Periodic Nonlinear Error Analysis and Compensation of a Single-Excited Petal-Shaped Capacitive Encoder to Achieve High-Accuracy Measurement
Abstract
:1. Introduction
2. Basic Principle and Design
3. Periodic Nonlinear Error Analysis
3.1. Processing Error Analyses
3.1.1. Segmentation Error of the Collection Electrode
3.1.2. Harmonic Components of Electric Field Interference between the Collection Electrodes
3.1.3. Edge Roughness Error of the Sensitive Electrode
3.2. Circuit Error Analyses
3.2.1. Analysis of Gain and Offset Errors
3.2.2. Analysis of Phase Error
3.3. Installation Error Analyses
4. Nonlinear Error Analysis Conclusion
5. Experimental Setup, Measurement, and Compensation
5.1. Experimental Setup and Prototype
5.2. Prototype Measurement
5.2.1. Nonlinear Error Test
5.2.2. Repeatability Test
5.3. Nonlinear Error Compensation
5.3.1. Compensation for Mechanical Periodic Error and DC Errors
5.3.2. Compensation for Electrical Periodic Error
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gasulla, M.; Li, X.; Meijer, G.C.M.; van der Ham, L.; Spronck, J.W. A contactless capacitive angular-position sensor. IEEE Sens. J. 2003, 3, 607–614. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, S.; Wang, S.; Hu, C.; Zhao, X. A Capacitive Rotary Encoder Based on Quadrature Modulation and Demodulation. IEEE Trans. Instrum. Meas. 2015, 64, 143–153. [Google Scholar] [CrossRef]
- Ferrari, V.; Ghisla, A.; Marioli, D.; Taroni, A. Capacitive Angular-Position Sensor with Electrically Floating Conductive Rotor and Measurement Redundancy. IEEE Trans. Instrum. Meas. 2006, 55, 514–520. [Google Scholar] [CrossRef]
- Azimloo, H.; Rezazadeh, G.; Shabani, R. Development of a capacitive angular velocity sensor for the alarm and trip applications. Measurement 2015, 63, 282–286. [Google Scholar] [CrossRef]
- Krklješ, D.; Vasiljević, D.; Stojanović, G. A capacitive angular sensor with flexible digitated electrodes. Sens. Rev. 2014, 34, 382–388. [Google Scholar] [CrossRef]
- Kimura, F.; Gondo, M.; Yamamoto, A.; Higuchi, T. Resolver compatible capacitive rotary position sensor. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 1923–1928. [Google Scholar]
- Karali, M.; Karasahin, A.T.; Keles, O.; Kocak, M.; Erismis, M.A. A new capacitive rotary encoder based on analog synchronous demodulation. Electr. Eng. 2018, 100, 1975–1983. [Google Scholar] [CrossRef]
- Jia, B.; He, L.; Yan, G.; Feng, Y. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor. Sensors 2016, 16, 1508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ni, F.; Dong, Y.; Guo, C.; Jin, M.; Liu, H. A Novel Absolute Magnetic Rotary Sensor. IEEE Trans. Ind. Electron. 2015, 62, 4408–4419. [Google Scholar] [CrossRef]
- Dziwinski, T. A Novel Approach of an Absolute Encoder Coding Pattern. IEEE Sens. J. 2015, 15, 397–401. [Google Scholar] [CrossRef]
- Paul, S.; Chang, J.H. Design of absolute encoder disk coding based on affine n digit N-ary gray code. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, 23–26 May 2016; pp. 1–6. [Google Scholar]
- Li, K.; Li, Y.; Han, Y. An EM Induction Hi-Speed Rotation Angular Rate Sensor. Sensors 2017, 17, 610. [Google Scholar] [CrossRef]
- Hou, B.; Zhou, B.; Song, M.; Lin, Z.; Zhang, R. A Novel Single-Excitation Capacitive Angular Position Sensor Design. Sensors 2016, 16, 1196. [Google Scholar] [CrossRef]
- Hou, B.; Tian, Z.; Li, C.; Wei, Q.; Zhou, B.; Zhang, R. A Capacitive Rotary Encoder with a Novel Sensitive Electrode. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017. [Google Scholar]
- Aung, N.L.H.; Bi, C.; Al Mamun, A.; Soh, C.S.; Yu, Y. A Demodulation Technique for Spindle Rotor Position Detection with Resolver. IEEE Trans. Magn. 2013, 49, 2614–2619. [Google Scholar] [CrossRef]
- Bergas-Jané, J.; Ferrater-Simón, C.; Gross, G.; Ramírez-Pisco, R.; Galceran-Arellano, S.; Rull-Duran, J. High-Accuracy All-Digital Resolver-to-Digital Conversion. IEEE Trans. Ind. Electron. 2012, 59, 326–333. [Google Scholar]
- Hu, P.; Guo, J.; Tan, J. An Annular Planar-capacitive Tilt Sensor with a 360° Measurement Range. IEEE Trans. Ind. Electron. 2016, 63, 2469–2476. [Google Scholar] [CrossRef]
- Peng, K.; Liu, X.; Chen, Z.; Yu, Z.; Pu, H. Sensing Mechanism and Error Analysis of a Capacitive Long-Range Displacement Nanometer Sensor Based on Time Grating. IEEE Sens. J. 2017, 17, 1596–1607. [Google Scholar] [CrossRef]
- George, B.; Tan, Z.; Nihtianov, S. Advances in Capacitive, Eddy Current, and Magnetic Displacement Sensors and Corresponding Interfaces. IEEE Trans. Ind. Electron. 2017, 64, 9595–9607. [Google Scholar] [CrossRef]
- Yamashita, N.; Zhang, Z.G.; Yamamoto, A.; Gondo, M.; Higuchi, T. Voltage-induction type electrostatic film motor driven by two- to four-phase ac voltage and electrostatic induction. Sens. Actuators A Phys. 2007, 140, 239–250. [Google Scholar] [CrossRef]
- Peng, K.; Yu, Z.; Liu, X.; Chen, Z.; Pu, H. Features of Capacitive Displacement Sensing That Provide High-Accuracy Measurements with Reduced Manufacturing Precision. IEEE Trans. Ind. Electron. 2017, 64, 7377–7386. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, S. Software Resolver-to-Digital Converter for Compensation of Amplitude Imbalances using D-Q Transformation. J. Electr. Eng. Technol. 2013, 8, 1310–1319. [Google Scholar] [CrossRef] [Green Version]
- Heydemann, P.L.M. Determination and correction of quadrature fringe measurement errors in interferometers. Appl. Opt. 1981, 20, 3382–3384. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, Z.-H.; Li, Z.-G.; Xie, Y.-J. Dynamic extracting and compensation of system error for rotary inductosyn. Opt. Precis. Eng. 2015, 23, 794–802. [Google Scholar] [CrossRef]
- Lee, W.; Moon, J.-J.; Im, W.-S.; Park, J.-H.; Kim, J.-M. Classification and Compensation of dc-offset error and scale error in Resolver Signals. J. Power Electron. 2015, 16, 1190–1199. [Google Scholar] [CrossRef]
- Xiang, K.; Wang, W.; Qiu, R.; Mei, D.; Chen, Z. A T-Type Capacitive Sensor Capable of Measuring5-DOF Error Motions of Precision Spindles. Sensors 2017, 17, 1975. [Google Scholar] [CrossRef]
- Peng, D.; Liu, X.; Zhang, X.; Chen, X. High-precision Time-grating Displacement Sensor Based on Harmonic Wave Correcting Method. Chin. J. Sci. Instrum. 2006, 27, 31–33. [Google Scholar]
- Li, H.; Zhang, R.; Han, F. Error testing and compensation of an inductosyn based angular measurement system. J. Tsinghua Univ. (Sci. Technol.) 2016, 56, 611–616. [Google Scholar]
Error Source | Main Harmonic Components | Symbol |
---|---|---|
Gain error | Second harmonic component | 2θ |
Offset errors | First harmonic component | θ |
Phase difference error | DC and Second harmonic component | DC + 2θ |
Harmonic components | Fourth harmonic component | 4θ |
Eccentricity error | DC and Mechanical periodic | DC + ϕ |
Tilt error | DC and Mechanical periodic | DC + ϕ |
Non-consistent segmentation error | Second harmonic | 2θ |
Parameter | Value |
---|---|
Position range | 0 to 359.999 deg unlimited rotation |
Positional resolution | <0.02 arcsec |
Positional accuracy | ± <0.8 arcsec peak_peak |
Positional repeatability | Better ± 0.5 arcsec |
Axis wobble | ±0.5 arcsec |
Rate stability | 0.001% of commanded rate over 360 deg |
Parameter (Symbol) | Value | Parameter (Symbol) | Value |
---|---|---|---|
Outer radius | 74 mm | Mechanical tolerance | 4 mil (101.6 µm) |
Inner radius | 58 mm | Manufacturing precision | 1 mil (25.4 µm) |
Number of petal-shapes (N) | 180 | Width of the routing | 4 mil (101.6 µm) |
Distance of stator and rotor () | 0.5 mm | Via hole size | 6 mil (152.4 µm) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, B.; Zhou, B.; Li, X.; Xing, B.; Yi, L.; Wei, Q.; Zhang, R. Periodic Nonlinear Error Analysis and Compensation of a Single-Excited Petal-Shaped Capacitive Encoder to Achieve High-Accuracy Measurement. Sensors 2019, 19, 2412. https://doi.org/10.3390/s19102412
Hou B, Zhou B, Li X, Xing B, Yi L, Wei Q, Zhang R. Periodic Nonlinear Error Analysis and Compensation of a Single-Excited Petal-Shaped Capacitive Encoder to Achieve High-Accuracy Measurement. Sensors. 2019; 19(10):2412. https://doi.org/10.3390/s19102412
Chicago/Turabian StyleHou, Bo, Bin Zhou, Xiang Li, Bowen Xing, Luying Yi, Qi Wei, and Rong Zhang. 2019. "Periodic Nonlinear Error Analysis and Compensation of a Single-Excited Petal-Shaped Capacitive Encoder to Achieve High-Accuracy Measurement" Sensors 19, no. 10: 2412. https://doi.org/10.3390/s19102412
APA StyleHou, B., Zhou, B., Li, X., Xing, B., Yi, L., Wei, Q., & Zhang, R. (2019). Periodic Nonlinear Error Analysis and Compensation of a Single-Excited Petal-Shaped Capacitive Encoder to Achieve High-Accuracy Measurement. Sensors, 19(10), 2412. https://doi.org/10.3390/s19102412