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Abstract: Monitoring plant nitrogen (N) in a timely way and accurately is critical for precision
fertilization. The imaging technology based on visible light is relatively inexpensive and ubiquitous,
and open-source analysis tools have proliferated. In this study, texture- and geometry-related
phenotyping combined with color properties were investigated for their potential use in evaluating
N in pakchoi (Brassica campestris ssp. chinensis L.). Potted pakchoi treated with four levels
of N were cultivated in a greenhouse. Their top-view images were acquired using a camera
at six growth stages. The corresponding plant N concentration was determined destructively.
The quantitative relationships between the nitrogen nutrition index (NNI) and the image-based
phenotyping features were established using the following algorithms: random forest (RF), support
vector regression (SVR), and neural network (NN). The results showed the full model based on the
color, texture, and geometry-related features outperforms the model based on only the color-related
feature in predicting the NNI. The RF full model exhibited the most robust performance in both the
seedling and harvest stages, reaching prediction accuracies of 0.823 and 0.943, respectively. The high
prediction accuracy of the model allows for a low-cost, non-destructive monitoring of N in the field
of precision crop management.

Keywords: visible light imaging; phenotyping; machine learning; nitrogen nutrition index; leafy
vegetable; precision fertilization

1. Introduction

Nitrogen (N) is one of the critical factors limiting crop nutrient and productivity and is a main
environmental pollution factor in farmland [1,2]. An excessive amount of N fertilizer is often applied
to ensure adequate yield and profitability from vegetable cultivation [3]; however, most of the N
accumulates in the soils or is lost by runoff or lixiviation [1,4]. An accurate nutrition diagnosis and a
timely and appropriate application of N fertilizer have been the focus in modern agriculture.

Greenwood et al. [5] defined the critical N concentration (Nc) as the minimal concentration of total
N in shoots that produce the maximum aerial dry matter (DM). A unique critical N dilution curve (CNC)
was obtained by plotting these concentrations against the accumulated shoot biomass. Many studies
have been conducted on the CNC of crops such as rice, wheat, barley, and maize [6–9]. The nitrogen
nutrition index (NNI), i.e., the ratio of the actual N concentration of shoot dry matter to the critical
N concentration, has been an effective and established indicator of crop N status, with deviations
from the optimal values of NNI = 1 indicating N deficiency (NNI < 1) or N surplus (NNI > 1) [10].
The NNI not only directly reflects the surplus/deficit state of N nutrition, but can also be used to assess
N requirement. However, conventionally, the NNI has been determined based on a chemical analysis
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method. This method is time-consuming and labor-intensive, as the measurement requires a specific
analyst and laboratory equipment to determine the actual N concentration.

Nutrition diagnosis is an important part of the scientific fertilization of crops. Recently, significant
progress has been made in evaluating N nutrition status through alternative non-destructive methods.
For example, the leaf chlorophyll content has been correlated to leaf N content [11]; usually, chlorophyll
meters, such as the soil plant analysis development (SPAD), have been used to diagnose N status [12–14].
However, this has not been extensively applied to N management of crops, largely because of the lack of
sensitivity and specificity, the intense sampling effort required, and the lack of generalized relationship
with actual N fertilizer requirements. The spectral remote-sensing analysis technology has been
significantly developed for the large-scale monitoring of plant nutrition [15,16]. However, it is difficult
to capture and quantify micro-symptoms using a hyper-spectrometer [17]. Additionally, the data
processing and computation processes are challenging [18], restricting its application. Chlorophyll
fluorescence technology based on the detection of both chlorophyll and flavonols has been also reported
to evaluate the plant N nutrition status recently [19–21]. For example, Padilla et al. [22] reported strong
relationships between three fluorescence indices (leaf chlorophyll, flavonols, and N balance index) and
the N content in cucumber; Similarly, Agati et al. [23] found leaf N percent was strongly correlated to
flavonols and N balance index in white head cabbage. However, the N nutrition detection using this
technology is limited because of the high cost of fluorescence-based sensors.

The imaging technology based on visible light which is rapid, non-destructive, repetitive and
relatively inexpensive, compared with optical techniques mentioned above, provides an approach
to non-invasive sensing of nitrogen in plant. With the development of digital cameras and
image-processing technology, they have been used in many fields such as in plant nutrition research.
For example, various studies have reported the discrimination of plant mineral nutrient status based
on imaging technology and plant phenotypic characteristics [24–26]. Many spectral indices in the
visible region have been proposed for segmenting crop canopy images, specifically oriented towards
green segmentation. Visible spectral-index based indices, including excess green index (ExG), excess
red index (ExR), color index of vegetation extraction (CIVE), excess green minus excess red index
(ExGR), and vegetative index (VEG) [27–31]. ExG, ExGR, CIVE and VEG also have been applied under
a combined form in Guijarro et al. (2011) gaining in performance with respect to their individual
application [32]. All these approaches need to fix a threshold for final segmentation. The ExG index
(2G-R-B), which increases G value and decreases R and B values, achieved the best accuracy in the
vegetation extraction [33,34]. The ExG has been most commonly used to segmentation the vegetation
from the background.

The goal of plant imaging and analysis is to measure the physiological, growth, development,
and other phenotypic properties of plants through automated processes. Many of the technologies
developed for image processing and analysis can be applied to plant phenotyping [18,35,36].
The phenotypic traits of plants, such as the color and morphology of the leaf, help indicate the
plant nutrient and health status, which is closely related to the plant N content. Under N deficiency,
plants appear to be weak and lack vigor and have fewer blades and smaller leaf area and lower leaf
perimeter. Moreover, the leaf color becomes light green and chlorotic. Under N surplus, the leaves
become dark green and exhibit hypertrophic and elongated internodes. The phenotyping based
on imaging technology has been employed as an alternative method to evaluate plant N nutrition,
but most research was only focused on color traits [37,38].

Machine learning (ML) has a good performance in efficiently discovering patterns and governing
discovery from large datasets by simultaneously considering a combination of factors [39]. This is
particularly useful in the case of plant growth development, where it is challenging to efficiently model
the holistic effect of genetic, physiological, phenotypic, agronomic, meteorological, and human
factor features on the plant. ML technology has been applied to the identification [40,41],
classification [42,43], quantification [44,45], and prediction [46,47] of stress phenotyping in plants.
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In summary, ML approaches are typically useful in situations where large amounts of data are
available, relating inputs (e.g., phenotypic data) to output quantities of interest (e.g., NNI).

Pakchoi (Brassica campestris ssp. chinensis L.) is one of the most popular vegetables, cultivated
over a wide area from the northern to southern regions of China. The residual soil N in pakchoi
production has been reported to be high enough to avoid the requirement of additional N in the
subsequent season [4]. In the present study, an industrial camera was used in the visible light range to
track the growth and N status of pakchoi under different N application rates. The images of pakchoi
were captured from the top view, and the information in the two-dimensional images was quantified.
The phenotypic features (color, texture, and morphology-related traits) were then extracted. An NNI
quantitative evaluation model based on phenotyping was developed using three machine learning
algorithms: random forest (RF), support vector regression (SVR) and neural network (NN). This study
is expected to contribute toward a non-destructive, easy, low-cost diagnosis of plant N.

2. Materials and Methods

2.1. Experimental Design

The experiment was carried out in a glass greenhouse at the School of Agriculture and Biology,
Shanghai Jiao Tong University, China. The pakchoi (cv. Hua wang) were cultivated in a substrate
containing available N (332 mg·k−1), phosphorus (1.24 mg·kg−1), potassium (118 mg·kg−1), and organic
matter (270.3 g·k−1). The seeds were sowed in a plug tray on 18 November 2017. After a nursing of
18 days, the seedlings were transplanted to pots (volume of 1.47 L) with one plant per pot. The N
treatments (CK, T1, T2, and T3 corresponding to N levels of 0, 0.134, 0.163, and 0.191 g N·pot−1,
respectively) were applied to each pot after one week of transplanting. The T3 treatment was based
on the conventional N application rate. Three blocks were considered with 20 repetitions per block
for 240 plants. Urea (Sinopharm Chemical Reagent Co., Ltd, Shanghai, China) was chosen as the N
fertilizer. The urea was divided into six parts and applied every seven days. KH2PO4 (Sinopharm
Chemical Reagent Co., Ltd, Shanghai, China) was selected as the phosphate and potassium fertilizer.
The dosages of P and K in each treatment were the same, and the additive amount was 0.4613 g of
KH2PO4 per pot. The substrate water content was controlled at a maximum water holding capacity of
75 ± 5% using the weighing method. The images and plant tissue were collected at different growth
stages: G0, G1, G2, G3, G4, G5, and G6 corresponding to 0, 7, 14, 21, 28, 35, and 42 days after the first N
application, respectively.

The greenhouse environmental data were monitored every five minutes using an automatic
data logging system (PM-11 Phytomonitor, Bio Instruments S.R.L., Chisinau, Moldova). During the
experimental period, the air temperature ranged from −0.70 to 37.95 ◦C with an average of 13.88 ◦C.
The average relative humidity was 86.4%, reaching a maximum of 99.2% and a minimum of 29.5%.
The mean solar radiation in the greenhouse was 1.69 MJ·m−2

·day−1.

2.2. Image Acquisition and Analysis

A self-made platform, i.e., a sealed box (80 × 80 × 80 cm3), with a set of camera and supplement
light was used for image acquisition (Figure 1). An industrial camera (MV-EM1400C, MicroVision,
Shaanxi, China) was mounted at the top center of the box, and a lens with a 12 mm focal length
(M1214-MP2, MicroVision, Shaanxi, China) was implemented. Ring-shaped light emitting diodes
(LEDs) (illumination: 6341 lux, the correlated color temperature (CCT): 6138K) as the sole light source
were mounted on top of the box and centered on the camera. The pakchoi were sent to the platform
one by one, and their images were taken from the top view. The aperture and exposure time of the
camera were set to F16 and 0.13 s, respectively, throughout the experiment. We collected 29 plant
images before N treatment. After N application, the images were acquired from G1 to G6 growth
periods with 13–16 replicates for each nitrogen level in a given period. As a result, the total of the plant
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images collected was 382. The images were stored in an uncompressed PNG format to avoid color
artifacts due to compression algorithms.Sensors 2019, 19, x 4 of 18 
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The images analysis was performed using the OpenCV (3.4.4 version) and Python language
(3.6.1). The details are given in the supplementary material section. The image processing included
the computation of excess green index (ExG) and grayscale [48,49]. Figure 2 shows the process
flow, and the details include: (1) ExG calculation: the original images were transformed by using
2G-R-B, and the two thresholds (where 40 identified the minimum value and 200 the maximum value)
were set to identify the green part of the images (including plant and the green area of background).
(2) Grayscale processing: the original images were pretreated by graying, and then the threshold
value segmentation was used for removing the high brightness area. The grayscale value was set
as 240. (3) Intersection calculation: we take the intersection of the mask obtained by the two operations
above, and then the noise (small size) was eliminated based on the mathematical morphological open
operation. (4) Denoising: the operations of denoising were done by using OpenCV. Removing objects
smaller than the one tenth of the mask area was to remove the residual; filling contiguous holes smaller
than one-twentieth of the mask area was to restore leaf veins deleted. Hence, the final images were
acquired, and they are shown in Figure 3.
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An extensive list of phenotypic features, including color, texture, and geometry, were extracted.
The extraction of the color features involved the transformation of RGB (Red, Green, Blue), LAB (L is
luminosity, A is the range from magenta to green, and B is the range from yellow to blue, and HSV ( Hue,
Saturation, Value) color spaces. The texture attributes were extracted based on the grey co-occurrence
matrix algorithm. The equations used were obtained from the study by Haralick and Shanmugam [50]
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and are described in detail in the supplementary material section. The geometrical features, such as the
convex hull and boundary box, were extracted based on the plant contour. Table 1 lists the descriptions
of the phenotypic features.Sensors 2019, 19, x 5 of 18 
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Table 1. Phenotypic features extracted from images in pakchoi.

Category Trait Name Description No.

Color

*R_mean, R_std, *R_median, R_ range,
R_coefficient of variation Statistics in the red range of the RGB color space 1–5

*G_mean, G_std, *G_median, G_ range,
G_coefficient of variation Statistics in the green range of the RGB color space 6–10

*B_mean, B_std, *B_median, B_ range,
B_coefficient of variation Statistics in the blue range of the RGB color space 11–15

*L_mean, L_std, *L_median, L_ range,
L_coefficient of variation Statistics of L channel in LAB color space 16–20

a_mean, a_std, a_median, a_ range,
a_coefficient of variation Statistics of A channel in LAB color space 21–25

*b_mean, b_std, *b_median, b_ range,
b_coefficient of variation Statistics of B channel in LAB color space 26–30

*H_mean, H_std, *H_median, H_ range,
H_coefficient of variation Statistics of H in HSV color space 31–35

*S_mean, S_std, *S_median, S_ range,
S_coefficient of variation Statistics of S in HSV color space 36–40

*V_mean, V_std, *V_median, V_ range,
V_coefficient of variation Statistics of V in HSV color space 41–45

Texture

contrast Definition and grooving depth of texture 46
dissimilarity The difference of grey scale 47
*homogeneity The local changes of image texture 48
*energy The degree of thickness and uniformity for texture 49
correlation The correlation of the local grey scale 50
*ASM Angular second moment 51

Morphology

*contour_area Area of plant contour 52
perimeter The length of plant contour 53
w The width of the bounding box 54
h The height of the bounding box 55
*hull_area Convex hull area (mm2) 56
_w The width of the minimum circumscribed rectangle 57

_h The height of the minimum circumscribed
rectangle 58

MA The macro axis of the ellipse 59
ma The minor axis of the ellipse 60
*r The radius of the minimum circumscribed circle 61
*equivalent_diameter The diameter of a circle equal to the contour area 62
aspect_ration The width-height ratio of the bounding box 63
extent The area ratio between contour and bounding box 64
solidity The area ratio between contour and convex hull 65

Note:(1) _mean, _std, _median, _range, and _coefficient of variation represent mean, standard deviation, median,
range and coefficient of variation, respectively. (2) The traits marked with asterisks were selected to develop a
model. (3) RGB (Red, Green, Blue), LAB ( L is luminosity, A is the range from magenta to green, and B is the range
from yellow to blue, and HSV ( Hue, Saturation, Value)

2.3. Yield and Quality Measurement

The fresh weight and quality, i.e., chlorophyll, flavonoid, nitrate, and soluble protein, were
measured at the last harvesting, with data representing the mean of three replicates (three plants per
replication) per treatment.
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No. 2 leaves counted from the tip of the shoots were chosen to measure the quality traits. Dualex
SCIENTIFIC+TM (FORCE-A, Orsay, France) was used for the chlorophyll and epidermal flavonoid
measurements. The chlorophyll was used as given by the device because it was calibrated in µg·cm−2

units. The absorbance in the ultraviolet (UV) region at 375 nm due to the presence of flavonol in the
epidermis was used as given by the device without transformation. The soluble protein content was
assayed using the Coomassie brilliant blue method, whereas the nitrate content was measured based
on the method given by Xiong et al. [51].

2.4. Nitrogen Concentration Determination

The fresh shoot samples were heated at 105 ◦C for 20 min and dried at 75 ◦C for 72 h in an air-dry
oven (DHG-9030A, Hangzhou, China). The dried samples were ground and sieved (60 mesh), and the
nitrogen concentration was measured using Elementar (ELIII, Hanau, Germany).

2.5. Nitrogen Nutrition Index (NNI) Calculation

The data were analyzed to determine Nc based on the method proposed by Justes et al. [52]. First,
the analysis of variance (ANOVA, SPSS-16 software package) was used to identify the data points
for which N does not limit growth (non-N-limiting) or when it is not in excess (N-limiting) from the
experimental data. The N-limiting growth treatment is defined as a treatment in which a supplement
of N application leads to a significant increase in the shoot biomass. The non-N-limiting growth
treatment is defined as a treatment in which a supplement of N application does not lead to an increase
in the shoot biomass. The regression between the shoot biomass (g·plant−1) and the N concentration
(mg·g−1 DM) was conducted with the data obtained from the N-limiting growth treatments. The Nc
value at the sampling point is calculated using the corresponding shoot biomass obtained from the
non-N-limiting growth treatment. Furthermore, the NNI of the pakchoi at each sampling date was
determined by dividing the total N concentration of the shoot (Nt) by Nc (NNI = Nt/Nc) based on a
previous report on corn [53].

2.6. Model Development

2.6.1. Feature Selection

The feature values were normalized using the SPSS 16.0 software. A one-way ANOVA was
applied to screen the features acting as an optimal set of explanatory variables for model development.
Features with P < 0.05 (Duncan method) at all the sampling dates were sent to a feature set to develop
the model.

2.6.2. Models for Predicting Plant N Nutrition

Based on the screened phenotypic features, three models, namely the random forests (RF), support
vector regression (SVR), and neural network (NN), were developed to quantitatively predict the
NNI of the pakchoi. For the model development, we referred to the study by Guo et al. [43] with
some modification. The three modeling algorithms were executed using the randomForest, nnet,
and e1071 packages in R language (release 3.4.1), respectively. The RF model was executed using the
randomForest package. The number of trees (ntree) and the number of features randomly sampled
as candidates at each split (mtry) were used to find the best feature. In this study, the RF model was
trained with ntree as 300 and mtry as 2, 5, and 8. For the SVR, we used the e1071 R package, which
provides functionalities to use the libsvm library. The SVR model was trained with a kernel parameter
C (from 0.00390625, 0.0078125, 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128 and 256)
and a regularization parameter gamma (from 0.00390625, 0.0078125, 0.015625, 0.03125, 0.0625, 0.125,
0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128 and 256) in this study. The best combination of C and gamma leading
to the highest prediction accuracy was chosen. For the NN, a nnet package was used to train the
single-hidden-layer feed-forward neural network. Two main parameters, namely the decay and size,
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were tuned for the NN model in R. In this study, the decay was tuned from 0, 0.1, to 0.01, and the size
was tuned from 2, 5, to 9.

The total number of data samples in the dataset was 382. The dataset was randomly divided
into a training set (75% of data) and a testing set (25% of data). The training data set was used
for model development. The models were developed using the 10-fold cross-validation method.
Among the training dataset, 10% of the data were used as validation in each cross-validation step.
The root-mean-square error (RMSE) was used to select the optimal model.

The contribution weights of each feature to the regression model was also present. we chose
“%IncMSE” (an increase in the mean squared error) to represent the criteria of relative importance in
the RF model. The SVR and NN algorithms provide functionalities to use the corresponding library to
measure the feature contribution of the models.

2.6.3. Model Validation

To evaluate the performance of the regression models, we predicted the NNI for the testing
set using the corresponding model. The actual NNI was measured destructively using Elementar.
The prediction accuracy of the model was assessed in terms of the RMSE, adjusted determination
coefficient (R2), and mean absolute error (MAE).

2.7. Model Evaluation in Different Scenarios

To investigate the robustness and applicability of the three models under different conditions,
the test dataset was reorganized into different scenarios, different growth stages (seedling stage and
harvest period), and N nutrition status (N excessive or N deficiency). The model performances in these
scenarios were evaluated. The simulation values were obtained using the predictive models, and the
coincidence degree was analyzed using the linear regression method of SPSS 16.0. The relationship
between the measured NNI and the simulated NNI was assessed based on the criteria: (1) adjusted
determination coefficient (R2), i.e., the percentage of variance of NNI of the models; (2) relative standard
error (RE), i.e., the ratio of the standard error of regression estimate to the mean of the actual value;
(3) accuracy, i.e., the linear correlation coefficient between the simulated and actual values [54].

3. Results

3.1. Yield and Quality

After 42 days of cultivation under different N levels, the aerial parts of the pakchoi exhibited obvious
growth differences (Table 2). The fresh weight significantly increased with N application. However,
the pakchoi supplied with higher N had lower fresh weight under tested N levels. The phytochemicals in
the leaf were also affected significantly (p < 0.05) by N application. N fertilization significantly increased
the chlorophyll content and decreased the flavonoid content; however, no differences were found among
the tested N treatments. The availability of N had a prominent effect on the nutrition quality. At harvesting,
the nitrate content increased with the N application, and the degree of elevation is positively correlated
to the nitrogen level. Similarly, the soluble protein content increased with the N application; however,
the content after T1 treatment was significantly higher than those after the other two treatments.

Table 2. Yield and quality of pakchoi after 42 days of cultivation.

Treatments Yield
(g·plant−1)

Chlorophyll
(µg·cm−2)

Flavonol Index Nitrate
(mg·kg−1 FW)

Soluble Protein
(mg·g−1 FW)

CK 6.04 ± 0.45d 28.70 ± 1.67b 1.37 ± 0.26a 200.92 ± 3.51c 5.21 ± 0.58c
T1 27.65 ± 0.28a 32.98 ± 4.98a 0.74 ± 0.11b 271.47 ± 23.35b 35.10 ± 1.97a
T2 23.88 ± 0.04b 32.17 ± 2.78a 0.80 ± 0.11b 298.31 ± 19.16b 31.63 ± 1.91b
T3 21.37 ± 0.34c 33.08 ± 2.75a 0.78 ± 0.11b 364.25 ± 25.34a 30.47 ± 2.61b

Note: Data of the table represent average value ± standard deviation (n = 3) and those with the different letters in
the same column are significantly different (p < 0.05).
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3.2. Accumulation of Biomass and N Concentration

The accumulation of biomass and N content in the shoots of the pakchoi was measured. Table 3
lists the results. The biomass increased continuously with the extension of the growth cycle; however,
it was regulated by the nitrogen application rate. During the 7–28 days after treatment, the T3-treated
pakchoi accumulated the highest biomass; until the 35th day, the T2-treated pakchoi had the highest
biomass; on the 42nd day, the T1-treated pakchoi had the highest biomass. Simultaneously, the response
of plant N concentration to N application was observed on the 7th day. However, the N concentration
did not exhibit any significant difference between the N treatments until the 28th day, and it was always
higher than that in the blank control. On the 28th day, the N concentration positively correlated to the
nitrogen application rate. On the 35th and 42nd days, the N concentration had no significant difference
between T2 and T3; however, it was higher than that in T1.

Table 3. Accumulation of dry weight (g·plant−1) and nitrogen concentration (g·kg−1 DW) in shoot.

Index Treatment
Days after Transplant (d)

7 14 21 28 35 42

Biomass

CK 0.065 ± 0.007b 0.161 ± 0.006b 0.186 ± 0.008c 0.338 ± 0.012c 0.479 ± 0.037b 0.617 ± 0.037c
T1 0.067 ± 0.004b 0.174 ± 0.019b 0.293 ± 0.010b 0.580 ± 0.023b 0.973 ± 0.019a 1.363 ± 0.032a
T2 0.080 ± 0.004a 0.189 ± 0.023b 0.306 ± 0.014b 0.574 ± 0.018b 0.994 ± 0.051a 1.280 ± 0.025b
T3 0.079 ± 0.010a 0.215 ± 0.011a 0.440 ± 0.025a 0.620 ± 0.014a 0.970 ± 0.017a 1.282 ± 0.027b

Nitrogen
concentration

CK 43.30 ± 2.31b 39.70 ± 2.76b 39.07 ± 1.59b 30.80 ± 1.57d 20.50 ± 1.08c 20.50 ± 0.79c
T1 57.50 ± 0.26a 61.27 ± 1.01a 69.63 ± 1.90a 67.30 ± 0.17c 72.70 ± 2.66b 83.77 ± 2.57b
T2 57.63 ± 0.85a 62.20 ± 1.23a 74.87 ± 2.25a 71.97 ± 0.99b 81.87 ± 1.65a 88.07 ± 2.67ab
T3 60.57 ± 1.27a 64.00 ± 0.85a 73.30 ± 4.98a 76.63 ± 0.50a 79.47 ± 0.74a 88.80 ± 2.11a

Note: Data of the table represent average value ± standard deviation (n = 3) and those with the different letters in
the same column are significantly different (p < 0.05).

3.3. Nitrogen Nutrition Index

Under the tested N application rates, the shoot biomass in the T1-treated pakchoi was lower
than that in the T3-treated pakchoi during the previous 28 days. Therefore, T1 belonged to the
N-limiting growth treatment, and the relationship between plant N concentration and the shoot
biomass was established with the data in T1. The Nc value at the sampling point was calculated
using the corresponding shoot biomass value of the T1 or T2-treated pakchoi, and the Nc values were
56.08, 63.36, 69.16, 72.14, 76.44, and 79.46 g/kg. Table 4 lists the calculated NNI of the pakchoi at each
sampling date.

Table 4. Nitrogen nutrition index (NNI) in pakchoi at different nitrogen treatments.

Treatment
Days after Transplant (d)

7 14 21 28 35 42

CK 0.77 0.63 0.57 0.43 0.27 0.26
T1 1.03 0.97 1.01 0.93 0.95 1.05
T2 1.03 0.98 1.08 1.00 1.07 1.11
T3 1.08 1.01 1.06 1.06 1.04 1.12

Note: NNI > 1, excessive nitrogen nutrition; NNI = 1, optimal nitrogen nutrition; NNI < 1, deficient N nutrition.

3.4. Feature Selection

In order to increase the efficiency of model development, phenotypic features selection is necessary
to identify remarkable features which are relevant to plant N concentration. The significance of 65
extracted phenotypic features on classifying N application rates were investigated by using ANOVA
(Figure 4). For better illustration, the p value was transformed into −log10 (p). There were 33, 29, 44,
59, 57, and 60 traits with p < 0.05 (i.e., −log10 (p) > 1.301) at corresponding sampling date, respectively.
Finally, 23 phenotypic traits with P < 0.05 were selected at the six growth stages (G1–G6) to develop a
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model. The selected features contained 16 color-related (numbered as 1, 3, 6, 8, 11, 13, 16, 18, 26, 28,
31, 33, 36, 38, 41 and 43 in Table 1 respectively), three texture-related (numbered as 48, 48 and 51 in
Table 1 respectively), and four geometry-related features (numbered as 52, 56, 61 and 62 in Table 1
respectively), and they are marked with asterisks in Table 1.
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Figure 4. Significance analyses of phenotypic features with a p-value threshold of 0.05. The phenotypic
features are indicated using numbers corresponding to their names. The solid horizontal line represents
p = 0.05, i.e., −log10 (p) = 1.301. The solid and hollow circles indicate the conditions p < 0.05 and
p > 0.05, respectively. (A), (B), (C), (D), (E), (F) corresponding to 7, 14, 21, 28, 35, and 42 days after the
first N application, respectively.

3.5. Model Development

The models were constructed to quantify the ability of image-based features in statistically
predicting the NNI. We combined the NNI measurements with the phenotypic features and then
divided them into a training dataset and a test dataset. A model was trained on the training dataset
and then applied to the test dataset to predict the NNI. The models were developed using three widely
used machine learning methods, and the RMSE was used to select the optimal model with the lowest
values. The RF model was developed with ntree as 300 and mtry as 2. The SVR model was trained
with a kernel parameter cost of 16 and a regularization parameter gamma of 0.03125. In the NN model,
the decay and size were tuned to 0.01 and 5, respectively. Cross-validation results of three modeling
algorithms applied to the training set, and the values of RMSE ± SD were 0.083 ± 0.008, 0.076 ± 0.004
and 0.085 ± 0.010 for RF, SVR and NN, respectively. The results show that the SVR model exhibits the
best predictive ability for NNI.

3.6. Model Validation

The relationship between the simulated NNI (predicted using the regression models) and the
measured NNI was assessed (Figure 5). The goodness of fit was quantified by R2, whereas the
predictive ability was evaluated in terms of the RMSE and MAE. The R2 values of the three models
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reached approximately 0.900, showing an excellent goodness of fit. The RMSEs of the RF, SVR, and NN
models were 0.082, 0.073, and 0.086, respectively, whereas the MAE values were 0.056, 0.045, and 0.061,
respectively, indicating the effectiveness of predicting the plant NNI based on the phenotypic features.
Among the three modeling algorithms, the SVR exhibited the lowest RMSE and MAE values, indicating
that the SVR model predicted the NNI most accurately.
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Figure 5. Quantitative relationship between simulated and measured nitrogen nutrition index (NNI)
values, represented in the form of scatter plots of the manually measured NNI and the NNI predicted
using three models: (A) random forest (RF), (B) support vector regression (SVR), and (C) neural
network (NN). The line (y = x) represents the expected prediction. The quantitative relationship between
the image-based features and the NNI was evaluated in terms of the coefficient of determination R2,
root-mean-square error (RMSE), and mean absolute error (MAE) of the models.

3.7. Model Evaluation

3.7.1. Model Evaluation under Different Plant N Nutrition Status

To check whether our models can be generalized across different scenarios, we applied the models
under N surplus and deficiency conditions to predict the NNI. The R2, RE, and accuracy were selected
as the evaluation indicators. Table 5 lists the evaluation results. Under N surplus condition, the R2

and accuracy of the three models are very low; however, the RE is very low. The performances of the
models in predicting excessive N in the pakchoi were poor. Under N deficiency, the R2 of the three
models crossed 0.90, and the accuracy reached approximately 0.95. However, the RE value of only the
RF model was lower than 10%, indicating that the performance of this model was the best.

Table 5. Model evaluation result under different plant N nutrition status and growth stages.

Different
Scenarios

Range of
Measured NNI

Model
Model Evaluation Results

Range of
Simulated NNI R2 Relative

Error (%) Accuracy

Excessive 1.01~1.12
RF 0.895~1.101 0.470 2.57 0.787

SVR 0.772~1.135 0.206 3.56 0.586
NN 0.822~1.000 0.016 1.76 0.085

Low 0.26~0.93
RF 0.262~1.081 0.945 8.35 0.948

SVR 0.173~1.087 0.921 10.51 0.984
NN 0.237~1.000 0.918 10.35 0.952

Seedling
period 0.63~1.08

RF 0.495~1.068 0.795 6.56 0.823
SVR 0.348~1.084 0.703 8.79 0.856
NN 0.416~1.000 0.674 8.35 0.766

Harvest
period 0.26~1.12

RF 0.262~1.101 0.985 4.49 0.943
SVR 0.173~1.135 0.981 5.23 0.974
NN 0.237~1.000 0.969 6.06 0.869

Note: RF, Random Forest; SVR, Support Vector Regression; NN, Neural Network



Sensors 2019, 19, 2448 11 of 17

3.7.2. Model Evaluation under Different Growth Stages of Pakchoi

We observed the model fitness under the seedling stage and harvest period simultaneously.
The results (Table 5) showed the good predictive ability of the three models regardless of the growth
stage. During the seedling periods, the R2 values of the three models ranged from 0.674 to 0.795,
RE was lower than 10%, and accuracy was higher than 0.75. This shows that the prediction models
can be used to guide the topdressing of N during the pakchoi growth cycle. At harvest, the R2 values
of the three models reached above 0.95, RE was lower than 6.5%, and accuracy was higher than 0.85,
once again exhibiting an excellent prediction performance. The precise prediction at harvest can help
assess the N uptake by the current crops. Considering the above three evaluation factors, the RF model
performed best in predicting the NNI regardless of the stage (seedling stage or harvest stage).

3.8. Relative Importance of Phenotypic Traits in Predicting Plant NNI

As mentioned previously, the image-based features can be broadly classified into three categories:
color-, texture-, and morphology-related traits. For each type of trait, we constructed a degenerate
model using the corresponding traits as the predictors and compared the capability of each trait in
predicting the NNI. The developments of three degenerate models were just based on the selected
features (marked with asterisks in Table 1). Figure 6 shows the results. The color-related traits exhibited
the best predictive performance among the three categories; however, they showed slightly lower
performance than the full model in which all the traits were considered. Interestingly, the predictability
of the other types of traits (such as the texture- and morphology-related traits) was substantial,
indicating that these traits may act as unforeseen factors in NNI prediction.
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Figure 6. Capabilities of different image-based phenotyping methods in predicting the plant N status
based on the evaluation of nitrogen nutrition index (NNI). The overall prediction accuracies of each
type of phenotypic trait are included. The error bars represent the standard deviation. The white,
light gray, gray, and dark gray bars indicate the prediction accuracies obtained using all traits, color-,
texture-, and morphology-related traits, respectively.

We investigated the contribution of each feature in predicting the NNI using the full model
(Figure 7). In the RF model, the contribution of a feature was determined as an increase in the prediction
error (%IncMSE) when phenotypic data for this feature are permuted, thus indicating the contribution of
the feature after considering its intercorrelation in the model. We found that the top five most important
traits in the RF model in predicting NNI included both color and texture-related features. In the SVR
and NN models, the relative importance of each trait was provided in the algorithms themselves.
We found that the top five most important traits in predicting NNI only included color-related traits in
the SVR model and color- and morphological-related traits in the NN model.
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4. Discussion

4.1. Strategies for Integral Control of Water and Fertilization for Crops to Improve N Absorption and Utilization

Crop management practices such as the application of N fertilizer and alternative irrigation
systems are often practiced to improve N absorption in crops. Management decisions, such as the
appropriate selection of fertilization method and nitrogen application rate, are vital for improving the
yield and quality in vegetable production systems. The results of this study showed that the yield and
soluble protein content increased, whereas the nitrate content decreased under T1 treatment, indicating
that the optimal fertilization strategy of low amount and high frequency could help reduce the nitrogen
fertilizer input while ensuring the yield and quality of pakchoi. In a conventional fertilization method,
a basal fertilizer was employed; however, the topdressing was ignored, leading to a significant amount
of residual N in the soil [4]. The conventional strategies for N application increase the input and the
loss of N, and they can cause nitrate pollution in groundwater and farmland [2,55,56], which is not
favorable to a sustainable agricultural production.

The plant N concentration in field crops has been related to the aerial biomass as follows:
Nc = aDM−b, the parameter a represents the N concentration in the shoot biomass (t·ha−1), and the
parameter b represents the coefficient of dilution describing the relationship between N concentration
and shoot biomass [5,10]. Various studies have indicated that plant N concentration decreases with
the growth cycle. However, the plant N concentration in pakchoi remained high and even increased
with the accumulation of shoot biomass, probably because of the fertilization strategy of low amount
and high frequency in the pot experiment. This fertilization strategy might promote N absorption
and utilization, leading to a faster accumulation of N than shoot biomass. Therefore, the relationship
between Nc and the aerial biomass is related to the N strategy. Different critical nitrogen concentration
curves should be established for different nitrogen fertilization strategies applied to the crop. These
results reveal that topdressing could promote the absorption of N fertilizer by plants and contribute to
the reduction in N fertilization.
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4.2. Accuracy Comparison of Full Model with the Color Model in Predicting Plant Nitrogen

Three types of phenotypic features (color, texture, and geometry-related features) based on visible
light imaging were extracted, and the capability of each feature in predicting the NNI was compared.
The color-related traits showed the best predictive performance among the three categories for NNI
prediction, which might be attributed that the number of color features is 4 times bigger than the
number of textures and geometry (16 features vs. 3 features). However, our result was in agreement
with Rorie et al. [57] who found a close relationship between a dark green color index and leaf N
concentration. The association between the color features and leaf N is mainly due to phytochemicals
such as chlorophyll. Thus, leaf N prediction can be performed by non-destructive chlorophyll
measurement. However, chlorophyll meters only provide a single point measurement; they cannot
work at high resolutions and cannot provide proper information about the spatial structures of the
product [48]. In addition, our results showed that the texture-related and morphology-related traits
exhibited a good NNI predictability, and a significant difference was observed (P < 0.05) in phenotypic
features including color, texture, and morphology. This indicates that there exist limitations in the
conventional evaluation of plant nitrogen nutrition status based on only the leaf color features, and that
the ability of the texture- and geometry-related traits to predict plant N cannot be ignored.

In this study, the color, texture, and morphological-related features were used as input parameters.
RF, SVR, and NN models were developed to evaluate the NNI of pakchoi. The R2 values of the three
models reached approximately 0.900, and the RMSE value was lower than 0.1. The results revealed that
phenotypic imaging combined with a machine learning algorithm can be used to effectively evaluate
the nitrogen nutrition status of plants.

4.3. Random Forest (RF) Model based on Phenotyping Is the Most Robust in Predicting NNI

Many algorithms exist in the field of machine learning, each having different principles. Thus,
the contribution of the same phenotypic feature in the different algorithms can be different. In the top
five most contributing features, the RF model included H_median, ASM, H_mean, energy, and b_mean;
the SVR model included H_mean, H_median, b_median, b_mean, and G_mean; the NN model
included r, equivalent_diameter, H_mean, conture_area, and H_media. Different algorithms have
different dependences on the same phenotypic features, resulting in the local adaptability of each
algorithm. Therefore, to select an appropriate NNI model under different scenarios, such as growing
periods and soil fertility, it is necessary to determine the robustness and applicability of each algorithm.

In our research, the evaluation effects of the three models were compared under different conditions.
The results showed that none of the models could effectively predict the nutritional status when the
plant N is excessive, indicating that camera vision in the visible range has a poor resolution when
the plant N concentration is close to the normal range. Our results are in agreement with those of
Tei et al. [58] who concluded that plants with surplus N reflect less visible light than N-deficient plants.
Plateau responses occurred at relatively high N contents, suggesting saturation. However, it is unclear
under what exact conditions saturation would occur [59,60]; this requires further elucidation. It is
necessary to choose other optical sensors or non-destructive testing techniques to evaluate the N
surplus status of a plant. For example, Padilla et al. [22] found that chlorophyll readings and canopy
reflectance indices could sensitively respond to the absorption of N by muskmelon. Under N-deficit
conditions, the RF model performed best with higher R2 and lower RE values. We assessed the NNI
prediction models throughout the entire growth cycle of pakchoi. The precise prediction of NNI at the
seedling stage indicated that the prediction models can be used to guide N topdressing. The precise
prediction of NNI at the harvest stage is beneficial for assessing the N uptake and calculating the N
consumption by the current crops. The RF model exhibited outstanding robustness and applicability
under different scenarios and thus can be used in practice.
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5. Conclusions

Twenty-three phenotypic features related to plant N were screened, and a quantitative relationship
between the NNI and the image-based phenotypic features was established using the following
algorithms: random forest (RF), support vector regression (SVR), and neural network (NN). The three
models exhibited excellent fitting and predictive ability. The RF full model was more robust, with NNI
prediction accuracies reaching 0.823 and 0.943 at the seedling and harvest stages, respectively.
The highly accurate prediction of NNI based on this model allows a rapid and low-cost method to
diagnose plant N nutrition, relieving the phenotyping bottleneck in plant N measurement in the field
of precision crop management.
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