS computes the secret information value Userinfori=h(EncsPassi‖x), stores {UIDi,Userinfori,EncPassi,h(*),h(x)} in the smartcard, and stores Userinfori, UIDi and statusbit in the verifier table. Then, CS issues the smartcard to Ui.








4.2. Login and Authentication Phase


User Ui must send a login request message to Sj to use the service of server Sj. After receiving a request message, Sj sends a login request message to control server CS. This phase is illustrated in Figure 3 and the following details.



	Step 1:

	
Ui inputs his/her IDi and PWi and inputs the smartcard into a smartcard reader. The smartcard computes EncPassi′=h(IDi‖h(PWi)). Then, the smartcard checks whether EncPassi=?EncPassi′. If it is equal, Ui generates a random number Ni1 and computes Ai=Userinfori⊕h(x)⊕Ni1, Verui=h(h(x)‖Ni1). Then, Ui generates Ts to prevent a replay attack. Finally, Ui sends the login request message {UIDi,Ai,Verui,Ts} to Sj through a secure channel.




	Step 2:

	
If Sj receives the login request message, Sj generates a random number Ni2 and computes Bi=Serinforj⊕Ni2, Versi=h(h(SIDj‖x)‖Ni2). Then, Sj sends the login request message {UIDi,Ai,Verui,Bi,Versi,SIDj,Ts} to CS through an open channel.




	Step 3:

	
After CS receives the login request message from Sj, CS computes Ts′=Ts+1 and checks ΔTs≥Ts′-Ts to see whether the login request message is legitimate. If it is valid, CS computes Serinforj′=h(SIDj‖x), Ni2′=Serinfori′⊕Bi, Versi′=h(h(SIDj‖x)‖Ni2′). Then CS compares Versi=?Versi′ to check that the message from Sj is valid. If it is equal, CS retrieves Userinfori from the verifier table using UIDi from the login request message. Then, CS computes Ni1′=Userinfori⊕h(x)⊕Ai, Verui′=h(h(x)‖Ni1′). If Verui=?Verui′ is correct, CS selects a random number Ni3 and generates a session key SKi=h(h(Ai‖h(x))⊕h(Ni1⊕Ni2⊕Ni3)). CS generates time stamp Ts and computes Ci=Ni1⊕Ni3⊕h(SIDj⊕Ni2), Di=h(Ai‖h(x))⊕h(SIDj⊕Ni2), Ei=Ni2⊕Ni3⊕h(Ai‖h(x)). Finally, CS sends an authentication message {Ci,Di,Ei,Ts} to Sj.




	Step 4:

	
After Sj receives the message from CS, Sj computes (Ni1⊕Ni3)′=Ci⊕h(SIDj⊕Ni2), h(Ai||h(x))′=Di⊕h(SIDj⊕Ni2). Sj generates a session key SK′=h(h(Ai||h(x))′⊕h(Ni1⊕Ni2⊕Ni3))′. Then, Sj computes Ei=(Ni2⊕Ni3)⊕h(Ai‖h(x)) and sends an authentication message {Ei,Ts} to Ui.




	Step 5:

	
After receiving the message from Sj, Ui computes Ts′=Ts+1 and checks whether ΔTs≥Ts′-Ts. If it is correct, Ui computes (Ni2⊕Ni3)′=Ei⊕h(Ai‖h(x)) and generates a session key SK′′=h(h(Ai‖h(x))⊕h(Ni1⊕Ni2⊕Ni3))′. Therefore, Ui, Sj, and CS generate the same session key, so they can perform the authentication.








4.3. Password Change Phase


If Ui wants to change his/her password PWi to a new password PWinew, the password change phase is performed. This phase is illustrated in Figure 4 and is described as follows.



	Step 1:

	
The Ui inserts his/her smartcard into a card reader and inputs IDi and PWi. Then, Ui sends the {IDi,PWi} to the smartcard reader through the closed channel.




	Step 2:

	
After receiving the values from Ui, the smartcard computes EncPassi=h(IDi‖h(PWi)), Userinfori′=h(EncPassi‖x). The smartcard verifies whether Userinfori′=?Userinfori. If it is equal, the smartcard requests a new password.




	Step 3:

	
Ui inputs a new password PWinew and generates EncPassinew=h(IDi‖h(PWinew)). Then, Ui inputs EncPassinew into the smartcard.




	Step 4:

	
The smartcard computes Userinforinew=h(EncPassinew‖x) by using EncPassinew. The smartcard updates Userinfori to Userinforinew and replaces Userinfori. Finally, the user Ui changes his/her password.









5. Cryptanalysis of Bae et al.’s Protocol


We analyze the security flaws of Bae et al.’s protocol in this section. Bae et al. asserted that their proposed protocol can prevent various attacks such as user impersonation, server spoofing, and session key disclosure attacks. However, we demonstrate that their protocol does not prevent the following attacks.



5.1. User Impersonation Attack


If an attacker Ua attempts to impersonate an authorized user Ui, Ua must successfully compute a login request message {UIDi,Ai,Verui,Ts}. According to Section 3.1, we can assume that Ua extracts the values {UIDi,Userinfori,EncPassi,h(x)} from the smartcard of Ui and obtains the transmitted messages over a public channel. After that, Ua can impersonate the user in the following steps.



	Step 1:

	
Ua obtains {Userinfori,h(x)}, {Ai,Ts} from the smartcard of Ui and the previous session, respectively.




	Step 2:

	
Ua computes Ni1=Ai⊕Userinfori⊕h(x) and obtains a random nonce Ni1. Then Ua computes Verui=h(h(x)‖Ni1).




	Step 3:

	
Ua computes Ai=Userinfora⊕h(x)⊕Na1, Verua=h(h(x)‖Na1). Finally, Ua can generate a login request message {UIDi,Ai,Verua,Ts} successfully.








5.2. Server Spoofing Attack


To obtain the sensitive information of a user, an attacker attempts to impersonate the server. Bae et al. asserted that their protocol can withstand server spoofing attacks. However, we analyze that their protocol does not resist server spoofing. First, an attacker Ua obtains message {Ei,Ts} and extracts the information h(x) from the smartcard of an authorized user. Then, Ua can impersonate the server by generating authentication messages in the following steps.



	Step 1:

	
Ua obtains transmitted messages {Ei,Ts} in the previous session and extracts h(x) from the smartcard of an authorized user.




	Step 2:

	
Ua computes h(Ai‖h(x)) and obtains (Ni2⊕Ni3). After that, Ua computes Ei=(Ni2⊕Ni3)⊕h(Ai‖h(x)).




	Step 3:

	
Finally, Ua generates authentication messages {Ei,Ts} successfully.








5.3. Session Key Disclosure Attack


Bae et al. demonstrated that their protocol can resist session key disclosure attacks because an attacker cannot compute the values Ni1, Ni2, and Ni3. Furthermore, Bae et al. claimed that the attacker cannot obtain h(x) because the trusted party CS generated h(X). However, we demonstrate that the attacker can compute Ni1 and Ni2⊕Ni3 and extract h(x) in Section 5.1 and Section 5.2. Thus, the attacker can compute SKi=h(h(Ai||h(x))⊕h(Ni1⊕Ni2⊕Ni3)). Therefore, Bae et al.’s protocol is vulnerable to session key disclosure attacks.




5.4. Mutual Authentication


In Bae et al.’s protocol, CS computes Versi′ and Verui′ to authenticate legitimate Ui and Sj. However, CS cannot generate authentication messages for Ui and Sj. Thus, Ui and Sj receive the message from CS, but they cannot trust the messages because they cannot check whether the attacker sends the message. Therefore, Bae et al.’s protocol does not achieve mutual authentication.





6. A Secure Three-Factor Mutual Authentication Protocol


In this section, we propose a three-factor mutual authentication protocol for multi-gateway IoT environments according to Section 3.3. The proposed protocol consists of three phases: users and gateways registration, login and authentication, and password update.



6.1. Registration Phase


First, a gateway Gj must register with control server CS to provide their services to users. Then, a new user Ui first accesses the control server, and he/she must register with CS. The detailed steps are illustrated in Figure 5 and described as follows.



	Step 1:

	
Gj requests registration to the CS. Gj selects GIDj and sends the value to CS through a secure channel, then CS computes PIDj=h(GIDj‖h(x‖y)) and sends PIDj to Gj via a secure channel. Gj stores PIDj in itself.




	Step 2:

	
Ui chooses the his/her identification IDi and password PWi and imprints biometrics BIOi. Then Ui generates a random number ai, computes <Ri,Pi>=Gen(BIOi), HIDi=h(IDi‖ai)), which is an anonymity value of Ui, and HPWi=h(IDi‖PWi‖ai), and sends the message {HIDi,HPWi,ai} to CS through closed channel.




	Step 3:

	
After CS receives the message from Ui, CS computes the secret information value UIi=h(HIDi‖ai‖x), Ai=UIi⊕h(HPWi), Bi=h(UIi‖Ai), and Xi=h(UIi‖x). Then, CS stores {Ai,Bi,Xi,h(*)} in the smartcard, and stores UIi with HIDi in the database. Then CS issues the smartcard to Ui.




	Step 4:

	
After receiving the smartcard from CS, Ui computes Li=h(Ri‖PWi)⊕ai. Then Ui inputs Li and Pi in the smartcard.








6.2. Login and Authentication Phase


If a user Ui wants to use the service of gateway Gj, Ui must send a login request message to Gj. Then, Gj sends a login request message to control server CS. The detailed steps are illustrated in Figure 6 and described as follows.



	Step 1:

	
Ui inserts the smartcard, his/her IDi and PWi, and biometric BIOi. The smartcard computes Ri=Rep(BIOi,Pi), ai=Li⊕h(Ri‖PWi), HIDi=h(IDi‖ai), HPWi=h(IDi‖PWi‖ai), UIi=Ai⊕h(HPWi), Bi*=h(UIi‖Ai). Then, the smartcard checks whether Bi*=?Bi to check whether the user is legitimate. If it is valid, Ui generates a random number Ni and computes Ci=UIi⊕Ni, VUi=h(Xi‖Ni‖GIDj). Finally, Ui sends the login request message {HIDi,Ci,VUi} to Gj through a public channel.




	Step 2:

	
After receiving a login request message, Gj generates a random number Nj and computes Di=GIj⊕Nj, VSj=h(GIDj‖GIj‖Nj). Then, Gj sends the login request message {HIDi,Ci,PIDj,Di,VSj} to CS via an open channel.




	Step 3:

	
After CS receives the login request message from Gj, CS computes GIj=h(PIDj‖h(x‖y)), Nj=Di⊕GIj and compares VSj*=?VSj to see whether Gj’s login request message is legitimate. If it is equal, CS retrieves UIi from the verifier table using HIDi of the login request message. Then, CS computes Xi=h(UIi‖x), Ni=Ci⊕UIi,VUi*=h(Xi‖Ni‖GIDj). Then CS compares VUi*=?VUi to check that the message from Ui is valid. If it is valid, CS generates a random number Nc and computes Ei=GIj⊕Nc, Fi=GIj⊕Ni. CS computes Mcg=h(Ei‖GIj‖Nc) to mutually authenticate with Gj and Mcu=h(Xi‖UIi‖Ni) to authenticate with Ui and generates a session key SK=h(Ni⊕h(Nj‖Nc)). CS updates HIDi to HIDinew=h(HIDi‖Ni‖h(Nj‖Nc)) and UIi to UIinew=h(HIDinew‖Ni‖UIi), then replaces HIDi and UIi. Finally, CS sends the authentication message {Mcg, Mcu, Ei, Fi} to Gj.




	Step 4:

	
After Gj receives the authentication message from CS, Gj computes Nc=Ei⊕GIj, Mcg*=h(Ei‖GIj‖Nc).Then, Gj compares Mcg*=?Mcg to verify whether the message from CS is legitimate. If it is valid, Gj computes Ni=Fi⊕GIj and generates a session key SK=h(Ni⊕h(Nj‖Nc)). Then, Gj computes Gi=h(GIDj‖Ni), Hi=Gi⊕h(Nj‖Nc) and sends the authentication message {Hi,Mcu} to Ui.




	Step 5:

	
After receiving the message from Gj, Ui computes Mcu*=h(Xi‖UIi‖Ni) and verifies whether Mcu*=?Mcu. If it is valid, Ui computes Gi*=h(GIDj‖Ni), h(Nj‖Nc)=Hi⊕Gi* and generates a session key SK=h(Ni⊕h(Nj‖Nc)). Therefore, Ui, Sj, and CS generate the same session key, so they can perform the authentication. Ui updates HIDi to HIDinew=h(HIDi‖Ni‖h(Nj‖Nc)) and UIi to UIinew=h(HIDinew‖Ni‖UIi), then replaces HIDi and UIi. The smartcard updates Ainew=UIinew⊕h(HPW),Binew=h(UIinew‖Ainew), and Xinew=h(UIinew‖UIi).








6.3. Password Change Phase


If Ui wants to change his/her password, Ui performs the password change phase without the help of Gj. The detailed steps of the password change phase are shown in Figure 7 and described as follows.



	Step 1:

	
A legitimate user Ui inserts the smartcard, his/her IDi and PWi, and biometric BIOi.




	Step 2:

	
The smartcard computes <Ri,Pi>=Gen(BIOi), ai=Li⊕h(Ri‖PWi), HPWi=h(IDi‖PWi‖ai), and Bi*=h(UIi‖Ai). After that, the smartcard compares the Bi* with Bi stored value. If it is equal, the smartcard requests a new password to Ui.




	Step 3:

	
When Ui receives the request message from smartcard, Ui inputs a new password PWinew.




	Step 4:

	
After receiving the new password from Ui, the smartcard computes Linew=ai⊕h(Ri‖PWinew), HPWinew=h(IDi‖PWinew‖ai), Ainew=UIi⊕h(HPWinew), and Binew=h(UIi‖Ainew). Consequently, the smartcard updates the old information {Ai,Bi,Li} to new information {Ainew,Binew,Linew}.









7. Security Analysis


We show that our proposed protocol can prevent various attacks by performing an informal analysis, as mentioned in Section 3.1. We analyze our protocol using Burrows–Abadi–Needham (BAN) logic to prove that our protocol can achieve secure mutual authentication.



7.1. Informal Security


To prove that our proposed protocol can prevent various attacks such as trace, smartcard lost, impersonation, off-line guessing, and session key disclosure attacks, we perform an informal security analysis. Additionally, we show that proposed protocol provides anonymity and a secure mutual authentication.



7.1.1. User Impersonation Attack


If a malicious attacker Ua attempts to masquerade as a user Ui, Ua can generate a login request message {HIDi,Ci,VUi} and message {Hi,Mcu}. However, Ua cannot compute HIDi because Ua cannot extract a random number ai from HIDi. Ua cannot retrieve a random number Ni because the attacker cannot know secret parameter UIi. Thus, Ua cannot compute Ci,VUi because Ua cannot extract a random number Ni. Therefore, our protocol resists user impersonation attack.




7.1.2. Server Spoofing Attack


To impersonate the server, an attacker Ua can generate an authentication message {Hi,Mcu}. However, Ua cannot compute these because Ua cannot know the random nonces Ni,Nj,Nc. Furthermore, if Ua attempts to impersonate the gateway by using public parameter GIDj, the control server compares it with the stored identities of the legitimate gateways in advance. Thus, our proposed protocol is secure against server spoofing attacks because Ua cannot generate valid messages.




7.1.3. Smartcard Stolen Attack


We assume that an attacker Ua can extract the values of the smartcard {Ai,Bi,Xi,Li,h(*)} according to Section 3.1. However, Ua cannot obtain sensitive or useful information without the identity, password, and biometrics of the legitimate user because the values stored in the smartcard are safeguarded with a one-way hash function or an XOR operation of IDi,PWi,HPWi=h(IDi‖PWi‖ai). Therefore, our protocol can prevent smartcard stolen attacks.




7.1.4. Trace Attack and Anonymity


In our protocol, an attacker Ua cannot know the identity of the users and gateways. The user Ui does not send a real identity IDi via the public channels. The user generates and sends a pseudonym identity HIDi=h(IDi‖ai). Because HIDi is a transmitted message via a public channel, Ua can obtain this value. Therefore, Ui updates it as HIDinew=h(HIDi‖Ni‖h(Nj‖Nc)) for every session to prevent the attack of Ua. The gateway uses PIDj, which is generated in the registration phase, instead of GIDj, so our protocol provides anonymity of users and gateways. In addition, the proposed protocol resists trace attacks because all messages are dynamic for every session.




7.1.5. Man-in-the-Middle Attack and Replay Attack


We assume that attacker Ua knows the information transmitted via an insecure channel and information from the smartcard of Ui to set up a secure channel with Gj. However, Ua cannot generate a valid login request message, as mentioned. Furthermore, Ua cannot impersonate user Ui by resending the messages because the messages are refreshed with random numbers Ni,Nj, and Nc. Therefore, our proposed protocol prevents man-in-the-middle attacks and replay attacks.




7.1.6. Off-Line Password Guessing Attack


An attacker Ua attempts to guess the password PWi of legitimate user Ui. If Ua can guess the password, Ua can compute a series of equations and compute several equations and the valid value with the guessed passwords. However, Ua must know the unique biometrics of the user to compute equations. Therefore, it is impossible to guess the user’s password in our protocol.




7.1.7. Desynchronization Attack


For a desynchronization attack, an adversary disturbs the communication of the login and authentication request message. However, CS uses HIDi to retrieve UIi after checking message from Gj, and HIDi updates HIDinew after authentication of the request message. Furthermore, an attacker disturbs the response communication to desynchronize HIDinew. Even if the user cannot receive the response message, the user can generate and update HIDinew. Thus, our proposed protocol can resist desynchronization attacks.




7.1.8. Mutual Authentication


When control server CS receives the login request message from gateway Gj, CS computes VSj* and VUi* to authenticate user Ui and Gj. If VSj and VSj* are equal, CS authenticates Gj. Furthermore, CS retrieves Ui from a database to an available VSj. After that, CS compares VUi and VUi*. If they are equal, CS authenticates Ui. Then, CS computes and sends the login response messages Mcg and Mcu to authenticate. After receiving Mcg from CS, Gj computes Mcg* and compares Mcg* and Mcg. If they are equal, Gj authenticates CS. Finally, Ui computes Mcu* and checks whether Mcu*=?Mcu. If it is valid, Ui authenticates CS. Therefore, Ui, Gj, and CS successfully mutually authenticate. An attacker cannot validate the message, as mentioned in Section 7.1.1 and Section 7.1.2. Moreover, the login request and response messages are refreshed for every session according to Section 7.1.4 and Section 7.1.5. Therefore, our proposed protocol provides secure mutual authentication.





7.2. Ban Logic


We perform a formal verification to check that our proposed protocol achieves a secure mutual authentication using BAN logic. Table 3 presents the notation of BAN logic. We show the logical rules of BAN logic in Section 7.2.1. In the following sections, we show the goals, idealized forms, and assumptions of our proposed protocol. In Section 7.2.5, we show that our proposed protocol can provide mutual authentication among Ui, Gj, and CS. More details of BAN logic can be found in [23,24].



7.2.1. Rules of Ban Logic


We introduce rules of BAN logic as follows:




	
Message meaning rule:


P|≡P↔KQ,P⊲XKP≡Q∼X











	
Nonce verification rule:


P≡#(X),P≡Q|∼XP≡Q≡X











	
Jurisdiction rule:


P≡Q⟹X,P≡Q≡XP|≡X











	
Freshness rule:


P|≡#(X)P|≡#X,Y











	
Belief rule:


P|≡X,YP|≡X

















7.2.2. Goals


We present the following goals to prove that our protocol achieves secure mutual authentication:




	Goal 1:

	
Gj|≡CS|≡(Nc,Ni),




	Goal 2:

	
Gj|≡(Nc,Ni),




	Goal 3:

	
CS|≡Gj|≡(Ni,Nj),




	Goal 4:

	
CS|≡(Ni,Nj),




	Goal 5:

	
Ui|≡Gj|≡(Nc,Ni),




	Goal 6:

	
Ui|≡(Nj,Nc)










7.2.3. Idealized Forms


	Msg1:

	
Ui→Gj:(HIDi,Ni,x,GIDj)UIi




	Msg2:

	
Gj→CS:(HIDi,Ni,x,GIDj,Nj)GIj




	Msg3:

	
CS→Gj:(Nc,Ni,UIi,x)GIj




	Msg4:

	
Gj→Ui:(Nc,Nj,UIi,GIDj,x)Ni








7.2.4. Assumptions


To achieve the BAN logic proof, we make the following assumptions about the initial state of our proposed protocol:




	A1:

	
Gj|≡(Ui⟷UIiGj)




	A2:

	
Gj|≡#(Ni)




	A3:

	
CS|≡(Gj⟷GIjCS)




	A4:

	
CS|≡#(Nj,Ni)




	A5:

	
Gj|≡(Gj⟷GIjCS)




	A6:

	
Ui|≡(Ui⟷NiGj)




	A7:

	
Ui|≡#(Nj)




	A8:

	
CS|≡Gj⇒(CS⟷GIjGj)










7.2.5. Proof Using Ban Logic


The following steps are the main proofs using BAN rules and assumptions:




	Step 1:

	
According to Msg1, we can get


S1:Gj⊲(HIDi,Ni,x,GIDj)UIi.












	Step 2:

	
From A1 and S1, we apply the message meaning rule to obtain


S2:Gj|≡Ui(HIDi,Ni,x,GIDj)UIi.












	Step 3:

	
From A2 and S2, we apply the freshness rule to obtain


S3:Gj|≡#(HIDi,Ni,x,GIDj)UIi.












	Step 4:

	
From S2 and S3, we apply the nonce verification rule to obtain


S4:Gj|≡Ui≡(HIDi,Ni,x,GIDj)UIi.












	Step 5:

	
From S4, we apply the belief rule to obtain


S5:Gj|≡Ui|≡(Ni)UIi.












	Step 6:

	
According to Msg2, we can get


S6:CS⊲(HIDi,Ni,x,GIDj,Nj)GIj.












	Step 7:

	
From A3 and S6, we apply the message meaning rule to obtain


S7:CS|≡Gj(HIDi,Ni,x,GIDj,Nj)GIj.












	Step 8:

	
From A4 and S7, we apply the freshness rule to obtain


S8:CS|≡#(HIDi,Ni,x,GIDj,Nj)GIj.












	Step 9:

	
From S7 and S8, we apply the nonce verification rule to obtain


S9:CS|≡Gj|≡(HIDi,Ni,x,GIDj,Nj)GIj.












	Step 10:

	
From S9, we apply the belief rule to obtain


S10:CS|≡Gj|≡(Ni,Nj)GIj.(Goal3)












	Step 11:

	
According to Msg2, we can get


S11:Gj⊲(Nc,Ni,UIi,x)GIj.












	Step 12:

	
From A5 and S11, we apply the message meaning rule to obtain


S12:Gj|≡CS(Nc,Ni,UIi,x)GIj.












	Step 13:

	
From A6 and S12, we apply the freshness rule to obtain


S13:Gj|≡#(Nc,Ni,UIi,x)GIj.












	Step 14:

	
From S12 and S13, we apply the nonce verification rule to obtain


S14:Gj|≡CS|≡(Nc,Ni,UIi,x)GIj.












	Step 15:

	
From S14, we apply the belief rule to obtain


S15:Gj|≡CS|≡(Nc,Ni)GIj.(Goal1)












	Step 16:

	
According to Msg4, we can obtain


S16:Ui⊲(Nc,Nj,UIi,GIDj,x)Ni.












	Step 17:

	
From A6 and S16, we apply the message meaning rule to obtain


S17:Ui|≡Gj(Nc,Nj,UIi,GIDj,x)Ni.












	Step 18:

	
From A7 and S17, we apply the freshness rule to obtain


S18:Ui|≡#Gj(Nc,Nj,UIi,GIDj,x)Ni.












	Step 19:

	
From S17 and S18, we apply the nonce verification rule to obtain


S19:Ui|≡Gj|≡(Nc,Nj,UIi,GIDj,x)Ni.












	Step 20:

	
From S19, we apply the belief rule to obtain


S20:Ui|≡Gj|≡(Nc,Nj)Ni.(Goal5)












	Step 21:

	
From S10 and A8, we apply the jurisdiction rule to obtain


S21:CS|≡(Ni,Nj).(Goal4)












	Step 22:

	
From S15 and A9, we apply the jurisdiction rule to obtain


S22:Gj|≡(Nc,Ni).(Goal2)












	Step 23:

	
From S20 and A10, we apply the jurisdiction rule to obtain


S23:Ui|≡(Nc,Ni).(Goal6)

















We show that the proposed protocol can provide secure mutual authentication between Ui, Gj, and CS based on goals 1–6.






8. Formal Verification Using Avispa


We present a formal verification of our proposed protocol using the AVISPA tool based on the High-Level Protocol Specification Language (HLPSL) code [25]. AVISPA is one of the widely used verification tools to check that protocols are secure against man-in-the-middle attacks and replay attacks. Numerous studies have been simulated using the AVISPA tool [26,27,28]. We will shortly describe AVISPA and show the HLPSL specifications of our proposed protocol. Then, we will assert that the proposed protocol can resist replay and man-in-the-middle attacks through the results of the AVISPA simulation.



8.1. Description of Avispa


AVISPA performs security verification through four back-ends consisting of Constraint-Logic-based Attack Searcher (CL-AtSe) [29], On-the-Fly Model-Checker (OFMC) [30], Tree Automate-Based Protocol Analyzer (TA4SP), and SAT-Based Model-Checker (SATMC). HLPSL specification is translated into intermediate format (IF) by an hlpsl2if translator. IF is converted to the output format (OF), which is produced using the four back-ends as mentioned above. But usually, CL-Atse and OFMC are used for verification. AVISPA has several functions that are mentioned below for analyzing protocols. More details on AVISPA can be found in [31,32].



	
secret(A,id,B): id denotes an information A that is only known to B.



	
witness(A,B,id,E): id denotes a weakness authentication factor E that is used by A to authenticate B.



	
request(A,B,id,E): id denotes a strong authentication factor. B requests A for E to authenticate.







8.2. Hlpsl Specifications of Our Protocol


Our protocol has three basic roles which are denoted by entities that have been specified according to HLPSL: UA denotes a user, GA denotes a gateway, and CS denotes a control server. The role of session and environments are shown in Figure 8. In the session, we describe participants. In environments, intruder knowledge is defined, and four secrecy goals and four authentication goals are described. The HLPSL specifications of role UA are shown in Figure 9, and the details are as follows.



At transition 1, UA starts the registration phase with a start message in state value 0 and then updates the state from 0 to 1. UA sends the registration message {HIDi,HPWi,a} to CS through a closed channel. At transition 2, UA receives the smartcard from CS, then it updates the state from 1 to 2. In state value 2, UA generates the random number Ni, sends the login request message {HIDi,Ci,VUi} to GA via an insecure channel, and declares witness(UA,CS,us_cs_ni,Ni), which means that Ni denotes a weakness authentication factor. At transition 3, UA receives the login response message from GA. After that, UA changes the state value from 2 to 3, generates the session key, and declares request(UA,CS,cs_ua_mcu,Nc). The specifications of role GA and CS are similar and shown in Figure 10 and Figure 11.




8.3. Results of Avispa Simulation


The results of AVISPA simulation through OFMC and CL-AtSe verification are shown in Figure 12. The OFMC and CL-AtSe back-ends check whether our proposed protocol can resist replay attacks and man-in-the-middle attacks. The OFMC verification shows that search time is 12 s for visiting 1040 nodes, and the CL-AtSe verification analyzes 3 states with 0.13 s to translate. Because the summary part of OFMC and CL-AtSe indicates that the protocol is SAFE, our proposed protocol is secure against replay and man-in-the-middle attacks.





9. Performance Analysis


In this section, we show the comparison of computation cost, communication cost, and security features among our proposed protocol and other IoT-related protocols.



9.1. Computation Cost


We compare the computational overhead between our proposed protocol and other related protocols. We define some notations for convenience of comparison.



	
Tme: The times for modular exponential operation (≈0.522 s [33,34])



	
Th: The times for one-way hash operation (≈0.0005 s [33,34])



	
Tf: The times for fuzzy extraction operation (≈0.063075 s [34,35])






Table 4 shows the results of the comparison. In multi-gateway environments, it is important to reduce the computation cost of gateway nodes because the gateway nodes process a large amount of information. Although the total computation cost of our proposed protocol is higher than other related protocols, it is similar to [15] in terms of gateway nodes. Therefore, our proposed protocol is suitable for practical IoT environments.




9.2. Communication Cost


We have compared the communication overheads at the login and authentication phase of our proposed protocol and other related protocols in Table 5. We assume that the acknowledgment message and the one-way hash function, the timestamp, random number, and identity all are 160 bits. Additionally, we assume that the AES (Advanced Encryption Standard) key is 512 bits [33]. According to the results, our proposed protocol has more efficiency than other related protocols.




9.3. Security Properties


Table 6 shows the security comparisons among the proposed protocol and other related protocols based on IoT environment. Our proposed protocol can resist more attacks than other related protocols. Furthermore, our proposed protocol provides anonymity and achieves mutual authentication. Therefore, we demonstrate that the proposed protocol is more safe than other related protocols and satisfies the security requirements of IoT environments.





10. Conclusions


IoT is becoming a part of our life and helps people to easily communicate data and comfortably obtain mobile services. However, data scalability, unsolved security problems, and malicious attacks can limit the widespread extension of IoT services. The gateway nodes must process a large amount of information to provide IoT services to users. Thus, reducing the computation cost of gateways is a very important issue, and users and gateways should verify each other’s legitimacy with the aid of a control server to provide authorized and secure communication. In this paper, we demonstrated the security weaknesses of Bae et al.’s protocol. We showed that their protocol is vulnerable to user impersonation attacks, gateway spoofing attacks, session key disclosure attacks, offline password guessing attacks, and does not provide secure mutual authentication. Moreover, we proposed a multi-factor mutual authentication protocol for multi-gateway IoT environments with better security functionality than that of Bae et al.’s protocol. We also proved the security of the proposed protocol using BAN logic and the AVISPA tool.
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Figure 1. System model of our protocol in multi-gateway IoT environments. 
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Figure 2. Registration phase of Bae et al.’s protocol. 
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Figure 3. Login and authentication phase of Bae et al.’s protocol. 
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Figure 4. Password change phase of Bae et al.’s protocol. 
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Figure 5. Registration phase of our proposed protocol. 
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Figure 6. Login and authentication phase of our proposed protocol. 
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Figure 7. Password change phase of our proposed protocol. 
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Figure 8. Specification of session and environments. 
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Figure 9. Specification of user. 
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Figure 10. Specification of gateway. 
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Figure 11. Specification of control server. 
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Figure 12. The result of Automated Validation of Internet Security Protocols and Applications (AVISPA) simulation using OFMC and CL-AtSe. 
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Table 1. Notations.
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	Notations
	Meanings





	Ui
	i-th user



	Sj
	j-th server



	CS
	Control server



	IDi
	Identity of Ui



	SIDj
	Identity of Sj



	PWi
	Password of Ui



	x
	Master secret key chosen by CS



	Ts
	Timestamp



	Ni1
	Random number generated by Ui’s smartcard



	Ni2
	Random number generated by Sj



	Ni3
	Random number generated by CS



	SK
	Common session key shared among Ui, Sj, and CS



	h(*)
	Collision-resistant one-way hash function
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Table 2. The verifier table.
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	User-Verifier
	Anonymity Value
	Status-Bit





	Userinfor1
	U1
	0/1



	Userinfor2
	U2
	0/1



	…
	…
	…



	Userinfori
	Ui
	0/1
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Table 3. Notations of Burrows–Abadi–Needham (BAN) logic.
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	Notations
	Meaning





	P|≡X
	P believes the statement X



	#X
	The statement X is fresh



	P⊲X
	P sees the statement X



	P|X
	P once said X



	P⇒X
	P controls the statement X



	<X>Y
	Formula X is combined with formula Y



	{X}K
	Formula X is encrypted by the key K



	P↔KQ
	P and Q communicate using K as the shared key



	SK
	Session key used in the current authentication session
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Table 4. Computation cost of the login and authentication phase.






Table 4. Computation cost of the login and authentication phase.





	Protocols
	User
	Gateway
	Control Server
	Total Cost





	Turkanovic et al. [5]
	7Th
	5Th
	7Th
	19Th(0.0095s)



	Wu et al. [3]
	2Tme + 4Th
	-
	1 Tme + 4Th
	3Tme+ 8Th(1.57s)



	Amin and Biswas Case-1 [10]
	7Th
	5Th
	8Th
	20Th(0.01s)



	Amin and Biswas Case-2 [10]
	8Th
	5Th
	7Th
	20Th(0.01s)



	Bae et al. [15]
	5Th
	6Th
	10Th
	21Th(0.0105s)



	Ours
	1Tf+14Th
	5Th
	9Th
	1Tf+ 28Th(0.07707s)







XOR operation is negligible compared to other operations.
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Computes {ID;, EncPass;, UID;}
EncPass; = h(ID; || h(PW}))

Generates Userinfor;

Smart card Userinfor; = h(EncPass; || x)

Stores

{UID,, Userinfor;, EncPass;, h(*), h(x)}
in the smart card

Stores Userinfor;, UID;, statusbit

in the verifier table
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role user(UA, GA, CS : agent, SKuacs : symmetric key, H: hash func, SND, RCV :
channel(dy))

played by UA
def=
local State: nat,
ID1,PWi,BIOi,R1,Pi,HIDi, HPWi,GIDj,Li, Ai, Uli, Aii, Bi, Ni,Nj,Nc¢, Ci, Xi, X, Y,
Bj.VUi: text,
Di.Ei,Fi,Gi,Hi, VSj, Mcg.Mcu, Glj, PID;j : text,
HIDinew, Ulinew, Aiinew, Binew, Xinew : text,
SKi, SKj, SKc: text
const spl, sp2, sp3, sp4, ua ¢s ni, cs ua mcu, ga ¢s nj, cs_ga mcg: protocol id
init State := 0
transition

%%%%%%%%%%%%Registration phase
1. State = 0 /A RCV(start) =>
State' := 1 A Ai' := new() /A Ri' := new() /\ Pi' := new()
A HID1' := H(IDi.Ai'")
A HPWi' := HIDi.PWi.Ai")
A SND({HIDi"HPWi'.Ai'} SKuacs)
A\ secret({IDi, PWi, Ri', Pi'}, spl, {UA})

%%%%%%%%%%%%Recieve smartcard
2. State =1 ARCV
({xor(HH(IDi.PWi.A1").X),HH(IDi.PWi.A1'"))).HHHIDi.PWi.Ai").X).xor(H(H(IDi
PWi.Al").X),HH(IDi.PWi.Al")))).HHMHIDiI.PWi.Ai").X).X)} SKuacs)=|>
State' :=2 /A Ri' := new() N Li":=xor(H(R1'.PW1i),Al')
%%%%%%%%%%%%I1.ogin & Authentication phase
AN1' ;= new()
A Ci' = xor(H(H(IDi.PWi.Ai'").X),Ni')
A VUL .= HHMHMHIDi.PWi.Ai").X).X).Ni'.GIDj)
A SND(H(IDi.A1').Ci'.VUL1')
A\ witness(UA.,CS,ua c¢s ni,Ni')
3. State =2
A RCV(xor(H(GIDj.Ni"),H(Nj'.Nc").HHHMH(IDi.PWi.A1').X).X).HH(IDi.PWi.Al").
X).N1')) =}>
State' := 3 /A SKi' ;= H(xor(Ni'.H(Nj'.Nc')))
/A HIDinew' := H(H(IDi.Ai'").Ni'.H(Nj'.Nc'"))
A Ulinew' := HH(H(IDi.Ai'").Ni".H(Nj'.Nc")).Ni". H(H(IDi.Ai').Ai'. X))
A\ Aiinew' := xor(Ulinew', H(H(IDi.PWi.A1i'")))
/A Binew' := H(Ulinew'.Aiinew')
A Xinew' := H(Ulinew'.H(H(IDi.Ai').Ai'. X))
A\ request(UA,CS,cs ua mcu,Nc')
end role
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Computes 4D, EncPass,, UID,}
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Generates Userinor,
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Stores
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in the smart card
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role controlserver(UA, GA, CS : agent, SKuacs, SKgacs : symmetric_key, H:
hash func, SND, RCV : channel(dy))

played by CS
def=
local State: nat,
ID1,PWi1,BIOi1,R1,P1,HIDi, HPWi,GIDj,Li1, Ai, Uli, Aii, Bi, Ni,Nj,Nc, Ci, Xi, X, Y,
Bj,VUi: text,
Di,E1L,F1,G1,Hi, VSj, Mcg,Mcu, GIj, PIDj : text,
HIDinew, Ulinew, Aiinew, Binew, Xinew : text,
SKi, SKj, SKc: text
const spl, sp2, sp3, sp4,ua cs ni, ¢S ua mcu, ga cs nj, cs _ga mcg : protocol id
init State := 0
transition

1. State = 0 /A RCV({GIDj.Bj'} SKgacs) =>
State' := 1 /\ PIDj' := H(GIDj.Bj")
A Glj' := HH(GIDj.Bj").H(X.Y))
A SND({PID;".GIj'} SKgacs)
/\ secret({X,Y },sp3,{CS})
/\ secret({PID;',GIj'},sp4,{GA,CS})
2. State = 1 A RCV({H(IDi.Ai").H(IDi.PWi.Ai")} SKuacs) =>
State' ;=2 /A UI' := H(H(ID1.A1').A1'.X)
/\ Ail' = xor(Uli,H(H(IDi.PWi.A1')))
/A Bi' .= H(UIi'.Ait')
A Xi':= H(UII'.X)
/A SND({Ai11'.Bi'.Xi'} SKuacs)
3. State =2
A RCV(H(IDi.At').xor(H(H(IDi.A1'").A1'. X),Ni").HHH(H(IDi.A1'").A1'.X).X).Ni'.GIDj
).H(GIDj'.Bj).xor(H(H(GIDj.Bj").H(X.Y)),Nj").H(GIDj.HH(GIDj.Bj").H(X.Y)).Nj"))
:|>
State' ;= 3 /A Nc' := new()
/\ E1' := xor(H(GIDj.N1'),Nc¢')
A Fi' .= xor(H(GIDj.N1'"),Ni')
A Mcg' .= H(xor(H(GIDj.N1'),Nc').H(GIDj.N1').Nc")
/A SKc' := H(xor(Ni',H(Nj'.Nc')))
A Mcu' := HHH(H(ID1.A1').Ai'. X).X).H(H(IDi.A1'").A1'.X).Ni")
/A HIDinew' := H(H(ID1.Ai").Ni'.H(Nj'.Nc"))
/A Ulinew' := H(HIDinew'.Ni'. H(H(IDi.A1').A1'.X))
/\ witness(CS,UA,cs ua mcu,Nc')
/\ witness(CS,GA,cs ga mcg,Nc')
/A SND(Mcg'.Mcu'.Ei'.Fi')
/\ request(UA,CS, ua cs ni,N1')
/\ request(GA,CS, ga cs nj,Nj")

end role
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role session(UA, GA, CS : agent, SKuacs, SKgacs :
symmetric_key, H: hash func)

def=

local SN1, SN2, SN3, RV1, RV2, RV3: channel(dy)
composition

user(UA, GA, CS, SKuacs, H, SN1, RV1)

N gateway(UA, GA, CS, SKgacs, H, SN2, RV?2)

A\ controlserver(UA, GA, CS,SKuacs, SKgacs, H, SN3,
RV3)

end role

role environment()

def=

const uva, ga, cs : agent,

skuacs, skgacs: symmetric_key,

h: hash_func,

gidj, hidi,idi: text,

ua cs ni, ¢S ua mcu, ga ¢cs Nj, ¢S _ga mcg:
protocol 1d,

spl,sp2,sp3,sp4: protocol id

intruder knowledge = {ua,ga,cs,gidj,hidi,idi,h}
composition

session(ua,ga,cs, skuacs, skgacs,h)/\session(i,ga,cs,
skuacs,skgacs, h)

/\session(ua,i,cs, skuacs,skgacs,h)
/\session(ua,ga,1, skuacs,skgacs.h)

end role

goal

secrecy_of spl, sp2, sp3, sp4
authentication _on ua cs ni
authentication _on ¢s_ua mcu
authentication_on ga cs nj
authentication_on c¢s_ga mcg
end goal

environment()
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role gateway(UA, GA, CS : agent, SKgacs : symmetric_key,
H: hash func, SND, RCV : channel(dy))

played by GA

def=
local State: nat,
ID1,PWi,BIOi,R1,Pi,HIDi, HPWi,GIDj,Li, Ai, Uli, Aii, Bi : text,
Ni,Nj.Nc, Ci, Xi, X, Y, Bj,VUi: text,
Di.Ei,Fi,Gi,Hi, VSj, Mcg.Mcu, Glj, PID;j : text,
HIDinew, Ulinew, Aiinew, Binew, Xinew : text,
SKi, SKj, SKc: text

const spl, sp2, sp3, sp4 : protocol id,

ua c¢s ni, ¢cs ua mcu, ga cs nj, cs_ga mcg: protocol id
init State := 0

transition

1. State = 0 /A RCV(start) =
State' := 1 /A Bj' ;== new()
A SND({GIDj.Bj'} SKgacs)
A RCV({H(GIDj.B;").H(H(GIDj.Bj").H(X.Y))} SKgacs)
N secret({Bj},sp2.{ GA,CS})

2. State = 2
A RCV(H(IDi.Ai").xor(H(H(ID1.PWi.Ai').Ai'.X),Ni"). HHH(H(H(IDi.A1').A1'.X).X).Ni'.
GIDj)) =>

State' := 3 A Nj':=new() /\ Bj' := new()

A Di' ;= xor(H(H(GIDj.Bj").H(X.Y)).Nj")

A VSj' .= H(GIDj.H(H(GIDj.Bj").H(X.Y)).Nj")

A SND(H(ID1.Ai").xor(H(H(IDi.Ai").Ai'.X),Ni"). HHH(H(H(IDi.A1'").Ai'.X).X).Ni'.
GIDj).H(GIDj.Bj").Di.VSj")

/\ witness(GA,CS.ga c¢s nj,Nj')

3. State =3
A RCV(H(xor(H(GIDj'.Ni"),Nc").H(GIDj.Ni").Nc").HHH(H(IDi.Ai").Ai'. X).X).HH(
Di.A1l').Ai'.X).N1').xor(H(GIDj.Ni),Nc').xor(H(GIDj.Ni),Ni")) =>

State' := 4 /A SKj' ;= H(xor(Ni',H(Nj'.Nc')))/\ Nj':= new()
A Gi' := H(GIDj.Ni")
A Hi' := xor(Gi',H(Nj'.Nc'))
A SND(Hi" HHH(H(IDi.Ai").Ai'.X).X).H(H(IDi.A1'").Ai'.X).Ni'))
A\ request(GA,CS,cs ga mcg,Nc')

end role
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