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Abstract: Long-term structural health monitoring (SHM) has become an important tool to ensure
the safety of infrastructures. However, determining methods to extract valuable information from
large amounts of data from SHM systems for effective identification of damage still remains a
major challenge. This paper provides a novel effective method for structural damage detection
by introduction of space and time windows in the traditional principal component analysis (PCA)
technique. Numerical results with a planar beam model demonstrate that, due to the presence of space
and time windows, the proposed double-window PCA method (DWPCA) has a higher sensitivity for
damage identification than the previous method moving PCA (MPCA), which combines only time
windows with PCA. Further studies indicate that the developed approach, as compared to the MPCA
method, has a higher resolution in localizing damage by space windows and also in quantitative
evaluation of damage severity. Finally, a finite-element model of a practical bridge is used to prove
that the proposed DWPCA method has greater sensitivity for damage detection than traditional
methods and potential for applications in practical engineering.
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1. Introduction

The safety of infrastructures such as bridges and high-rise buildings is of the utmost concern to
the public. During operation, civil structures are subjected to various kinds of external loads, such as
traffic, wind, temperature, etc. In fact, these evolving loads may be much more complicated than those
considered in the design phase. Therefore, it is of importance to monitor the structural responses, such
as strain, displacement, and acceleration with the aim of assessment of their real-time states. Nowadays,
long-term structural health monitoring (SHM) systems are widely used to acquire data of structural
responses, as well as external loads to monitor the states of civil structures. However, how to process
and analyze these data for identifying possible structural changes has been a great challenge [1,2].
In general, structural responses may not change evidently when only a small amount of damage
is imparted. Moreover, response variations may be masked by the uncertainties in the structural
parameters of practical structures, as well as by the presence of noise. All of these factors result in
the raw data being uninformative regarding the occurrence of structural changes, therefore, resulting
in the need for feature extraction of measurement data [3]. In order to detect damage effectively, the
extracted features are required to be sensitive to damage, while insensitive to parametric uncertainties
or noise.

Damage detection methods can be generally classified into two categories, namely model-based [4]
and model-free methods [5]. Model-based methods require an accurate finite-element model as well as
a model-updating process for damage identification [6]. They have the ability not only to identify the
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presence and location of damage but also to quantify it in meaningful engineering units. However,
computational complexity and model updating of these methods, especially for large-scale structures,
have been a challenge in SHM [5]. As an alternative, model-free methods have drawn much
attention for the sake that they have been demonstrated applicable to damage identification [7].
These methods utilize time series of measurement data for analysis without the need for geometrical
and material information. Due to this reason, they are more inexpensive and efficient compared to
model-based methods.

During the past few decades, various kinds of model-free data-interpretation methods for damage
detection have been developed, including the autoregressive (AR) model, autoregressive moving
average (ARMA) model, autoregressive integrated moving average (ARIMA) model, correlation
analysis (CA), instance-based method (IBM), wavelet-based (WB) methods, neural network (NN)
model, robust regression algorithm (RRA), principal component analysis (PCA), etc. AR establishes a
time-series model to predict future values based on the past measured data. Residual errors or AR
parameters are usually used as sensitive features for damage detection [8,9]. ARMA and ARIMA,
which are improved methods compared to AR, also take advantage of coefficients as indices for
identifying damage [10,11]. CA detects damage through variations of correlation coefficients for
measurement datasets since the correlation coefficients will change when damage occurs. This method
has been demonstrated to have good performance with regard to identifying and localizing damage [12].
However, it fails to identify damage when the measurement noise is at high levels [13]. IBM computes
the minimum distance of a cluster of sensor data (generally for three or four sensors) at each time
step [14]. The occurrence of damage is determined if the phase of the minimum distance exceeds
a threshold [15]. WB methods are also effective tools for on-line and off-line damage detection [16].
These methods firstly decompose original signals in different time domains and scales. Then, mode
shapes, wavelet spectra, wavelet component energy, and the tendency of wavelet coefficients are
selected as sensitive features to detect damage [17–20]. The NN model has been widely utilized to
identify anomalous structural behavior by using static and dynamic responses [21,22]. The number
of hidden layers, the number of neurons in each layer, the neuron activation function and error
criteria should be carefully considered in the NN method [23]. Some investigators also verified that
incorporating other methods into a traditional NN model significantly enhances the effectiveness of
damage detection [24,25]. As for RRA, it is focused on the correlation between a pair of sensors and
construction of a robust regression relationship for measurement data [26]. An anomaly is identified
when correlation coefficients exceed threshold bounds. This method has demonstrated the ability to
identify and localize damage in simple as well as complex structures [27].

PCA is another popular method used for damage identification in long-term SHM. It exhibits
reliable and effective performance in modal analysis, reduced-order modelling, feature extraction,
and structural damage detection [28–32]. In addition, it proves to be an effective tool to improve
the training efficiency and enhance the classification accuracy for other machine learning algorithms,
such as unsupervised learning methods [33–37]. Since the total historical dataset including responses
of both healthy and damaged states is involved in the analysis process, PCA is not sensitive to the
occurrence of damage in real time in SHM. Moreover, large amounts of historical data may cause
computational complexity. Posenato et al. then proposed the moving PCA (MPCA) method to
enhance discrimination features between undamaged and damaged structural responses [13,27,38].
This method essentially uses a sliding fixed-size time window for time-series data instead of handling
the total historical dataset. An eigenvector time series will be obtained as the time window moves
forward. The components of the most important eigenvector are utilized as sensitive features for
damage detection. Due to the moving temporal window, MPCA enhances the detection effectiveness
compared to that of the traditional PCA method through monitoring the evolution of eigenvector
components between undamaged and damage states. In other words, MPCA is used to monitor
the components of the eigenvector variance (CEVs) between a healthy state and damaged state for
damage identification. It was demonstrated that the sensitivity of MPCA for damage identification was
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significantly improved compared to other methods such as ARIMA, CWT, RRA and IBM [12,13,39].
However, in the data-interpretation process of both PCA and MPCA, data from all sensors should be
used to calculate the eigenvalues and eigenvectors. It makes sense that responses located far from
the damaged area are insensitive to damage. In other words, part of the data includes information
insensitive to damage, consequently reducing the sensitivity regarding damage detection. If a space
window is applied to exclude the data from those sensors located far from the damage, it is possible to
improve the damage detectability. As a consequence, if both space and time windows are applied
in the traditional PCA method, this is expected to further improve the damage detectability. In fact,
Posenato et al. have also proposed a sensor clustering overlapping algorithm for MPCA when there
exists a large number of sensors [13]. The clustering process is essential to implement space windows
for the installed sensors. However, the authors aimed to deal with measurements from fewer sensors
for computational efficiency. They did not carry out further investigation on the damage detectability.

According to the above discussion, both PCA and MPCA methods use all sensors for analysis and
may decrease the detection performance. This paper will provide a double-window PCA (DWPCA)
method for structural damage identification. The primary idea is to combine space and time windows
with the traditional PCA method. It is found that discrimination of the eigenvectors between damaged
and healthy states is enhanced due to the introduction of space and time windows. Numerical
results show that the proposed method, in contrast with MPCA, improves the sensitivity for damage
identification and is also quicker to detect damage after its occurrence. Further investigations indicate
that the novel approach exhibits a better performance regarding damage localization and quantitative
evaluation. Finally, the proposed DWPCA is shown to be robust in the presence of noise and shows
potential for applications in practical engineering.

This paper is organized as follows: Section 2 describes PCA, MPCA and the proposed DWPCA
method. Section 3 presents a detailed description of the planar beam model for simulations, as well as
the methodology to determine the space window. In Section 4, comparative studies with MPCA are
conducted to verify the advantages of the proposed method. In Section 5, application of the proposed
DWPCA to a full-scale structure is presented. In Section 6, valuable conclusions are drawn according
to the numerical results.

2. The Proposed Double-Window Principal Component Analysis Method

In the following, the descriptions of PCA, MPCA, and the proposed DWPCA method will be
presented in sequence. It should be noted that MPCA introduces a moving time window in the
traditional PCA method, while the proposed DWPCA introduces both space and time windows.

2.1. PCA

PCA is a useful tool for reducing data dimensionality while retaining essential information for
manipulated datasets. The main objective is to transform original data to a smaller set of uncorrelated
variables [40]. For damage detection, PCA can be used to eliminate noise and simultaneously derive
damage-sensitive features such as eigenvectors. The data-processing steps of PCA are detailed as
below. The first step of PCA is the construction of a matrix, U(t), that contains the time histories of all
measured data:

U(t) =


u1(t1) u2(t1) · · · uM(t1)

u1(t2) u2(t2) · · · uM(t2)
...

...
. . .

...
u1(tN) u2(tN) · · · uM(tN)

, (1)

where t represents time, ui(i = 1, 2, · · · , M) denotes the response from the i-th sensor installed in the
monitored structure, M is the total sensor number, t j( j = 1, 2, · · · , N) denotes the j-th time step of
measurements, and N is the total number of time observations during monitoring. Note that the data
of each column are the time series of measurement events from each individual sensor.
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Subsequently, time series of each column or each sensor should be normalized by subtracting the
mean value given by:

ui =
1
N

N∑
j=1

ui(t j). (2)

The normalized matrix can then be written as:

U
′

(t) =


u1(t1) − u1 u2(t1) − u2 · · · uM(t1) − uM

u1(t2) − u1 u2(t2) − u2 · · · uM(t2) − uM
...

...
. . .

...
u1(tN) − u1 u2(tN) − u2 · · · uM(tN) − uM

. (3)

The next step is to construct the M×M covariance matrix, which is defined as:

C =
1
M

U
′T

U
′

. (4)

Finally, the eigenvalue λi and the corresponding eigenvector ψi of the covariance matrix can be
obtained by solving the following equation:

(C− λiI)ψi = 0, (5)

where I denotes the M × M identity matrix, ψi =
[
ψi,1 ψi,2 · · · ψi,M

]T
in which

ψi, j( j = 1, 2, · · · , M) is the component corresponding to the jth sensor.
Generally, one would sort the eigenvalues into decreasing order, namely λ1 > λ2 > · · · > λM.

Then, the first eigenvector ψ1 related to λ1 contains the largest variance and thereby retains essential
information for the original matrix U. In fact, most of the variance is contained in the first few principal
components, while the remaining less important components involve the measurement of noise.
For this reason, the first few eigenvectors are always used as sensitive features to detect and localize
damage. It can be seen that neither a space window nor time window is applied in PCA. The total
historical dataset including responses of healthy and damaged states is used for analysis, thereby
leading to low damage detectability.

2.2. MPCA

MPCA is an improved method based on PCA which involves applying a moving time window
of fixed size. Only the time series of observations inside the moving time window are used to
construct the covariance matrix for the derivation of eigenvalues and eigenvectors. Previous studies
have proven that the introduction of the moving time window enhances the discrimination between
features of undamaged and damaged structures, and thereby renders better performance for damage
detection [14,26]. Additionally, the sensitivity of MPCA for damage identification has proven to
be significantly improved as compared with other methods such as PCA, ARIMA, DWT, RRA and
IBM [12,13,39]. The proper choice of the window size T is also important in the first step. If the
response time series have periodic characteristics, the temporal window size should be equivalent to
the longest period. Once the time window size or the number of consecutive measurements for each
sensor inside the window is fixed, the matrix U in Equation (1) at the k-th time step can be rewritten as:

U(k) =


u1(tk) u2(tk) · · · uM(tk)

u1(tk+1) u2(tk+1) · · · uM(tk+1)

· · · · · ·
. . . · · ·

u1(tk+T−1) u2(tk+T−1) · · · uM(tk+T−1)

, (6)
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where k = 1, 2, · · · , N − T + 1. Note that the mean value of each column of U(k) at the k-th time step
would become,

ui(k) =
1
T

k+T−1∑
j=k

ui(t j). (7)

Next, repeating the steps of PCA, one is able to obtain the eigenvalue λi(k) and eigenvector ψi(k).
It should be noted that λi(k) and ψi(k) are time series and vary with the time step.

During continuous monitoring, responses are divided into two phases: training and monitoring
phases. In the training phase, the structure is assumed to behave normally (no damage). Then,
eigenvector variance between the training phase and the monitoring phase at the kth time step can be
determined by the following equation:

∆ψi(k) = ψi(k) −ψi, (8)

where ψi denotes the mean value of the ith eigenvector in training phase, while ∆ψi(k) represents
the eigenvector variance between ψi(k) and ψi at the kth time step of the monitoring phase, and
∆ψi(k) = [∆ψi,1(k)∆ψi,2(k) · · ·∆ψi,M(k)]T where ∆ψi, j(k) is the component of the eigenvector variance
(CEV) corresponding to the jth sensor. It should be noted that ∆ψi, j(k) is generally utilized as the feature
for anomaly detection in MPCA. CEV ∆ψi, j(k) by MPCA can be expressed in terms of eigenvector
components as follows:

∆ψi, j(k) = ψi, j(k) −ψi, j, (9)

where ψi, j denotes the mean value of the eigenvector component in a healthy state, and ∆ψi, j(k) can be

considered as the variation between ψi, j(k) in monitoring phase and ψi, j in healthy state. If ∆ψi, j(k)
exceeds a threshold, alarm will be flagged.

When damage occurs, structural responses may change, consequently causing variations in
eigenvectors and CEVs. Thus, one may follow the ∆ψi, j(k) over time to examine whether damage
exists. As indicated in Equation (6), MPCA uses only the latest T observations instead of the whole
time series. Once damage occurs, fewer data that are irrelevant to the damage, as compared with PCA,
are considered for the calculation, resulting in a better sensitivity for damage detection. However,
MPCA generally takes into account responses from all sensors. Some of the sensors may be insensitive
to damage located at a certain position. If a space window is used to group sensitive sensors, it is
possible to enhance damage detectability.

2.3. The Proposed DWPCA

When damage occurs, data from sensors close to damage location change significantly while data
from sensors away from damage may be unchanged. Hence, a novel DWPCA method is proposed
herein to combine space and time windows with PCA. It can also be treated as an improved method
for MPCA by the introduction of a space window. The application of the space window, in the aim of
enhancing damage detectability, is to group sensors sensitive to damage and to exclude those that
are insensitive. The key step for the choice of the space window is to determine the damage-sensitive
area (DSA), where measurement data change significantly when damage occurs. It should be noted
that the DSA varies with damage location as well as damage level. For example, the damage location
commonly decides the position of the DSA and a high damage level reasonably leads to a large DSA.

For the space window, a criterion as shown below is used for determination of the damage-sensitive
sensors which fall within the DSA: ∣∣∣∣[ud

i (t) − uh
i (t)

]
/uh

i (t)
∣∣∣∣ ≥ η, (10)
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where the superscripts d and h denote damaged and healthy states, respectively. For each measurement
time step, ud

i (t) represents the data from the i-th sensor in a damaged case, and uh
i (t) represents the

response in a healthy state. η is the lowest limit of a detectable relative change in response. Note that
∆ui(t) = ud

i (t) − uh
i (t) represents the variation of response under a damage condition. If

∣∣∣∆ui(t)/uh
i (t)

∣∣∣
is lower than the sensor sensitivity, it is impossible to detect the damage. Therefore, η should be chosen
as the sensor sensitivity. It should be noted that Equation (10) only applies to responses which are
sensitive to local damage. And in this paper, strains are used in the analysis. However, Equation (10)
may not be applicable to vibration monitoring, due to the fact that vibration responses are integral
structural effects and may not be sensitive to local damage.

A sensor is defined as damage-sensitive if the responses it acquires in the case of damage satisfy
the following formula:

nd/n ≥ p0, (11)

where n represents the total number of observations over time, nd represents the total number of
observations satisfying Equation (10), p0 is a given constant parameter that determines the lowest
possibility to define a damage-sensitive sensor. In fact, it is difficult to determine the exact value for p0

because it depends on the specific structures. In general, an approximate range for p0 can be given
as from 50% to 100%. This means if more than half of all observations at a certain scenario satisfy
Equation (10), then a sensor can be treated as damage-sensitive. Once an accurate FE model is given, an
accurate method for determining DSA according to Equation (11) can be provided based on numerical
simulations of various damaged cases (various combinations of damage locations and severities are
considered). Consequently, the space window can be defined as the set of sensors installed in DSA.
However, it is not possible to provide an accurate method to determine the DSA without an accurate FE
model, because the determination of DSA depends on specific structures including materials, types of
structures and boundary conditions. In such case, only empirical experience is available to determine
the DSA and the space window. For example, one can use diverse space windows of which each
involves several neighboring sensors. Because damage in general has more effects on those sensors
which are nearby, the space window that is nearest to the location of the damage is most likely to group
the sensors that are more sensitive to damage.

The space window is presented in the form of
[

i1 i2 · · · iS
]
, where i1, i2, · · · , iS are the

sensor numbers, and S represents the total number of sensors in the space window, in other words,
within the DSA. For example,

[
1 3 5 7

]
means Sensor 1, Sensor 3, Sensor 5, and Sensor 7 are

grouped inside the space window. Once the window is determined, one can conduct PCA with a
moving time window for measurement values to detect damage. In consideration of space and time
windows, Equation (6) can be rewritten as:

U(k) =


ui1(tk) ui2(tk) · · · uiS(tk)

ui1(tk+1) ui2(tk+1) · · · uiS(tk+1)

· · · · · · · · · · · ·

ui1(tk+T−1) ui2(tk+T−1)) · · · uiS(tk+T−1)

. (12)

Then, repeating the steps of PCA, one is able to obtain the time-variant eigenvector ψi(k) =[
ψi,1 ψi,2 · · · ψi,S

]T
. Similarly, with Section 2.2, herein ∆ψi, j(k) by DWPCA in a spatial window

can be obtained from Equation (9). By following the CEV ∆ψi, j(k) at each time step, damage can be
detected if ∆ψi, j(k) exceeds a certain threshold value. Meanwhile, it is possible to localize damage
through the space window by observing rapidly changing components. It can be seen in Equation
(12) that only sensitive responses are considered in the analysis for DWPCA. Thus, it is expected to
improve the performance of damage identification.
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3. Validation of DWPCA with a Planar Beam

3.1. Model for Simulation

To evaluate the effectiveness and efficiency of the proposed DWPCA method, large datasets
including responses from a structure under various damaged scenarios are needed. In practice, it
is not possible to acquire such datasets from a real civil structure because intentionally imparting
damage to the structure is not allowed for safety reasons. As a result, this study adopts a finite element
(FE) model of a planar beam established by ANSYS for calculations to obtain necessary datasets, as
shown in Figure 1. In the simulations, strain responses of the FE model under seasonal temperature
variations are computed under different damaged scenarios. Simulations for various damage severities
at different locations are achieved by exerting certain stiffness reductions in certain finite elements of
the model.
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Figure 1. Finite element model of a simply supported beam for simulations with ten strain
sensors installed.

The planar beam in Figure 1 is assumed to be 2.0 m in length (L) with a rectangular cross-section
of 0.4 m in height (h) and 0.2 m in width (t). The FE model is evenly discretized into 500 quadrilateral
elements with 50 elements for each row in the x-direction (beam length) and 10 elements for each
column in the y-direction (beam height). Note that each element of the meshes has a length of 0.04 m
and a height of 0.04 m. It is also assumed that the beam is composed of concrete with a Young’s
modulus of 34.5 GPa, a Poisson’s ratio of 0.2, and a thermal expansion coefficient of 1 × 10−5/

◦

C.
For the thermal loads, seasonal temperature variations are applied on the bottom and top surfaces.
The temperature on the bottom surface is set to be Tb = 20 + 10 sin(πt/730)(

◦

C), while that on the top
surface is Tt = Tb + 10(

◦

C). Note that the sinusoidal function in Tb has a period of one year, which
is consistent with the period of seasonal temperature variations. In addition, a linear temperature
distribution along the beam height is taken into consideration. During simulations, equivalent forces
caused by temperature variations are exerted on the nodes of each finite element to obtain strain
responses. In this paper, thermal excitations of four years are applied. Figure 2 illustrates the evolution
of temperatures at the top and bottom of the beam over four years.
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Additionally, a virtual SHM system is installed in the beam structure. As shown in Figure 1, the
system is assumed to be composed of ten strain sensors, of which five are installed on the top surface and
the other five on the bottom. For each damaged scenario, strain histories are computed for four years
with four measurements per day, i.e., 5840 measurement events in total for each sensor. In addition,
permanent damage is introduced at the beginning of the third year (after 2920 measurements) by
stiffness reductions at certain finite elements in the model.

In this paper, the following damaged scenarios, as illustrated in Figure 3, are considered for
comparative studies between MPCA and the proposed DWPCA:

(1). Scenario A: Damage in four finite elements at Sensor 1 as shown in Figure 3a;
(2). Scenario B: Damage in four finite elements at Sensor 3 as shown in Figure 3b;
(3). Scenario C: Damage in four finite elements at Sensor 6 as shown in Figure 3c;
(4). Scenario D: Damage in four finite elements at Sensor 8 as shown in Figure 3d;
(5). Scenario E: Damage in four finite elements near Sensor 1 as shown in Figure 3e;
(6). Scenario F: Damage in four finite elements near Sensor 3 as shown in Figure 3f;
(7). Scenario G: Damage in four finite elements near Sensor 6 as shown in Figure 3g;
(8). Scenario H: Damage in four finite elements near Sensor 8 as shown in Figure 3h.
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finite elements at Sensor 1; (b) damage in four finite elements at Sensor 3; (c) damage in four finite
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near Sensor 1; (f) damage in four finite elements near Sensor 3; (g) damage in four finite elements near
Sensor 6; (h) damage in four finite elements near Sensor 8.

3.2. Determination of the DSA

To determine the DSA in this study, the value of the parameter η is chosen as 5% because the sensor
sensitivity is assumed to be 5% in the simulation. As for p0, it is chosen as 60%, because it is observed
that if more than 60% of all observations in a certain scenario satisfy Equation (10), the sensor is found
to be damage-sensitive according to the simulation results. Figures 4 and 5 illustrate the calculated
strain variation, as well as the DSA, for Scenario A and Scenario B with a stiffness reduction of 80%,
respectively. It is seen that damage-sensitive elements are indeed more likely to lie in the vicinity of the



Sensors 2019, 19, 2521 9 of 23

damage location. However, as shown in Figures 4b and 5b, some finite elements are sensitive to damage
even though they are located far from the damage location. As a result, the determination of the DSA
should not be directly based on damage location. Numerical simulations can help this problem.Sensors 2019, 19, x FOR PEER REVIEW 9 of 23 
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In consideration of the simulation results for different damaged scenarios, as well as the symmetry
of the FE model in Figure 1, the following four listed windows are used for comparative studies
between MPCA and the proposed DWPCA:

(1). Window A involving all the sensors:
[

1 2 3 4 5 6 7 8 9 10
]
;

(2). Window B involving all the sensors at the bottom:
[

1 2 3 4 5
]
;

(3). Window C:
[

1 2 6 7
]
;

(4). Window D:
[

2 3 7 8
]
.

It should be noted that Window A is usually implemented in PCA and MPCA. If other windows
are applied, the algorithm will belong to the DWPCA method. In the following calculations, the time
window size for both MPCA and DWPCA is equal to one period of the thermal loads, namely one year
(1460 measurement events). The first principal component ψ1 is considered as the sensitive feature for
damage detection because most of the variance is contained in it.

4. Results and Discussion

In this section, comparative studies between DWPCA and MPCA in previous studies for damage
detection will be carried out on detection sensitivity, damage localization, and severity evaluation.
Noise immunity of the proposed features will also be investigated. To begin with, the effects of the
following two features on damage identification performance are investigated:

(1). CEV by MPCA: ∆ψM
i, j ;

(2). CEV by DWPCA: ∆ψDW
i, j .

Note that Window A is usually implemented in MPCA. Other windows including Window B to
Window D are implemented in the DWPCA method.
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4.1. Sensitivity for Damage Detection

To begin with, the effects of different windows on the time series CEVs are investigated. In the
simulations, four scenarios (A, B, C, and D) and four windows (A, B, C, and D) are considered for
a comparative study. In addition, a permanent stiffness reduction of 40% was introduced for the
corresponding finite elements at the beginning of the third year. Note that if Window A is used,
the method belongs to MPCA because all installed sensors are taken into account. As shown in
Figure 6, the time-variant CEVs of different scenarios and space windows are simulated. It can be
seen that before the damage occurs, CEVs are stable for all cases. However, there exists a shift for the
values after damage occurrence at all scenarios. In the unstable stage between the 2920th and 4380th
measurements, strains within the moving time window involve responses from both undamaged and
damaged states. As the time window moves forward, the corresponding CEVs will become stable
again after 4380 measurement events. This results from the fact that all strain time series within the
time window were obtained from the damaged structure after 4380 measurements. A closer look at
Figure 6 indicates that a more significant change is observed for the proposed DWPCA method with
Windows B, C, and D in contrast to MPCA with Window A. It is interesting to find that among the
used space windows, Window B, that contains all the sensors installed at the bottom as shown in
Figure 1, renders a more rapid and evident change in CEVs for the considered damaged scenarios as
compared with the healthy state. The result can be explained by the fact that, as illustrated by the
simulation results in Figures 4 and 5, damage has a greater influence on the responses at the bottom.
From a mechanical point of view, the sensors at the bottom are near the constraint boundaries and
any variations in the structure may lead to a more significant change in their responses. Additionally,
one can see from Figure 6 that damage at the bottom has more influence on structural responses and
CEVs than damage at the top, indicating that it is easier to detect damage at the bottom. In a word,
the proposed DWPCA uses a space window to exclude sensors outside the DSA, thereby leading to an
enhanced sensitivity for damage detection as compared with MPCA.
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In order to conduct a comparative study on the detection resolution and the time to detect damage
after damage occurrence between MPCA and the proposed DWPCA, a range of damage severities
are considered for simulations. Detection resolution is defined as the damage level that induces a
minimum detectable relative variation of CEVs in comparison with those in a healthy state. In this
paper, the minimum detectable relative CEV is chosen as the value when the variation rate of the
corresponding CEV with respect to time is equal to 0.67 µε/h. The time to detect damage is the period
from the moment the damage occurs to that when damage is detected. Figure 7 presents the time to
detect damage after damage occurrence with respect to damage levels ranging from the minimum
detectable level of each method to a maximum level of 99.9% in Scenarios A, B, C and D. For DWPCA,
the space window of Window B is considered in the simulations. As expected, higher damage levels at
any scenario result in a shorter detection time of damage for both methods. However, as the damage
level is lower than 70% for the considered scenarios, DWPCA shows a shorter time to detect damage
as compared with MPCA. Furthermore, this advantage of DWPCA is increasingly evident as the
damage level becomes smaller. Note that, usually, structural damage emerges is initially small and
gradually evolves to larger damage. The use of a space window means that DWPCA possesses a
superior capability in the early detection of damage and timely alarms in contrast to MPCA.
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Table 1 presents the detection resolution of both methods according to the simulation results in
Figure 7. It can be seen that DWPCA has a better detection resolution than MPCA for all scenarios,
except for Scenario B, in which the same resolution is observed for both methods. In fact, the damage
in Scenario B is located at the bottom of the mid-span and has significant effects on the structural
responses. Hence, MPCA exhibits a comparative detection resolution even though a space window
is not applied. For other cases, the detection resolution of DWPCA is commonly better than that of
MPCA, owing to the fact that the space window in DWPCA excludes sensors that are not sensitive
to damage. Further examination of Table 1 shows damage located at the bottom (Scenarios A and B)
is easier to detect than that located at the top (Scenario C and D) because damage at the bottom,
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generally, has more significant effects on the structural responses. In addition, DWPCA has the best
detection resolution of 0.1% in Scenario A, in which the damage is located at the bottom near the
constraint boundary, while it has the worst detection resolution of 10% for Scenario C, in which the
damage is located at the top near the sides of the beam. Table 2 presents the time to detect damage at a
minimum common level for both MPCA and DWPCA in different scenarios. It is clear that DWPCA
detects damage much earlier than MPCA. DWPCA takes about 7 to 21 days to detect damage after its
occurrence, while MPCA needs about 38 to 80 days. Note that in Scenario B, DWPCA detects damage
more rapidly than MPCA although MPCA has the same resolution as DWPCA. In addition, it is also
apparent that damage at the bottom (Scenarios A and B) is easier and quicker to detect than that at the
top (Scenarios C and D). In summary, it is demonstrated that damage detectability of the proposed
DWPCA is improved as compared with MPCA due to the application of a space window which groups
sensors within the DSA and excludes those insensitive to damage.

Table 1. Detection resolution of moving principal component analysis (MPCA) and double-window
PCA (DWPCA) for different scenarios.

Scenario
Detection Resolution in Damage Level (%)

MPCA DWPCA

A 1 0.1
B 1 1
C 30 10
D 10 5

Table 2. Time to detect damage of MPCA and DWPCA for different scenarios.

Scenario Stiffness Reduction (%)
Time to Detect Damage (Day)

MPCA DWPCA

A 1 38.25 7.75
B 1 52.5 14
C 30 58.75 11.75
D 10 79 21

4.2. Damage Localization

In Section 4.1, DWPCA has been demonstrated as a more effective tool to identify damage than
MPCA. In this subsection, a methodology for damage localization will be put forward by tracking the
time-variant CEVs based on the proposed DWPCA. Four Scenarios (E, F, G, and H) in Figure 3 and a
stiffness reduction of 40% are considered.

At first, cases in which damage is located at the bottom (Scenarios E and F) are considered.
Figure 8a–c show time-variant CEVs computed by DWPCA with different space windows for Scenario
E, in which the damage is located at the bottom between Sensor 1 and Sensor 2. For Window C, as
shown in Figure 8a, the CEVs corresponding to Sensor 1 and Sensor 2 show evident shifts after the
occurrence of damage as compared with those corresponding to Sensor 6 and Sensor 7. For Window D,
shown in Figure 8b, only the CEV corresponding to Sensor 2 has a relatively evident change owing to
the fact that Sensor 2 is the sensor that is located closest to the damage in the space window. As for
Window B, the CEV corresponding to Sensor 1 exhibits the most evident variation as compared with
other components. For Window A, as shown as Figure 8d, the CEV corresponding to Sensor 1 by MPCA
is smaller than that by DWPCA with Window C in Figure 8a or Window B in Figure 8c. It demonstrates
that the CEV corresponding to Sensor 1 computed by DWPCA is larger than that obtained by MPCA in
Scenario E. This proves that DWPCA is more sensitive for damage localization than MPCA. In addition,
one can infer from Figure 8 that damage is located close to Sensor 1 because the variation of the
corresponding CEV in various windows is the most notable. For Scenario F, in which the damage is
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located close to Sensor 3, similarly, the CEV related to Sensor 3 shows a significant change, as presented
in Figure 9, especially for both Windows B and D as compared with Window A. Subsequently, we
consider cases in which damage is located at the top (Scenarios G and H). The simulation results
are shown in Figure 10 for Scenario G and in Figure 11 for Scenario H, respectively. For Scenario G,
as expected, the CEV related to Sensor 6 is the most evident because the damage is in the vicinity of
Sensor 6. As for Scenario H, the CEV related to Sensor 8 displays an evident shift. From Figure 8 to
Figure 11, we can see that damage at the bottom has more significant effects on the corresponding
CEV as compared with that at the top. Furthermore, if the damage is located at the bottom, Window B
shows a better performance for damage localization because a larger variation is observed for the CEV.
However, if the damage is located at the top, Window C or D is preferred. In conclusion, it is seen that
DWPCA can be used to localize damage with the aid of various space windows and shows a better
performance for damage localization as compared with MPCA.
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4.3. Quantitative Evaluation of Damage

Based on the discussion above, a further investigation to provide a quantitative evaluation of
the damage using DWPCA is presented in this section. The relationship between the damage level
and stable absolute value of CEV after damage occurrence for a range of damage severities from 0.1%
to 99.9% in Scenarios A and B is presented in Figure 12. It can be seen from Figure 12a that the CEV
corresponding to Sensor 1 has a monotonically ascending trend as the damage level increases for both
MPCA with Window A and the proposed DWPCA with Window C. However, the corresponding
CEV for DWPCA with Window C varies more dramatically as a function of the damage level than
that of MPCA. A more evident discrimination between data from damaged and undamaged states is
observed for the proposed method. Thus, DWPCA has a higher sensitivity for quantitative evaluation
of damage as compared with MPCA. According to the simulation results of Scenario A in Figure 12a,
the damage level LD can be quantitatively evaluated in terms of

∣∣∣∆ψ1.1
∣∣∣ by DWPCA with Window C,

as indicated by:
LD = 0.714 ln

(∣∣∣∆ψDW
1.1

∣∣∣+ 0.190
)
+ 1.175 (13)

For Scenario B, as illustrated in Figure 12b, the related CEV also increases with an increase in
damage level for MPCA with Window A or DWPCA with Window D. Similarly, the variation of CEV
related to Sensor 3 by DWPCA is larger as compared with MPCA.
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Thus, the proposed DWPCA has a higher sensitivity for damage evaluation. For DWPCA with
Window D, as presented in Figure 12b, the damage level LD can be obtained from the calculated CEV
∆ψ1.3 with the use of the following equation:

LD = 0.588 ln
(∣∣∣∆ψDW

1.3

∣∣∣+ 0.090
)
+ 1.385 (14)

It should be noted that the relationship between the CEV and damage level is obtained by curve
fitting. This methodology for quantitative evaluation requires calibration or training with an accurate
FE model.

4.4. Noise Immunity

In practice, noise caused by external environmental factors or systematic errors in SHM is inevitable.
Consequently, data from SHM systems involve noise and may render damage identification methods
ineffective. As a result, noise immunity of the proposed DWPCA method should be investigated.
Based on the measured strain data in a large-scale bridge from the literature [39], the standard deviation
of noise is considered to be from 1.25 µε to 5 µε. Note that strain responses in the simulations are
approximately 150 µε. Thus, the noise level ranges from 0.8% to 3.3%. The relationship between CEV
and damage level in Scenarios A and B, in which different intensities of noise are present is presented
in Figure 13. It can be seen that noise has little influence on the relationship between the CEV absolute
value and the damage level in DWPCA. This is due to the favorable de-noising characteristic of PCA.
In a word, the proposed DWPCA method in this study has considerably good noise immunity and
shows potential for applications in practical engineering.
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5. Application to a Full-Scale Structure

Based on the validation for DWPCA with a planar beam in Sections 3 and 4, in this section,
further investigation of the performance of DWPCA for a large-scale structure will be carried out
to demonstrate its applicability for practical engineering purposes. The full-scale FE model will be
based on the Xijiang Bridge in Zhaoqing, China. The bridge is a continuous rigid frame bridge built
in 2004 in the Guangdong province, China. It consists of seven spans with a total length of 808 m.
The photograph and schematic diagram of its structure are presented in Figure 14. Properties of the
bridge are summarized in Table 3.
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Table 3. Properties of each part of the Xijiang Bridge in Zhaoqing, China.

Parts Material Elastic Modulus (GPa) Poisson Ratio

Pier
1# Concrete 34.5 0.2

2#–6# Concrete 30.0 0.2

Bridge deck Box girder Concrete 32.5 0.2
Non-pressed and pressed steel Steel 195.0 0.3

In order to demonstrate the sensitivity of DWPCA for damage detection of the full-scale structure,
response data from different damage scenarios should be prepared. Since the bridge is in good
conditions after the completion of construction stages, there are no damage events that could have
generated unusual structural behavior. For the purposes of application of DWPCA on real structures,
a full-scale FE model of the bridge is established. The strain responses under seasonal temperature
variations presented in Figure 2 in Section 3 are obtained. Continuous structural health monitoring
responses of four years at a sampling frequency of four measurements per day are collected.

Local damage is assumed to be introduced in the span between the 2# and 3# piers of the bridge, as
shown in Figure 14b. Sensors are embedded every 5 m along the bridge length, as shown in Figure 15a.
The arrangement of the sensor locations on the top, webs and bottom of the girder box are given in
Figure 15b. Note that there are 29 monitoring sections, and each section has six sensors installed in this
span. Thus, there are 174 sensors in total and these are numbered from top to bottom, from left to
right (Section 1 to Section 29 ) in sequence. In the FE model, damage is assumed to be at a specific
element of the bridge with a permanent stiffness reduction and is introduced at the beginning of the
third year. Two different damage scenarios with different damage locations marked as red are shown
in Figure 16a,b:

(1). Scenario A: Damage between Section 1 and Section 2 in the vicinity of Sensor 8 and Sensor 10,
as shown in Figure 16a;

(2). Scenario B: Damage between Section 14 and Section 15 close to Sensor 84, as shown in Figure 16b.

Space windows which are related to the DSA should be determined. During the DSA analysis in
this section, the parameter η in Equation (10) is equal to 5%. The p0 in Equation (11) is set to be 60%.
After simulations for a large number of damage scenarios, it was found that the DSA is more likely
to lie within two neighboring monitoring sections that are located close to the damage. Especially,
when the damage is located quite close to one monitoring section, the DSA is located in the vicinity of
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this section. The space windows considered herein contain sensors from two neighboring monitoring
sections or from one section that is closest to the damage. Thus, for brevity of demonstration, only
the following spatial windows are used for comparative studies between MPCA and the proposed
DWPCA:

(a) Window A involving all the sensors:
[

1 2 . . . 174
]
;

(b) Window B involving sensors from Section 1 and Section 2 :
[

1 2 . . . 12
]
;

(c) Window C involving sensors from Section 14 and Section 15 :
[

79 80 . . . 90
]
;

(d) Window D involving sensors from Section 1 :
[

1 2 . . . 6
]
;

(e) Window E involving sensors from Section 2 :
[

7 8 . . . 12
]
;

(f) Window F involving sensors from Section 14 :
[

79 80 . . . 84
]
;

(g) Window G involving sensors from Section 15 :
[

85 86 . . . 90
]
.
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Figure 16. Damaged scenarios for evaluation of the damage detection algorithms: (a) damage with a
stiffness reduction of 40% in the vicinity of Sensor 8 and Sensor 10; (b) damage with a stiffness reduction
of 40% close to Sensor 84.

Comparative studies of CEVs computed by MPCA (∆ψM
ij ) and DWPCA (∆ψDW

ij ), respectively,
on damage detection for this bridge are presented as follows. Window A is still used in MPCA.
Other windows including Window B to Window G will belong to the DWPCA method in the
following demonstration.

Figure 17 shows the evolution of CEVs by MPCA and DWPCA upon application in two different
damage scenarios. Similarly to that of the planar beam, there are no relative variations in the
corresponding CEVs in the first two years since there is no damage. In addition, there exists a shift after
damage occurrence in all scenarios when the time window involves responses from both damaged
and healthy states. Then, the corresponding CEVs will become stable again after 4380 measurement
events when responses within the time window are obtained from the damaged structure after
4380 measurements. Note that a more significant change of corresponding CEVs by the proposed
DWPCA method with Window B, C, E, or F are observed in contrast to MPCA with Window A in both
scenarios. Additionally, Windows E and F, which consist of sensors from only one monitoring section,
perform better than Windows B and C, which contain sensors from two neighboring monitoring
sections, when damage is located quite close to one monitoring section.
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Figure 17. Evolution of the corresponding CEVs for different space windows: (a) Scenario A;
(b) Scenario B.

After the investigation of DWPCA in damage identification in the bridge, a closer look at all CEVs
evolutions within a spatial window will be further explored for damage localization. Figure 18a shows
the evolution of CEVs computed by DWPCA with Window D and E for Scenario A, in which the
damage is located between Section 1O and Section 2O, close to Sensor 10. For Window D and E, as
shown in Figure 18a, the CEVs corresponding to Sensor 7, Sensor 8, Sensor 9 and Sensor 10 shows
an evident shift after damage occurrence as compared with other sensors which are located far from
damage. This is due to the fact that Sensor 7, Sensor 8, Sensor 9 or Sensor 10 is the nearest to damage in
the corresponding space window. For Scenario B in Figure 18b, as expected, the CEV related to Sensor
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84 is the most evident because the damage is in the vicinity of Sensor 84. Figure 18b also indicates that
the CEVs corresponding to Sensor 81, Sensor 82, and Sensor 83, which are close to damage, also have a
remarkable shift after damage occurrence. It is seen that DWPCA can be used to localize damage with
the aid of various space windows for complex engineering structures.
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Based on the discussion in Section 4.3, the relationship between the damage level and stable
absolute value of CEV after damage occurrence for a range of damage severities in simple beams can
be quantitatively evaluated. Similarly, for Scenarios A, the damage level LD can be quantitatively
evaluated in terms of

∣∣∣∆ψ1.10
∣∣∣ by DWPCA with Window E in Figure 19a, as indicated by:

LD = 1.25 ln
(∣∣∣∆ψDW

1.10

∣∣∣+ 0.037
)
+ 4.121 (15)
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As for DWPCA with Window F for Scenario B, as presented in Figure 19b, the damage level LD

can also be obtained from the calculated
∣∣∣∆ψ1.84

∣∣∣ with the use of the following equation:

LD = 1.25 ln
(∣∣∣∆ψDW

1.84

∣∣∣+ 0.032
)
+ 4.303 (16)

In summary, the proposed method DWPCA is demonstrated to be feasible for damage detection
for large-scale structures. Results show that, similarly with the conclusion drawn in Section 4 for
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the planar beam, DWPCA has better performance in damage identification, damage localization and
damage quantitative evaluation, as compared with the previous method MPCA. The is due to that the
space windows used in DWPCA are capable of excluding damage-insensitive data from those sensors
located far from the damage to enhance the damage detectability The proposed method is proven to
have potential in applications for practical engineering.

6. Conclusions

This paper provides a novel effective method for structural damage detection by introduction of
space and time windows in the traditional principal component analysis method. Due to the presence
of the space window, the damage-insensitive data from those sensors located far from the damage are
excluded in the analysis, and the damage detectability of the proposed method is improved in contrast
to previous methods. Numerical results with a planar beam model demonstrate that the proposed
method DWPCA, as compared with MPCA, improves the resolution for damage identification and
is also quicker to detect damage after its occurrence. DWPCA is successful to detect minor damage
with 0.1% stiffness reduction and identify damage 31 to 59 days earlier as compared with MPCA
for a planar beam. With the aid of various space windows, the method is verified to have a better
performance for damage localization as well. As for a quantitative evaluation of the damage severities
from 0.1% to 99.9% for a planar beam, DWPCA proves to be more sensitive than previous methods.
Finally, the proposed method is demonstrated to have good noise immunity and the result with a
full-scale structure shows potential for applications in practical engineering. Further investigation
will be focused on the feasibility of the proposed methodology to large-scale structures under more
complicated loads such as real temperature variations and vehicle loads.
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