
sensors

Article

The Lightweight Autonomous Vehicle Self-Diagnosis
(LAVS) Using Machine Learning Based on Sensors
and Multi-Protocol IoT Gateway

YiNa Jeong, SuRak Son and ByungKwan Lee *

Department of Computer Engineering, Catholic Kwandong University, Gangneung 25601, Korea;
lupinus07@nate.com (Y.J.); sonsur@naver.com (S.S.)
* Correspondence: bklee@cku.ac.kr; Tel.: +82-33-649-7573

Received: 5 April 2019; Accepted: 31 May 2019; Published: 3 June 2019
����������
�������

Abstract: This paper proposes the lightweight autonomous vehicle self-diagnosis (LAVS) using
machine learning based on sensors and the internet of things (IoT) gateway. It collects sensor data from
in-vehicle sensors and changes the sensor data to sensor messages as it passes through protocol buses.
The changed messages are divided into header information, sensor messages, and payloads and they
are stored in an address table, a message queue, and a data collection table separately. In sequence,
the sensor messages are converted to the message type of the other protocol and the payloads are
transferred to an in-vehicle diagnosis module (In-VDM). The LAVS informs the diagnosis result of
Cloud or road side unit(RSU) by the internet of vehicles (IoV) and of drivers by Bluetooth. To design
the LAVS, the following two modules are needed. First, a multi-protocol integrated gateway module
(MIGM) converts sensor messages for communication between two different protocols, transfers the
extracted payloads to the In-VDM, and performs IoV to transfer the diagnosis result and payloads
to the Cloud through wireless access in vehicular environment(WAVE). Second, the In-VDM uses
random forest to diagnose parts of the vehicle, and delivers the results of the random forest as an
input to the neural network to diagnose the total condition of the vehicle. Since the In-VDM uses
them for self-diagnosis, it can diagnose a vehicle with efficiency. In addition, because the LAVS
converts payloads to a WAVE message and uses IoV to transfer the WAVE messages to RSU or the
Cloud, it prevents accidents in advance by informing the vehicle condition of drivers rapidly.

Keywords: in vehicle-diagnosis; random forest; IoV; integrated gateway; neural network

1. Introduction

Due to the introduction of the Fourth Industrial Revolution, information and communication
technology (ICT) technology has been applied in various industries and is being developed. Among
them, the automobile industry is actively utilizing internet of things (IoT) technology for autonomous
vehicles. In addition, many automotive companies around the world are busy developing their
technology through various competitions and interactions.

Autonomous driving technology is divided into 0–5 levels. Level 0 means no autonomous
driving. Level 1 is a state where one autonomous driving technology is applied. In level 2, an
advanced driver assistance system (ADAS) on the vehicle can itself actually control both steering and
braking/accelerating simultaneously under some circumstances. The human driver must continue to
pay full attention at all times and perform the rest of the driving tasks. Level 3 is incomplete but is
capable of autonomous driving and requires the driver to be ready to drive in an emergency. Level 4 is
the stage in which the automatic driving system (ADS) of a vehicle performs all the driving tasks and
monitors the driving environment in specific situations. The driver does not need to pay attention in

Sensors 2019, 19, 2534; doi:10.3390/s19112534 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/11/2534?type=check_update&version=1
http://dx.doi.org/10.3390/s19112534
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2534 2 of 24

such situations. Level 5 is a fully autonomous car that does not require a person to drive at all [1]. In
the automobile industry, development has been achieved satisfying level 4, but commercialization has
not yet been achieved. In order to commercialize autonomous unmanned vehicles, there are several
problems to be solved such as the stabilization of software and the perception change about safety.

The first problem to be solved is to improve a communication environment. The autonomous
vehicle is equipped with a variety of internal sensors to collect data, and the collected data is exchanged
with the Cloud server using a vehicle communication protocol. At this time, the Cloud server combines
the data received from the sensor with various algorithm formulas to organically transmit commands
to the vehicle or generate new data. There are various sensors in the vehicle to collect data. As
the number of sensors gets increased, a vehicle uses several kinds of protocols for communication.
Existing vehicle gateways, however, did not support some of the major protocols used in the vehicle,
or rapid communication.

The second problem is to extend the scope of vehicle diagnosis. Autonomous vehicles perform
their own diagnosis and driving simultaneously. Since existing vehicles use on board diagnostics (OBD)
to perform fault-diagnosis, there is a problem in processing speed and it is impossible to diagnose a
large amount of sensor data. Recent studies use neural network models to diagnose a vehicle, but they
diagnose only specific parts, not the overall condition of the vehicle. In addition, special hardware
equipment is required to run neural network models in the vehicle in real time.

This paper presents the following main functions to solve these problems. First, the multi-protocol
integrated gateway module (MIGM) in the lightweight autonomous vehicle self-diagnosis (LAVS)
acts as an internal gateway to existing vehicles, ensures the traffic of vehicle communication in real
time, and manages sensor messages for vehicle diagnosis. Second, to improve autonomous vehicle
processing speed and accuracy, the in-vehicle diagnosis module (In-VDM) in the LAVS combines a
random forest with a neural network model. It not only diagnoses the parts of a vehicle by learning a
random forest model, but also the total condition of a vehicle by learning a neural network model.
Therefore, the LAVS can reduce the overload of vehicle-to-cloud(V2C) communication because it
delivers only diagnostic results to the Cloud and improve the safety of an autonomous vehicle.

The composition of this paper is as follows. Section 2 describes the existing studies related to
the LAVS in this paper. Section 3 details the structure and operation of the LAVS. Section 4 compares
it with the existing methods to analyze the performance. Section 5 discusses the conclusion of the
proposed LAVS and future research directions.

2. Related Works

2.1. Gateway

Vehicle gateways are the most important technology in autonomous vehicles. Basically, this not
only enables communication between the server and the sensor but also leads to a serious accident if
the communication environment of an autonomous vehicle becomes unstable. Therefore, researches
on automotive gateways in various fields are actively underway.

Radier et al. proposed a vehicle gateway (VGW) that is auto-configured by the network and that
eases mobility management. Indeed, the high mobility of a vehicle may imply many changes of access
points; nevertheless, the connection must not be broken even during these access point changes. The
connection to the new access point must be authorized and the VGW authenticated before leaving the
communication range of the last access point. It also introduces a knowledge plane. The role of the
knowledge plane is to know the environment of the user, to define the better link to use and control the
mobility of the VGW introducing also new architecture to securely bind the user to the IP multimedia
subsystem (IMS) [2].

Xie et al. examines in detail the various actual arriving orders of gateway messages and analyzes
the real-time property of such in-vehicle networks. Worst case response time (WCRT) analysis for
gateway-integrated controller area network (CAN) messages has been used. In this study, experimental

Sensors 2019, 19, 2534 3 of 24

results for a real message set demonstrates as much as 24% reduction of WCRT, compared with those
obtained using the state-of-the-art methods [3].

Kim et al. presents a FlexRay-CAN gateway using a node-mapping method. The provided
gateway describes the operating algorithm. In addition, it also solves the problem of having to reload
the modified message mapping table on the gateway if the network message ID change and software
complexity changes. This gateway solves three problems. First, when the message ID for the network
is changed, the gateway must be reloaded with the revised message-mapping table. Second, if the
number of messages exchanged is increased in the network, the complexity of the gateway software
rapidly increases. In order to overcome these obstacles, this paper presents a FlexRay-CAN gateway
using a node-mapping method. A gateway operation algorithm is described, and an experimental
evaluation for ID change and software complexity is presented [4].

Kim et al. proposes a gateway framework for in-vehicle networks (IVNs) based on the controller
area network (CAN), FlexRay, and Ethernet. The proposed gateway framework is designed to be easy
to reuse and verify to reduce development costs and time. The gateway framework can be configured,
and its verification environment is automatically generated by a program with a dedicated graphical
user interface (GUI). The gateway framework provides state-of-the-art functionalities that include
parallel reprogramming, diagnostic routing, network management (NM), dynamic routing update,
multiple routing configuration, and security [5].

Benslimane envisions a vehicular ad hoc network (VANET)-universal mobile telecommunication
system (UMTS) integrated network architecture. In this architecture, vehicles are dynamically clustered
according to different related metrics. From these clusters, a minimum number of vehicles, equipped
with IEEE 802.11p and UTRAN interfaces, are selected as vehicular gateways to link VANET to UMTS.
Issues pertaining to gateway selection, gateway advertisement and discovery, and service migration
between gateways (i.e., when serving gateways lose their optimality) are all addressed and an adaptive
mobile gateway management mechanism is proposed [6].

Omar et al. introduces a new strategy for deploying internet gateways on the roads, together
with a novel scheme for data packet routing, in order to allow a vehicle to access the internet via
multi-hop communications in a VANET. The gateway placement strategy is to minimize the total cost of
gateway deployment, while ensuring that a vehicle can connect to an internet gateway (using multi-hop
communications) with a probability greater than a specified threshold. This cost-minimization problem
is formulated using binary integer programming, and applied to a realistic city scenario, consisting of
the roads around the University of Waterloo, Waterloo, ON, Canada. On the other hand, the developed
packet routing scheme is based on a multichannel medium access control protocol, known as VeMAC,
using time division multiple access. The performance of this cross-layer design is evaluated for a
multichannel VANET in a highway scenario, mainly in terms of the end-to-end packet delivery delay.
The end-to-end delay is calculated by modeling each relay vehicle as a queuing system, in which the
packets are served in batches of no more than a specified maximum batch size [7].

Kaveh et al. proposed the connectivity-aware minimum-delay geographic routing (CMGR)
protocol for vehicular ad hoc networks (VANETs), which adapts well to continuously changing network
status in such networks. When the network is sparse, CMGR takes the connectivity of routes into
consideration in its route selection logic to maximize the chance of packet reception. On the other hand,
in situations with dense network nodes, CMGR determines the routes with adequate connectivity and
selects among them the route with the minimum delay. The performance limitations of CMGR in
special vehicular networking situations are studied and addressed. These situations, which include
the case where the target vehicle has moved away from its expected location and the case where
traffic in a road junction is so sparse that no next-hop vehicle can be found on the intended out-going
road, are also problematic in most routing protocols for VANETs. Finally, the proposed protocol is
compared with two plausible geographic connectivity-aware routing protocols for VANETs, A-STAR,
and vehicle-assisted data delivery (VADD) [8].

Sensors 2019, 19, 2534 4 of 24

Maurizio et al. proposed a new combinatorial optimization problem that arises from the framework
of rule-based risk mitigation policies for the routing of gateway location problem (GLP) hazardous
materials vehicles. GLP consists of locating a fixed number of check points (so called gateways) selected
out of a set of candidate sites and routing each vehicle through one assigned gateway in such a way
that the sum of the risks of vehicle itineraries is minimized. This paper addresses a GLP preparatory
step, that is, how to select candidate sites, and it investigates the impact of different information guided
policies for determining such a set. All policies consist of selecting a ground set and sampling it
according to a probability distribution law. A few criteria are proposed for generating ground sets as
well as a few probability distribution laws. A deterministic variant based on a cardinality constrained
covering model is also proposed for generating candidate site sets [9].

Lee et al. proposes a synchronization mechanism for FlexRay and Ethernet audio video bridging
(AVB) network that guarantees a high quality-of-service. Moreover, this study uses an in-vehicle
network environment that consists of FlexRay and Ethernet AVB networks using an embedded system,
which is integrated and synchronized by the gateway. The synchronization mechanism provides the
timing guarantees for the FlexRay network that are similar to those of the Ethernet AVB network.
Figure 1 shows the use of the Ethernet AVB switch to communicate between the event-based CAN
protocol and the timing-based FlexRay protocol [10].

Sensors 2019, 19, x FOR PEER REVIEW 4 of 24

Maurizio et al. proposed a new combinatorial optimization problem that arises from the
framework of rule-based risk mitigation policies for the routing of gateway location problem (GLP)
hazardous materials vehicles. GLP consists of locating a fixed number of check points (so called
gateways) selected out of a set of candidate sites and routing each vehicle through one assigned
gateway in such a way that the sum of the risks of vehicle itineraries is minimized. This paper
addresses a GLP preparatory step, that is, how to select candidate sites, and it investigates the impact
of different information guided policies for determining such a set. All policies consist of selecting a
ground set and sampling it according to a probability distribution law. A few criteria are proposed
for generating ground sets as well as a few probability distribution laws. A deterministic variant
based on a cardinality constrained covering model is also proposed for generating candidate site sets
[9].

Lee et al. proposes a synchronization mechanism for FlexRay and Ethernet audio video bridging
(AVB) network that guarantees a high quality-of-service. Moreover, this study uses an in-vehicle
network environment that consists of FlexRay and Ethernet AVB networks using an embedded
system, which is integrated and synchronized by the gateway. The synchronization mechanism
provides the timing guarantees for the FlexRay network that are similar to those of the Ethernet AVB
network. Figure 1 shows the use of the Ethernet AVB switch to communicate between the event-
based CAN protocol and the timing-based FlexRay protocol [10].

Figure 1. The communication between the controller area network (CAN) and FlexRay.

Aljeri et al. proposed a reliable quality of service (QoS) aware and location aided gateway
discovery protocol for vehicular networks by the name of fault tolerant location-based gateway
advertisement and discovery. One of the features of this protocol is its ability to tolerate gateway
routers and/or road vehicle failure. Moreover, this protocol takes into consideration the aspects of the
QoS requirements specified by the gateway requesters; furthermore, the protocol insures load
balancing on the gateways as well as on the routes between gateways and gateway clients [11].

Duan et al. proposed software defined networking (SDN) enabled 5G VANET. With proposed
dual cluster head design and dynamic beamforming coverage, both trunk link communication
quality and network robustness of vehicle clusters are significantly enhanced. Furthermore, an
adaptive transmission scheme with selective modulation and power control is proposed to improve
the capacity of the trunk link between the cluster head and base station. With cooperative
communication between the mobile gateway candidates, the latency of traffic aggregation and
distribution is also reduced [12].

Ju et al. proposed a novel gateway discovery algorithm for VANETs, providing an efficient and
adaptive location-aided and prompt gateway discovery mechanism (LAPGD). Here, all vehicles go
across selected mobile gateways to access 3G networks instead of a direct connection. The algorithm
aims to ensure every vehicle is capable of finding its optimal gateway, to minimize the total number
of gateways selected in VANETs, and to guarantee the average delay of packets within an allowable
range [13].

Jeong et al. proposed “An Integrated Self-diagnosis System (ISS) for an Autonomous Vehicle
based on an Internet of Things (IoT) Gateway and Deep Learning”. The ISS collects data from the

Figure 1. The communication between the controller area network (CAN) and FlexRay.

Aljeri et al. proposed a reliable quality of service (QoS) aware and location aided gateway
discovery protocol for vehicular networks by the name of fault tolerant location-based gateway
advertisement and discovery. One of the features of this protocol is its ability to tolerate gateway
routers and/or road vehicle failure. Moreover, this protocol takes into consideration the aspects of
the QoS requirements specified by the gateway requesters; furthermore, the protocol insures load
balancing on the gateways as well as on the routes between gateways and gateway clients [11].

Duan et al. proposed software defined networking (SDN) enabled 5G VANET. With proposed
dual cluster head design and dynamic beamforming coverage, both trunk link communication quality
and network robustness of vehicle clusters are significantly enhanced. Furthermore, an adaptive
transmission scheme with selective modulation and power control is proposed to improve the capacity
of the trunk link between the cluster head and base station. With cooperative communication between
the mobile gateway candidates, the latency of traffic aggregation and distribution is also reduced [12].

Ju et al. proposed a novel gateway discovery algorithm for VANETs, providing an efficient and
adaptive location-aided and prompt gateway discovery mechanism (LAPGD). Here, all vehicles go
across selected mobile gateways to access 3G networks instead of a direct connection. The algorithm
aims to ensure every vehicle is capable of finding its optimal gateway, to minimize the total number
of gateways selected in VANETs, and to guarantee the average delay of packets within an allowable
range [13].

Jeong et al. proposed “An Integrated Self-diagnosis System (ISS) for an Autonomous Vehicle
based on an Internet of Things (IoT) Gateway and Deep Learning”. The ISS collects data from the

Sensors 2019, 19, 2534 5 of 24

sensors of a vehicle, diagnoses the collected data, and informs the driver of the result. The ISS considers
the influence between its parts by using deep learning when diagnosing the vehicle. By transferring
the self-diagnosis information and by managing the time to replace the car parts of an autonomous
driving vehicle safely, ISS reduces loss of life and overall cost [14]. They proposed “A Lightweight
In-Vehicle Edge Gateway (LI-VEG)” for the self-diagnosis of an autonomous vehicle. LI-VEG supports
a rapid and accurate communication between in-vehicle sensors and a self-diagnosis module and
between in-vehicle protocols. The LI-VEG has higher compatibility and is more cost effective because it
applies a software gateway to the OBD, compared to a hardware gateway. In addition, it can reduce the
transmission error and overhead caused by message decomposition because of a lightweight message
header [15].

2.2. Random-Forest

Mu used a random forest algorithm to increase customer loyalty through investigations of customer
statistics, and dynamic and enterprise service attributes. As a result, we have taken appropriate steps
to improve the accuracy of our forecasts of customer loyalty and to prevent customer losses [16].
Figure 2 shows high level architecture of the proposed system. Though identifying eating-related
gestures using wrist-worn devices is a viable application of the watch, the focus of our work is to
explore the idea of using audio to detect eating behavior based on bites, rather than swallows as other
works have done.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 24

sensors of a vehicle, diagnoses the collected data, and informs the driver of the result. The ISS
considers the influence between its parts by using deep learning when diagnosing the vehicle. By
transferring the self-diagnosis information and by managing the time to replace the car parts of an
autonomous driving vehicle safely, ISS reduces loss of life and overall cost [14]. They proposed “A
Lightweight In-Vehicle Edge Gateway (LI-VEG)” for the self-diagnosis of an autonomous vehicle. LI-
VEG supports a rapid and accurate communication between in-vehicle sensors and a self-diagnosis
module and between in-vehicle protocols. The LI-VEG has higher compatibility and is more cost
effective because it applies a software gateway to the OBD, compared to a hardware gateway. In
addition, it can reduce the transmission error and overhead caused by message decomposition
because of a lightweight message header [15].

2.2. Random-Forest

Mu used a random forest algorithm to increase customer loyalty through investigations of
customer statistics, and dynamic and enterprise service attributes. As a result, we have taken
appropriate steps to improve the accuracy of our forecasts of customer loyalty and to prevent
customer losses [16]. Figure 2 shows high level architecture of the proposed system. Though
identifying eating-related gestures using wrist-worn devices is a viable application of the watch, the
focus of our work is to explore the idea of using audio to detect eating behavior based on bites, rather
than swallows as other works have done.

Figure 2. A high level architecture of the proposed system.

Kalantarian et al. described signal-processing techniques for identification of chews and
swallows using smart watch devices built-in microphone. In addition, the goal is to evaluate the
potential of smartwatches as a platform for nutrition monitoring. Thus, signal processing technology
uses random forest classifiers to classify sounds in a given environment. Random forests classify
sounds based on a certain number of samples [17].

Huang et al. proposed a classification algorithm based on local cluster centers (CLCC) for data
sets with a few labeled training data. The experimental results on uci data sets show that CLCC
achieves competitive classification accuracy as compared to other traditional and state-of-the-art
algorithms, such as sequential minimal optimization (SMO), adaptive boosting (AdaBoost), random
tree, random forest, and co-forest [18].

Kalantarian et al. proposed a probabilistic algorithm for segmenting time-series signals, in which
window boundaries are dynamically adjusted when the probability of the correct classification is
low. Time-series segmentation refers to the challenge of subdividing a continuous stream of data into

Figure 2. A high level architecture of the proposed system.

Kalantarian et al. described signal-processing techniques for identification of chews and swallows
using smart watch devices built-in microphone. In addition, the goal is to evaluate the potential of
smartwatches as a platform for nutrition monitoring. Thus, signal processing technology uses random
forest classifiers to classify sounds in a given environment. Random forests classify sounds based on a
certain number of samples [17].

Huang et al. proposed a classification algorithm based on local cluster centers (CLCC) for data sets
with a few labeled training data. The experimental results on uci data sets show that CLCC achieves
competitive classification accuracy as compared to other traditional and state-of-the-art algorithms,
such as sequential minimal optimization (SMO), adaptive boosting (AdaBoost), random tree, random
forest, and co-forest [18].

Kalantarian et al. proposed a probabilistic algorithm for segmenting time-series signals, in which
window boundaries are dynamically adjusted when the probability of the correct classification is

Sensors 2019, 19, 2534 6 of 24

low. Time-series segmentation refers to the challenge of subdividing a continuous stream of data into
discrete windows, which are individually processed using statistical classifiers to recognize various
activities or events. The algorithm improves the number of correctly classified instances from a baseline
of 75%–94% using the random forest classifier [19].

Tahani et al. proposed the three data mining algorithms, namely the self-organizing map (SOM),
C4.5, and random forest. They are applied on adult population data from the Ministry of National
Guard Health Affairs (MNGHA), Saudi Arabia to predict diabetic patients using 18 risk factors. Health
care data is often huge, complex, and heterogeneous because it contains different variable types and
missing values as well. Therefore, data extraction using data mining was applied. Random forest
achieved the best performance compared to other data mining classifiers [20].

AI-Jarrah et al. proposes a semi-supervised multi-layered clustering model (SMLC) for network
intrusion detection and prevention tasks. SMLC has the capability to learn from partially labeled
data while achieving a detection performance comparable to that of the supervised Machine Learning
(ML)-based intrusion detection and prevention system (IDPS). The performance of the SMLC is
compared with a well-known semi-supervised model (i.e., tri-training) and supervised ensemble ML
models, namely, random forest, bagging, and AdaboostM1 on two benchmark network intrusion
datasets, the NSL and Kyoto 2006+. In addition, SMLC demonstrates detection accuracy comparable
to that of the supervised ensemble models [21].

Meeragandhi et al. evaluates the performance of a set of classifier algorithms of rules (JRIP,
decision table, PART, and OneR) and trees (J48, random forest, REP Tree, and NB Tree). Based on the
evaluation results, the best algorithms for each attack category are chosen and two classifier algorithm
selection models are proposed. The classification models used the data collected from knowledge
discovery databases (KDD) for intrusion detection. The trained models were then used for predicting
the risk of the attacks in a web server environment or by any network administrator or any security
experts [22].

Huang et al. proposes an approach to diagnose broken rotor bar failure in a line start-permanent
magnet synchronous motor (LS-PMSM) using random forests. The transient current signal during the
motor startup was acquired from a healthy motor and a faulty motor with a broken rotor bar fault.
He extracted 13 statistical time domain features from the startup transient current signal, and used
these features to train and test a random forest to determine whether the motor was operating under
normal or faulty conditions. For feature selection, the feature importances from the random forest
were used to reduce the number of features to two features. The results showed that the random forest
classifies the motor condition as healthy or faulty with an accuracy of 98.8% using all features and with
an accuracy of 98.4% using only the mean-index and impulsion features. This approach can be used in
the industry for online monitoring and fault diagnostic of LS-PMSM motors and the results can be
helpful for the establishment of preventive maintenance plans in factories [23].

3. A Design of the Lightweight Autonomous Vehicle Self-Diagnosis (LAVS)

3.1. Overview

In this section, Figure 3 shows the structure of the LAVS, which has two key modules in this
paper: Multi-protocol integrated gateway module (MIGM) and in-vehicle diagnosis module (In-VDM).
First, the MIGM supports communication between the internal protocols of a vehicle and transmits the
payloads of sensor messages collected from the vehicle to the In-VDM. To improve the accuracy and
processing speed of vehicle diagnosis, the In-VDM applies the random forest to the part self-diagnosis
and the neutral network to the total self-diagnosis. It performs the part diagnosis of the vehicle itself
independently of the Cloud and uses the results of this part diagnosis as an input for the total diagnosis
of the vehicle.

Sensors 2019, 19, 2534 7 of 24
Sensors 2019, 19, x FOR PEER REVIEW 7 of 24

Figure 3. The structure of the lightweight autonomous vehicle self-diagnosis (LAVS).

3.2. The Multi-Protocol Integrated Gateway Module (MIGM)

Since the MIGM supports the in-vehicle communication between two protocols, transfers the
payloads to the In-VDM rapidly, and works in the OBD-II in software, not in hardware, it improves
the speed of the self-diagnosis. Figure 4 shows the structure and functions of the MIGM, which
consists of four sub-modules. The first message interface sub-module (MIS) acts as an interface
between the sensors and the MSS. The second message storage sub-module (MSS) manages the
message transferred from the MIS and the message converted in the MCS. The third message
conversion sub-module (MCS) converts the message transferred from the MSS to a destination
protocol message. The fourth WAVE message generation sub-module (WMGS) makes the vehicle
condition diagnosed in the In-VDM and the payloads used for the diagnosis a WAVE message and
transfers the WAVE message to RSU or the Cloud through the internet of vehicles (IoV). If the MIGM
receives a sensor message from electronic control unit (ECU), the message works as follows.

Figure 4. The structure of the multi-protocol integrated gateway module (MIGM).

First, the ECU transmits the sensor messages to hardware devices (transceiver and controller)
through FlexRay, CAN, and media oriented systems transport (MOST) Bus. Second, the MIS transfers
the sensor messages to the MSS. Third, the MSS divides the received sensor messages into header

Figure 3. The structure of the lightweight autonomous vehicle self-diagnosis (LAVS).

3.2. The Multi-Protocol Integrated Gateway Module (MIGM)

Since the MIGM supports the in-vehicle communication between two protocols, transfers the
payloads to the In-VDM rapidly, and works in the OBD-II in software, not in hardware, it improves the
speed of the self-diagnosis. Figure 4 shows the structure and functions of the MIGM, which consists
of four sub-modules. The first message interface sub-module (MIS) acts as an interface between the
sensors and the MSS. The second message storage sub-module (MSS) manages the message transferred
from the MIS and the message converted in the MCS. The third message conversion sub-module (MCS)
converts the message transferred from the MSS to a destination protocol message. The fourth WAVE
message generation sub-module (WMGS) makes the vehicle condition diagnosed in the In-VDM and
the payloads used for the diagnosis a WAVE message and transfers the WAVE message to RSU or the
Cloud through the internet of vehicles (IoV). If the MIGM receives a sensor message from electronic
control unit (ECU), the message works as follows.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 24

Figure 3. The structure of the lightweight autonomous vehicle self-diagnosis (LAVS).

3.2. The Multi-Protocol Integrated Gateway Module (MIGM)

Since the MIGM supports the in-vehicle communication between two protocols, transfers the
payloads to the In-VDM rapidly, and works in the OBD-II in software, not in hardware, it improves
the speed of the self-diagnosis. Figure 4 shows the structure and functions of the MIGM, which
consists of four sub-modules. The first message interface sub-module (MIS) acts as an interface
between the sensors and the MSS. The second message storage sub-module (MSS) manages the
message transferred from the MIS and the message converted in the MCS. The third message
conversion sub-module (MCS) converts the message transferred from the MSS to a destination
protocol message. The fourth WAVE message generation sub-module (WMGS) makes the vehicle
condition diagnosed in the In-VDM and the payloads used for the diagnosis a WAVE message and
transfers the WAVE message to RSU or the Cloud through the internet of vehicles (IoV). If the MIGM
receives a sensor message from electronic control unit (ECU), the message works as follows.

Figure 4. The structure of the multi-protocol integrated gateway module (MIGM).

First, the ECU transmits the sensor messages to hardware devices (transceiver and controller)
through FlexRay, CAN, and media oriented systems transport (MOST) Bus. Second, the MIS transfers
the sensor messages to the MSS. Third, the MSS divides the received sensor messages into header

Figure 4. The structure of the multi-protocol integrated gateway module (MIGM).

First, the ECU transmits the sensor messages to hardware devices (transceiver and controller)
through FlexRay, CAN, and media oriented systems transport (MOST) Bus. Second, the MIS transfers

Sensors 2019, 19, 2534 8 of 24

the sensor messages to the MSS. Third, the MSS divides the received sensor messages into header
information, sensor messages, and payloads. The received header information is stored in an address
table (1), the sensor messages are stored in a message queue (2), and the payloads are stored in a data
collection table (3). The MSS transfers the header information of the address table and the sensor
messages to the MCS (4, 5), and the payloads measured in the data collection table in the same time to
the In-VDM(6). Fourth, the MCS converts the sensor message transferred from the MSS to a destination
protocol message and transmits the transformed message to the MSS (7) and, the process of the message
reception is vice versa. Fifth, if the MSS of the MIGM receives the diagnosis result from the In-VDM, the
received result is stored in the data collection table (8). The self-diagnosis data stored in it is transferred
to the WMGS with the payloads used for self-diagnosis (9). The WMGS converts the received data
collection table information to WAVE messages and performs IoV to transfer the WAVE messages to
the neighboring RSU and Cloud (10).

3.2.1. A Design of a Message Interface Sub-Module (MIS)

The MIS acts as an interface between hardware and the MSS. The hardware means the transceiver
and controller sending messages to and receiving them from each protocol bus. If the transceiver
receives messages from each protocol bus or an actuator and transfers the received messages to a
controller, the controller stores the serial bits of messages in the MCU. The MIS transfers the messages
of a controller to the MSS. Figure 5 shows the hardware structure of a transceiver and controller.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 24

information, sensor messages, and payloads. The received header information is stored in an address
table (1), the sensor messages are stored in a message queue (2), and the payloads are stored in a data
collection table (3). The MSS transfers the header information of the address table and the sensor
messages to the MCS (4, 5), and the payloads measured in the data collection table in the same time
to the In-VDM(6). Fourth, the MCS converts the sensor message transferred from the MSS to a
destination protocol message and transmits the transformed message to the MSS (7) and, the process
of the message reception is vice versa. Fifth, if the MSS of the MIGM receives the diagnosis result
from the In-VDM, the received result is stored in the data collection table (8). The self-diagnosis data
stored in it is transferred to the WMGS with the payloads used for self-diagnosis (9). The WMGS
converts the received data collection table information to WAVE messages and performs IoV to
transfer the WAVE messages to the neighboring RSU and Cloud (10).

3.2.1. A Design of a Message Interface Sub-Module (MIS)

The MIS acts as an interface between hardware and the MSS. The hardware means the
transceiver and controller sending messages to and receiving them from each protocol bus. If the
transceiver receives messages from each protocol bus or an actuator and transfers the received
messages to a controller, the controller stores the serial bits of messages in the MCU. The MIS
transfers the messages of a controller to the MSS. Figure 5 shows the hardware structure of a
transceiver and controller.

Figure 5. The hardware structure of the MIGM.

If the message translation is completed, the message has to be transferred to a destination bus.
At this time, the MIS receives the messages translated in the MSS and transfers them to the controller.
The controller delivers the messages to a protocol bus or an actuator through the transceiver.

3.2.2. A Design of a Message Storage Sub-Module (MSS)

The MSS manages the messages received from the MIS. Figure 4 shows three functions (address
table, message queue, and data collection table) in which the MSS manages messages as follows.

First, the header information (destination address, source address, etc.) is stored in the address
table. When sensor messages are converted in the MCS, the address table helps them be converted
rapidly and is used to detect errors. Figure 6 shows the address table in detail.

Second, the message queue consists of an input message queue and an output message queue.
The input message queue is one that stores the messages transferred from the MIS. The MSS transfers
the messages to the MCS according to message order within the queue. The order of messages within
the input message queue is decided by the priority of messages. The output message queue is one
storing the messages transferred from the MCS and the MSS transfers the messages of the output
message queue to the MIS according to priority.

Third, the payloads of the received sensor messages are stored in the data collection table and
then they are transferred to the IN-VDM. If the IN-VDM completes the self-diagnosis of an
autonomous vehicle, the MSS stores the diagnosed result in the data collection table. The payloads

Figure 5. The hardware structure of the MIGM.

If the message translation is completed, the message has to be transferred to a destination bus. At
this time, the MIS receives the messages translated in the MSS and transfers them to the controller. The
controller delivers the messages to a protocol bus or an actuator through the transceiver.

3.2.2. A Design of a Message Storage Sub-Module (MSS)

The MSS manages the messages received from the MIS. Figure 4 shows three functions (address
table, message queue, and data collection table) in which the MSS manages messages as follows.

First, the header information (destination address, source address, etc.) is stored in the address
table. When sensor messages are converted in the MCS, the address table helps them be converted
rapidly and is used to detect errors. Figure 6 shows the address table in detail.

Sensors 2019, 19, 2534 9 of 24

Sensors 2019, 19, x FOR PEER REVIEW 10 of 24

When MOST messages are converted to CAN messages, the attributes of the address table are
not changed, but their values are changed according to the message state. Figure 6 shows the
conversion of a MOST message to CAN messages by using the address table of Table 2.

Figure 6. The conversion of a MOST message to CAN messages.

In Figure 6, the field of Destination Addr(address) in a MOST message is mapped to the
destination node IDs of CAN messages through the field of destination address in the Address Table
and the field of Source Addr(address) in a MOST message is mapped to the source node IDs of CAN
messages through the field of source address in the Address Table. Since the Fblock/Inst/Fkt ID and
OP Type field of a MOST message are not used in CAN messages, they are not stored in the address
table. The Tel(telephone) ID field of a MOST message is mapped to the service type IDs of CAN
messages through the current message number and message ID field of the address table. The
Synchronous and Asynchronous field of a MOST message is used for MOST and they are converted
to the data field of CAN messages without using the address table. Since the Control and Trailer field
of a MOST message is not used for CAN messages, they are not converted. The CAN messages
generate the cyclic redundancy check(CRC) and acknowledgement(ACK) field of CAN messages for
themselves.

3.2.4. A Design of a WAVE Message Generation Sub-Module (WMGS)

The WMGS generates a WAVE message after receiving information from the data collection
table in the MSS.

Figure 7. The generation of a WAVE message using the data collection table.

Figure 6. The conversion of a MOST message to CAN messages.

Second, the message queue consists of an input message queue and an output message queue.
The input message queue is one that stores the messages transferred from the MIS. The MSS transfers
the messages to the MCS according to message order within the queue. The order of messages within
the input message queue is decided by the priority of messages. The output message queue is one
storing the messages transferred from the MCS and the MSS transfers the messages of the output
message queue to the MIS according to priority.

Third, the payloads of the received sensor messages are stored in the data collection table and then
they are transferred to the IN-VDM. If the IN-VDM completes the self-diagnosis of an autonomous
vehicle, the MSS stores the diagnosed result in the data collection table. The payloads and vehicle
diagnosis result collected in the same hour are transferred to the MCS and the MCS converts the collected
payloads and vehicle diagnosis result to a WAVE message. The WAVE messages are transferred to the
neighboring RSU and the Cloud through IoV. Table 1 shows the example of the data collection table.

Table 1. Example of the data collection table.

Time Attribute Data (or Payload)

2018.11.09
17:00:25:012 Engine voltage 12 V

2018.11.09
17:00:25:054 Tire Pressure 30 psi

2018.11.09
17:00:25:021 Tire temp 50 ◦C

2018.11.09
17:00:25:008 Front light 9.254 lx

.

2018.11.09
17:00:26:078 Diagnosis result 75%

The payloads (or data) of Table 1 are collected within 0.5 s and the diagnosed result by the In-VDM
is made based on the payloads. The payloads and the diagnosed result are transferred to the MCS and
are converted to WAVE messages. The generation process of a WAVE message is shown in Section 3.2.3
in detail.

Sensors 2019, 19, 2534 10 of 24

Totally, the MSS manages the received messages, transfers the header information of the address
table and the messages of the message queue to the MCS and transfers to the MIS the messages
converted in the MCS.

3.2.3. A Design of the Message Conversion Sub-Module (MCS)

The MCS converts sensor messages to the message type of the other protocol by receiving the
messages of the input message queue and the address information of the address table in the MSS.
When the messages are converted, the MCS uses the address information of the address table. The
MIGM maps rapidly to the message fields of the other protocol the values of the address table, which
is generated by each protocol. For example, the address tables used between protocols such as FlexRay
to CAN, MOST to FlexRay, etc. are generated separately. The field values of the address table are
generated newly whenever messages are converted. Table 2 shows the example of the address table
used when MOST to CAN conversion is done.

Table 2. Example of the address table (MOST to CAN).

Attribute Value

The Number of Divided Messages n
Current Message Number 1

Source Address 1002
Source Protocol Bus Number 1

Destination Address 3315
Destination Protocol Bus Number 2

Message Priority 1
The 1st message ID 30

.
The nth message ID 90

When MOST messages are converted to CAN messages, the attributes of the address table are not
changed, but their values are changed according to the message state. Figure 6 shows the conversion
of a MOST message to CAN messages by using the address table of Table 2.

In Figure 6, the field of Destination Addr(address) in a MOST message is mapped to the destination
node IDs of CAN messages through the field of destination address in the Address Table and the field
of Source Addr(address) in a MOST message is mapped to the source node IDs of CAN messages
through the field of source address in the Address Table. Since the Fblock/Inst/Fkt ID and OP Type
field of a MOST message are not used in CAN messages, they are not stored in the address table.
The Tel(telephone) ID field of a MOST message is mapped to the service type IDs of CAN messages
through the current message number and message ID field of the address table. The Synchronous
and Asynchronous field of a MOST message is used for MOST and they are converted to the data
field of CAN messages without using the address table. Since the Control and Trailer field of a MOST
message is not used for CAN messages, they are not converted. The CAN messages generate the cyclic
redundancy check(CRC) and acknowledgement(ACK) field of CAN messages for themselves.

3.2.4. A Design of a WAVE Message Generation Sub-Module (WMGS)

The WMGS generates a WAVE message after receiving information from the data collection table
in the MSS.

Figure 7 shows the structure of a generated WAVE message. Since the WAVE message is not
converted to a message type of other protocols, it has to set message values newly. The physical
layer convergence protocol (PLCP) preamble of the WAVE message consists of the same 10 short
training symbols and two long training symbols. The PLCP preamble uses the same bits as that of
the Ethernet. Since the WAVE message uses an orthogonal frequency division multiplexing (OFDM),
it needs a OFDM signal field whose RATE means a frequency division rate. The frequency division

Sensors 2019, 19, 2534 11 of 24

rate is decided according to the size of a message. The reserved of the OFDM signal field represents
an address that receives messages. The LENGTH of the OFDM signal field represents the length of a
message. The Parity of the OFDM signal field is used to examine errors and the Tail of the OFDM
Signal field means the end of the OFDM signal field. The DATA field consists of a service field, a PLCP
service data unit(PSDU) field meaning data, a tail field meaning message end, and pad bits examining
the error of the DATA field [24]. After the payloads and diagnosed result measured in the same time
are converted to the PSDU of the WAVE message, the WMGS transfers the converted message to the
neighboring RSU or the Cloud.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 24

When MOST messages are converted to CAN messages, the attributes of the address table are
not changed, but their values are changed according to the message state. Figure 6 shows the
conversion of a MOST message to CAN messages by using the address table of Table 2.

Figure 6. The conversion of a MOST message to CAN messages.

In Figure 6, the field of Destination Addr(address) in a MOST message is mapped to the
destination node IDs of CAN messages through the field of destination address in the Address Table
and the field of Source Addr(address) in a MOST message is mapped to the source node IDs of CAN
messages through the field of source address in the Address Table. Since the Fblock/Inst/Fkt ID and
OP Type field of a MOST message are not used in CAN messages, they are not stored in the address
table. The Tel(telephone) ID field of a MOST message is mapped to the service type IDs of CAN
messages through the current message number and message ID field of the address table. The
Synchronous and Asynchronous field of a MOST message is used for MOST and they are converted
to the data field of CAN messages without using the address table. Since the Control and Trailer field
of a MOST message is not used for CAN messages, they are not converted. The CAN messages
generate the cyclic redundancy check(CRC) and acknowledgement(ACK) field of CAN messages for
themselves.

3.2.4. A Design of a WAVE Message Generation Sub-Module (WMGS)

The WMGS generates a WAVE message after receiving information from the data collection
table in the MSS.

Figure 7. The generation of a WAVE message using the data collection table. Figure 7. The generation of a WAVE message using the data collection table.

3.3. A Design of an In-Vehicle Diagnosis Module (In-VDM)

Figure 8 shows the structure of the In-VDM, which consists of two sub-modules. The first
random-forest part-diagnosis sub-module (RPS) generates a random-forest model for each part of
a vehicle and diagnoses the parts of a vehicle by using the generated random-forest model. The
second neural network vehicle-diagnosis sub-module (NNVS) generates a neural network model and
diagnoses the total condition of the vehicle by using the results of the RPS as input.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 24

Figure 7 shows the structure of a generated WAVE message. Since the WAVE message is not
converted to a message type of other protocols, it has to set message values newly. The physical layer
convergence protocol (PLCP) preamble of the WAVE message consists of the same 10 short training
symbols and two long training symbols. The PLCP preamble uses the same bits as that of the
Ethernet. Since the WAVE message uses an orthogonal frequency division multiplexing (OFDM), it
needs a OFDM signal field whose RATE means a frequency division rate. The frequency division rate
is decided according to the size of a message. The reserved of the OFDM signal field represents an
address that receives messages. The LENGTH of the OFDM signal field represents the length of a
message. The Parity of the OFDM signal field is used to examine errors and the Tail of the OFDM
Signal field means the end of the OFDM signal field. The DATA field consists of a service field, a
PLCP service data unit(PSDU) field meaning data, a tail field meaning message end, and pad bits
examining the error of the DATA field [24]. After the payloads and diagnosed result measured in the
same time are converted to the PSDU of the WAVE message, the WMGS transfers the converted
message to the neighboring RSU or the Cloud.

3.3. A Design of an In-Vehicle Diagnosis Module (In-VDM)

Figure 8 shows the structure of the In-VDM, which consists of two sub-modules. The first
random-forest part-diagnosis sub-module (RPS) generates a random-forest model for each part of a
vehicle and diagnoses the parts of a vehicle by using the generated random-forest model. The second
neural network vehicle-diagnosis sub-module (NNVS) generates a neural network model and
diagnoses the total condition of the vehicle by using the results of the RPS as input.

Figure 8. The structure of the in-vehicle diagnosis module (In-VDM).

3.3.1. A Design of the Random-Forest Part-Diagnosis Sub-Module (RPS)

The RPS learns a random-forest model using training data and outputs conditions by part.
Algorithm 1 shows the process by which the RPS generates a random-forest model.

Figure 8. The structure of the in-vehicle diagnosis module (In-VDM).

Sensors 2019, 19, 2534 12 of 24

3.3.1. A Design of the Random-Forest Part-Diagnosis Sub-Module (RPS)

The RPS learns a random-forest model using training data and outputs conditions by part.
Algorithm 1 shows the process by which the RPS generates a random-forest model.

Algorithm 1. The process generating a random-forest model.

Input: Training data X, Y, W
X = set of payloads
Y = set of results of training data
W = set of weights

initialize weight W : wi
(1) = 1/N

for(int j = 1; j <= T; j++)
make subset St from Training data.
∆Gmax = -∞
sample feature f from sensors randomly
for(int k = 1; k <= K; k++)
Sn = a current node
split Sn into Sl or Sr by fk
compute information gain ∆G: ∆G = E(Sn) −

|Sl |

|Sn |
E(Sl) −

|Sr |

|Sn |
E(Sr)

if(∆G>∆Gmax)
∆Gmax = ∆G
end if
end for
if(∆Gmax = 0 or maximum depth)
store the probability distribution P(c|l) in a leaf node.
else
generate a split node recursively.
end if
if(finish training of decision tree)
estimate class label : ŷi
ŷi = arg max Pt(c|l).

compute an error rate of a decision tree : εt =
∑N

i:yi,ŷi
w(t)

i /
∑N

i=1 w(t)
i

compute a weight of a decision tree : αt =
1
2 log 1−εt

εt

if(αt > 0 then)
update a weight of training data

w(t+1)
i =

 i f (yi , ŷi) w(t)
i exp(αt)

else w(t)
i exp(−αt)

else
reject a decision tree
end if
end if
end for

The training data composed of X, Y, and W. X is the set of payloads and is represented in the
following formula (1).

X = {x1, x2, . . . , xN}. (1)

In Formula (1), X means sensor data configured for each part. For example, XEngine is a set of
payloads that can represent the engine condition. Y means the result value judging whether a part
condition is normal or not. Y consists of parts, as in X. It has one between a normal value and an
abnormal value in the following formula (2).

Y =
{
y1, y2, y3, y4, . . . , yN

}
. (2)

Sensors 2019, 19, 2534 13 of 24

W means the weight of each training data and is represented in the following formula (3).

W = {w1, w2, w3, w4, . . . , wN}. (3)

All wi is initialized as 1/N at the beginning. Here, N represents the number of training data.
The RPS generates a decision-making tree by extracting the variables according to weight and
composes a random-forest model by modifying each variable and the tree weight. The RPS generates
decision-making trees composing a random-forest model. The decision-making tree is made by using
the information gain function, ∆G computed by using Genie function. The RPS repeats itself until the
decision-making tree reaches a fixed depth or until the ∆G becomes 0. The decision-making trees are
generated as follows.

First, ∆Gmax is set as −∞ for the decision-making tree generation and the decision-making tree
generation sub-module generates subset, St from the training data.

Second, it selects one of all sensors randomly.
Third, it classifies the training data Sn of a current node into Sl and Sr and computes the ∆G in

formula (4).

∆G = G(Sn) −
|Sl|

|Sn|
G(Sl) −

|Sr|

|Sn|
G(Sr), (4)

where, Sl is the value of a left child node in the Sn and Sr is the value of a right child node in the Sn.
G(s) as the Genie index is computed in formula (5).

G(s) = 1−
2∑

j=1

P
(
c j
)2

. (5)

In formula (5), the probability, P
(
c j
)

of the node cj is computed in formula (6).

P
(
cj
)
=

∑
i∈S∧yi=c j

wi ÷
∑
i∈S

wi, (6)

In formula (6), w means a weight of each variable.
Figure 9 shows that a decision-making tree was generated by using three variables as follows.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 24

P൫c୨൯ = ∑ 𝑤௜௜∈ௌ∧௬೔ୀ௖ೕ ൊ ∑ 𝑤௜௜∈ௌ , (6)

In formula (6), w means a weight of each variable.

Figure 9. The decision-making tree generated based on temperature, voltage, and fuel spray.

Figure 9 shows that a decision-making tree was generated by using three variables as follows.
First, 50 payloads of a normal vehicle and 50 payloads of an abnormal vehicle as training data

was used for the RPS and temperature, fuel spray, and voltage were selected as a variable.
Second, the RPS computes the Genie index with total training data, each variable, and

information gain ΔG. The computation is done as follows.
At the beginning, the Genie index of training data without classification criteria has to be

measured only once. The actual value of the Genie index is obtained as follows. G(root) = 1 − ൬ 50100൰ଶ − ൬ 50100൰ଶ = 0.5

If the Genie index of the training data is obtained without the classification criteria, the Genie
index of each variable is obtained with the classification criteria. The following formulas are used to
measure the Genie index when the condition of a vehicle is classified according to temperature
classification criteria. G൫S୲ୣ୫୮ ୪൯ = 1 − ൬4860൰ଶ − ൬1260൰ଶ = 0.32

G൫S୲ୣ୫୮ ୰൯ = 1 − ൬ 740൰ଶ − ൬3340൰ଶ = 0.28

Here, the number 60 used as the denominator in the G൫S୲ୣ୫୮ ୪൯ formula means the 60 of 100
vehicles whose temperature numeric is normal. The 48 used as the numerator in the G൫S୲ୣ୫୮ ୪൯
formula means the 48 of 60 vehicles whose total condition is normal and the 12 means the 12 of 60
vehicles whose total condition is abnormal. The 40 used as denominator in the G൫S୲ୣ୫୮ ୰൯ formula
means the 40 of 100 vehicles whose temperature numeric is abnormal. The seven used as the
numerator in the G൫S୲ୣ୫୮ ୰൯ formula means the seven of 40 vehicles whose total condition is normal
and the 33 means the 33 of 40 vehicles whose total condition is abnormal. In the same way, the RPS
computes the Genie index of the fuel spray and voltage as follows. G(S୤୳ୣ୪ ୪) = 1 − ൬2555൰ଶ − ൬3055൰ଶ = 0.49

G(S୤୳ୣ୪ ୰) = 1 − ൬2645൰ଶ − ൬1945൰ଶ = 0.49

Figure 9. The decision-making tree generated based on temperature, voltage, and fuel spray.

First, 50 payloads of a normal vehicle and 50 payloads of an abnormal vehicle as training data
was used for the RPS and temperature, fuel spray, and voltage were selected as a variable.

Sensors 2019, 19, 2534 14 of 24

Second, the RPS computes the Genie index with total training data, each variable, and information
gain ∆G. The computation is done as follows.

At the beginning, the Genie index of training data without classification criteria has to be measured
only once. The actual value of the Genie index is obtained as follows.

G(root) = 1−
(50

100

)2
−

(50
100

)2
= 0.5

If the Genie index of the training data is obtained without the classification criteria, the Genie
index of each variable is obtained with the classification criteria. The following formulas are used
to measure the Genie index when the condition of a vehicle is classified according to temperature
classification criteria.

G
(
Stemp l

)
= 1−

(48
60

)2
−

(12
60

)2
= 0.32

G
(
Stemp r

)
= 1−

(7
40

)2
−

(33
40

)2
= 0.28

Here, the number 60 used as the denominator in the G
(
Stemp l

)
formula means the 60 of 100

vehicles whose temperature numeric is normal. The 48 used as the numerator in the G
(
Stemp l

)
formula

means the 48 of 60 vehicles whose total condition is normal and the 12 means the 12 of 60 vehicles
whose total condition is abnormal. The 40 used as denominator in the G

(
Stemp r

)
formula means the

40 of 100 vehicles whose temperature numeric is abnormal. The seven used as the numerator in the
G
(
Stemp r

)
formula means the seven of 40 vehicles whose total condition is normal and the 33 means

the 33 of 40 vehicles whose total condition is abnormal. In the same way, the RPS computes the Genie
index of the fuel spray and voltage as follows.

G(Sfuel l) = 1−
(25

55

)2
−

(30
55

)2
= 0.49

G(Sfuel r) = 1−
(26

45

)2
−

(19
45

)2
= 0.49

G(SV l) = 1−
(48

70

)2
−

(22
70

)2
= 0.43

G(SV r) = 1−
(10

30

)2
−

(20
30

)2
= 0.44

If the computation of the Genie index of each variable is finished, the RPS computes the information
gain ∆G of each variable as follows.

∆Gtemp = 0.5−
60
100
∗ 0.32−

40
100
∗ 0.28 = 0.196

∆Gfuel = 0.5−
55

100
∗ 0.49−

45
100
∗ 0.49 = 0.01

∆GV = 0.5−
70
100
∗ 0.43−

30
100
∗ 0.44 = 0.067

Here, since the information gain about the temperature is the biggest value, the 1st classification
node is decided as the temperature. Once the 1st classification node is decided, the RPS computes the
Genie indices of the other variables again. The following formulas show that the Genie index of the
fuel spray is computed after the vehicles were classified with the temperature.

G(Sfuel l) = 1−
(24

29

)2
−

(5
29

)2
= 0.37

Sensors 2019, 19, 2534 15 of 24

G(Sfuel r) = 1−
(26

31

)2
−

(7
31

)2
= 0.24

The computed Genie index of the fuel spray has to be compared with the Genie index of the
voltage under the same condition. The following formulas show that the Genie index of the voltage is
computed after vehicles were classified with the temperature.

G(SV l) = 1−
(34

38

)2
−

(4
38

)2
= 0.18

G(SV r) = 1−
(14

22

)2
−

(8
22

)2
= 0.46

If the Genie index of the fuel spray and voltage is computed, the RPS computes the information
gain on them. The following formulae are used to compute the information gain on them.

∆Gfuel = 0.32−
29
60
∗ 0.37−

31
60
∗ 0.24 = 0.017

∆GV = 0.32−
38
60
∗ 0.18−

22
60
∗ 0.46 = 0.037

Here, because the ∆GV is the biggest value, the 2nd classification node is decided as the starting
voltage. In this way, if the information gain is 0 or a decision-making tree reaches fixed depth, the
decision-making tree is generated.

Since the RPS extracts properties randomly whenever each decision-making tree is generated,
all the different decision-making trees are generated. Figure 10 shows that the decision-making tree
was generated with the variables different from Figure 9. The RPS computes a weight by using an
error rate of a decision-making tree and generates a random-forest model based on boosting. First of
all, in formula (7), the RPS computes the error rate (εt) of the decision-making tree by comparing a
diagnosed condition with the result of training data (i : yi , ŷi).

εt =
N∑

i:yi,ŷi

w(t)
i /

N∑
i=1

w(t)
i , (7)

where, ŷi is the result of a random-forest model when training data is entered into the random-forest
model. yi represents the vehicle condition stored in the training data. That is, εt is to divide the sum of
weights in case of (ŷi , yi) by total sum of weights. From now on, the RPS computes a weight change
rate αt by using formula (8).

αt =
1
2

log
1− εt

εt
. (8)

Sensors 2019, 19, 2534 16 of 24
Sensors 2019, 19, x FOR PEER REVIEW 16 of 24

Figure 10. The decision-making tree generated based on the engine temperature, driving time, and
air pressure.

Since the RPS extracts properties randomly whenever each decision-making tree is generated,
all the different decision-making trees are generated. Figure 10 shows that the decision-making tree
was generated with the variables different from Figure 9. The RPS computes a weight by using an
error rate of a decision-making tree and generates a random-forest model based on boosting. First of
all, in formula (7), the RPS computes the error rate (ϵ௧) of the decision-making tree by comparing a
diagnosed condition with the result of training data (𝑖: 𝑦௜ ≠ 𝑦పෝ). ϵ௧ = ∑ 𝑤௜(௧)ே௜:௬೔ஷ௬ഢෞ / ∑ 𝑤௜(௧)ே௜ୀଵ , (7)

where, 𝑦పෝ is the result of a random-forest model when training data is entered into the random-forest
model. 𝑦௜ represents the vehicle condition stored in the training data. That is, ϵ௧ is to divide the sum
of weights in case of (𝑦పෝ ≠ 𝑦௜) by total sum of weights. From now on, the RPS computes a weight
change rate α୲ by using formula (8). 𝛼௧ = ଵଶ 𝑙𝑜𝑔 ଵିఢ೟ఢ೟ . (8)

If the weight change rate was computed, the weight is modified in formula (9).

𝑤௜(௧ାଵ) = ൝𝑖𝑓(𝑦௜ ≠ 𝑦పෝ) 𝑤௜(௧)exp (𝛼௧)𝑒𝑙𝑠𝑒 𝑤௜(௧)exp (−𝛼௧) . (9)

In Figure 11, if this process is repeated T times and T decision-making trees are generated, the
RPS computes the variance of each tree and selects only p trees in ascending order of the variance
value. The RPS generates the random-forest model with the selected p trees. Figure 10 shows how to
compose T trees by using the weight of a decision-making tree. The former in Figure 10 generates a
decision-making tree by sampling training data as a subset and the latter in Figure 10 modifies the
weight by using an error rate ϵ and weight change rate α.

Figure 10. The decision-making tree generated based on the engine temperature, driving time, and
air pressure.

If the weight change rate was computed, the weight is modified in formula (9).

w(t+1)
i =

 i f (yi , ŷi) w(t)
i exp(αt)

else w(t)
i exp(−αt)

. (9)

In Figure 11, if this process is repeated T times and T decision-making trees are generated, the
RPS computes the variance of each tree and selects only p trees in ascending order of the variance
value. The RPS generates the random-forest model with the selected p trees. Figure 10 shows how to
compose T trees by using the weight of a decision-making tree. The former in Figure 10 generates a
decision-making tree by sampling training data as a subset and the latter in Figure 10 modifies the
weight by using an error rate ε and weight change rate α.Sensors 2019, 19, x FOR PEER REVIEW 17 of 24

Figure 11. A random-forest model generated finally by boosting.

For example, to compute the weight the RPS computes an error rate of a tree through six terminal
nodes in Figure 10. ϵ = 2

14
൅ 5

26
൅ 3

9
൅ 1

5
൅ 2

6
൅ 4

38
 = 0.11.

Here, the denominator represents the number of total vehicles in a terminal node and the
numerator is decided according to the result of a terminal node. If the result of the terminal node is
”GOOD”, the numerator represents the number of abnormal vehicles in the terminal node. If the
result of the terminal node is “BAD”, the numerator represents the number of normal vehicles in the
terminal node. For example, the ଶଵସ represents an error rate of the leftmost terminal node in Figure
9. The denominator 14 represents the number of the total vehicles in the terminal node. Since the
result of the terminal node is “GOOD”, the numerator 2 represents the number of abnormal vehicles
and then the RPS computes a weight change rate α. α = ଵଶ log ଵି଴.ଵଵ଴.ଵଵ = 1.1091.

The RPS modifies weight w with formula (9). Since the decision-making tree of Figure 9 was
generated with 100 vehicles, the weight of 100 vehicles is set as 1/100 each. Therefore, the weight of
100 vehicles is modified according to the result of each terminal node and a weight change rate α. 𝑤௜(ଶ) = ൜𝑖𝑓(𝑦௜ ≠ 𝑦పෝ) 0.01 ∗ eଵ.ଵ଴ଽଵ = 0.0303162𝑒𝑙𝑠𝑒 0.01 ∗ eିଵ.ଵ଴ଽଵ = 0.0032985 (𝑖 = 1~100).

If T trees are generated by repeating the processes, the RPS composes a random-forest model of
only fixed trees by computing the variance value of trees.

The RPS generates the final random-forest model and computes the part condition by
multiplying the probability, 𝑃௧(𝑐|𝑥) of each decision-making tree by the decision-making tree
weight, α୲. Formula (10) is used to compute the vehicle condition, 𝑦పෝ , in each decision-making tree. 𝑦పෝ = α୲ ∗ 𝑃௧(𝑐|𝑥). (10)

If the probability of each decision-making tree is computed, the RPS selects the highest
probability as the final probability, 𝑦ො.

Figure 11. A random-forest model generated finally by boosting.

Sensors 2019, 19, 2534 17 of 24

For example, to compute the weight the RPS computes an error rate of a tree through six terminal
nodes in Figure 10.

ε =
2

14
+

5
26

+
3
9
+

1
5
+

2
6
+

4
38

= 0.11

Here, the denominator represents the number of total vehicles in a terminal node and the
numerator is decided according to the result of a terminal node. If the result of the terminal node
is ”GOOD”, the numerator represents the number of abnormal vehicles in the terminal node. If the
result of the terminal node is “BAD”, the numerator represents the number of normal vehicles in the
terminal node. For example, the 2

14 represents an error rate of the leftmost terminal node in Figure 9.
The denominator 14 represents the number of the total vehicles in the terminal node. Since the result
of the terminal node is “GOOD”, the numerator 2 represents the number of abnormal vehicles and
then the RPS computes a weight change rate α.

α =
1
2

log
1− 0.11

0.11
= 1.1091

The RPS modifies weight w with formula (9). Since the decision-making tree of Figure 9 was
generated with 100 vehicles, the weight of 100 vehicles is set as 1/100 each. Therefore, the weight of 100
vehicles is modified according to the result of each terminal node and a weight change rate α.

w(2)
i =

{
i f (yi , ŷi) 0.01 ∗ e1.1091 = 0.0303162

else 0.01 ∗ e−1.1091 = 0.0032985
(i = 1 ∼ 100).

If T trees are generated by repeating the processes, the RPS composes a random-forest model of
only fixed trees by computing the variance value of trees.

The RPS generates the final random-forest model and computes the part condition by multiplying
the probability, Pt(c

∣∣∣x) of each decision-making tree by the decision-making tree weight, αt. Formula
(10) is used to compute the vehicle condition, ŷi, in each decision-making tree.

ŷi = αt ∗ Pt(c
∣∣∣x). (10)

If the probability of each decision-making tree is computed, the RPS selects the highest probability
as the final probability, ŷ.

ŷ = argmax(ŷt). (11)

After the RPS diagnosed this part, it informs drivers of a vehicle’s part condition and transfers the
diagnosis result to the NNVS.

3.3.2. A Design of a Neural Network Vehicle-Diagnosis Sub-Module (NNVS)

After the RPS diagnoses parts of a vehicle, the NNVS learns a neural network model using the
result of the RPS and diagnoses the total condition of the vehicle by using the learned neural network
model. Figure 12 shows an example of the input and output of the NNVS.

Sensors 2019, 19, 2534 18 of 24

Sensors 2019, 19, x FOR PEER REVIEW 20 of 24

Here, 𝑝௜௡ represents the number of nodes in the input layer connected to Z and 𝑝௢௨௧ the
number of nodes in the output layer connected to Z. The NNVS uses tanh as an activation function
for accurate and quick computation, and the mean squared error as a loss function. Formula 16
represents tanh and 17 mean squared error. 𝑡𝑎𝑛ℎ(𝑥) = ௘మೣିଵ௘మೣ ା ଵ, (16)

𝐸(𝑦, 𝑑) = (y − d)ଶ. (17)

In Formula 17, d means the training data, and y means the result of a neural network model. The
NNVS is learned based on back-propagation and uses gradient descent to change the weight.

When the NNVS completes its neural network model learning, it diagnoses the total condition
of the vehicle by using the neural network model. The NNVS result of between 1 and 0.4 indicates
that the vehicle is in good condition, that between 0.4 and –0.4 indicates that the vehicle is in a bad
condition but capable of driving, and that between –0.4 and –1 indicates that the vehicle is in a
dangerous condition. The NNVS delivers the results of the neural network model learning to the
driver so that the driver can accurately understand the total condition of the vehicle.

Figure 12. A process of the total diagnosis using the NNVS.

4. The Performance Analysis

This section shows the performance analysis of the MIGM and the In-VDM. To analyze the
performance of the MIGM, it was compared with an existing in-vehicle gateway to measure
conversion time and an error rate when 4000 messages are converted to other messages and to
analyze the performance of the IN-VDM, it was compared with a multi-layer perceptron (MLP) and

Figure 12. A process of the total diagnosis using the NNVS.

The RPS result represents a probability value. However, it exists between −1 and 1 because the
probability value is multiplied by −1 when the RPS determines that the part is abnormal. For example,
in Table 3, the value of the engine condition for the RPS is 0.251, and because the engine has been
diagnosed as faulty, −0.251 is delivered to the NNVP. Table 3 is used as an input to the NNVP in
Figure 12. Algorithm 2 represents the process by which the NNVS learns neural networks.

Table 3. The results that the random-forest part-diagnosis sub-module (RPS) delivered to the neural
network vehicle-diagnosis sub-module (NNVS).

Parts Engine Light Steering Transmission . . . Break

RPS result –0.251 0.992 0.687 –0.451 . . . 0.876

Sensors 2019, 19, 2534 19 of 24

Algorithm 2. The learning process of the NNVS

Input : Training data I, O
I[] = result of RPS
n = the number of input nodes
y = training data
initialize:

weight Z [3][][] :
for(int i = 0; i<n; i++){
for(int j = 0; j<15; j++){

Z [0][i][j] = sqrt(random(0,3)/n+15);
}

}
for(int i = 0; i<15; i++){
for(int j = 0; j<15; j++){

Z[1][i][j] = sqrt(random(0,3)/30);
}

}
for(int i = 0; i<15; i++){

Z[2][i][j] = sqrt(random(0,3)/16);
}
Emax = 0.03;
E = 900;
NET = 0;
H[2][15] = 0;
O = 0;

while(E>Emax){
for(int i = 0; i<15; i++){
for(int j=0; j<n; j++){

NET = NET + I[j]*Z[0][j][i];
}
H[0][i] = tanh(NET);
NET = 0;

}
for(k = 1; k<3; k++){

for(int i = 0; i<15; i++){
for(int j = 0; j<15; j++){

NET = NET + H[k-1][j]*Z[k][j][i];
}
H[k][i] = tanh(NET);
NET = 0;
}

}
for(int i = 0; i<15; i++){
NET = NET + H[2][i] * Z[3][i][0];
}
O = tanh(NET);
E = pow((o-y),2);
Update_wights(Z, E);

}end

Sensors 2019, 19, 2534 20 of 24

The NNVS uses the results of the RPS as an input, which indicates the condition of vehicle parts.
That is, the number of the NNVS input nodes is equal to the number of the RPS outputs. The number
of The NNVS output nodes is 1. Formula (12) represents the set of inputs in the NNVS, I.

I = {i1, i2, . . . , in}. (12)

Here, n is the number of parts diagnosed by the RPS. The NNVS generates a neural network
model consisting of three hidden layers. Formula (13) represents the nodes of the hidden layers and
Formula (14) represents a weight that connects the adjacent node.

H =
{
h1

1, h1
2, h1

3, h1
4, h1

5, . . . , h3
15

}
, (13)

Z =
{
z1

1, 1, z1
1, 2, z1

1, 3, z1
1, 4, z1

1, 5, . . . , z3
15, 15

}
. (14)

The weights are initialized using the Xavier initialization [25]. Formula (15) represents the weights
that are initialized using the Xavier initialization.

zx
y,k =

√
random(0, 3)

pin + pout
, (15)

Here, pin represents the number of nodes in the input layer connected to Z and pout the number of
nodes in the output layer connected to Z. The NNVS uses tanh as an activation function for accurate
and quick computation, and the mean squared error as a loss function. Formula (16) represents tanh
and (17) mean squared error.

tanh(x) =
e2x
− 1

e2x + 1
, (16)

E(y, d) = (y− d)2. (17)

In Formula (17), d means the training data, and y means the result of a neural network model.
The NNVS is learned based on back-propagation and uses gradient descent to change the weight.

When the NNVS completes its neural network model learning, it diagnoses the total condition of
the vehicle by using the neural network model. The NNVS result of between 1 and 0.4 indicates that the
vehicle is in good condition, that between 0.4 and −0.4 indicates that the vehicle is in a bad condition
but capable of driving, and that between −0.4 and −1 indicates that the vehicle is in a dangerous
condition. The NNVS delivers the results of the neural network model learning to the driver so that
the driver can accurately understand the total condition of the vehicle.

4. The Performance Analysis

This section shows the performance analysis of the MIGM and the In-VDM. To analyze the
performance of the MIGM, it was compared with an existing in-vehicle gateway to measure conversion
time and an error rate when 4000 messages are converted to other messages and to analyze the
performance of the IN-VDM, it was compared with a multi-layer perceptron (MLP) and a long
short-term memory (LSTM) to measure the computation time and accuracy when the number of test
data sets is changed.

4.1. The MIGM Performance Analysis

To compare the performance of the MIGM with an existing vehicle gateway, conversion time and
an error rate are measured when 4000 messages are converted to other messages. The experiment was
conducted when a CAN message was converted to a FlexRay or a MOST message and vice-versa. The
existing in-vehicle gateway and the MIGM were implemented in the C language and the experiment
was conducted in a Host PC.

Sensors 2019, 19, 2534 21 of 24

Figure 13a shows that in the CAN-To-FlexRay conversion, the MIGM was improved by 33.3%
in conversion time more than the existing in-vehicle gateway, in the CAN-To-MOST conversion,
the MIGM was improved by 20.9% more than the existing in-vehicle gateway, in FlexRay-To-CAN
conversion, the MIGM was improved by 29.2% more than the existing in-vehicle gateway, and in
the MOST-To-CAN conversion, the MIGM was improved by 31.3% more than the existing in-vehicle
gateway. Therefore, the conversion time of the MIGM was improved more than that of the existing
in-vehicle gateway by about average 28.67%.

Sensors 2019, 19, x FOR PEER REVIEW 21 of 24

a long short-term memory (LSTM) to measure the computation time and accuracy when the number
of test data sets is changed.

4.1. The MIGM Performance Analysis

To compare the performance of the MIGM with an existing vehicle gateway, conversion time
and an error rate are measured when 4000 messages are converted to other messages. The experiment
was conducted when a CAN message was converted to a FlexRay or a MOST message and vice-versa.
The existing in-vehicle gateway and the MIGM were implemented in the C language and the
experiment was conducted in a Host PC.

Figure 13a shows that in the CAN-To-FlexRay conversion, the MIGM was improved by 33.3%
in conversion time more than the existing in-vehicle gateway, in the CAN-To-MOST conversion, the
MIGM was improved by 20.9% more than the existing in-vehicle gateway, in FlexRay-To-CAN
conversion, the MIGM was improved by 29.2% more than the existing in-vehicle gateway, and in the
MOST-To-CAN conversion, the MIGM was improved by 31.3% more than the existing in-vehicle
gateway. Therefore, the conversion time of the MIGM was improved more than that of the existing
in-vehicle gateway by about average 28.67%.

(a) Conversion time (b) Error rate

Figure 13. The (a) conversion time and (b) an error rate per protocol.

Figure 13b shows that in the CAN-To-FlexRay conversion, the existing in-vehicle gateway
causes an error rate, 1.55% and the MIGM an error rate, 1.55%, in the CAN-To-MOST conversion, the
existing in-vehicle gateway causes an error rate, 1.66% and the MIGM an error rate, 0.45%, in FlexRay-
To-CAN conversion, the existing in-vehicle gateway causes an error rate, 1.94% and the MIGM an
error rate, 1.59%, and in the MOST-To-CAN conversion, the existing in-vehicle gateway causes an
error rate, 2.59%, and the MIGM an error rate, 2.53%. Therefore, the error rate of the MIGM was lower
than that of the existing in-vehicle gateway by about 0.5%. When a CAN message was converted to
another protocol message, it had higher performance than other cases by 1%.

4.2. The In-VDM Performance Analysis

To analyze the performance of In-VDM, three experiments were conducted. In two experiments,
NNVP was compared with multi-layer perceptron (MLP) and long short-term memory (LSTM) in
computation time and accuracy, while in the other experiment, RPS was compared with a support
vector machine (SVM) and fuzzy in test loss. According to the experimental environment, the number
of test data sets was 100, 150, 200, 300, 400, and 500 sets, the computation speed was 3.20 GHz, and
the RAM memory size was 16 GB.

Figure 14a shows that the computation time of the NNVP was improved by 44.894% and
62.719% more than that of the MPL and the LSTM separately as the number of test data sets increased
from 100 to 500 sets. Figure14b shows that the accuracy of the NNVP was higher by about 1% than
that of the MLP but similar to that of the LSTM on average. Since there was little difference between

Figure 13. The (a) conversion time and (b) an error rate per protocol.

Figure 13b shows that in the CAN-To-FlexRay conversion, the existing in-vehicle gateway causes
an error rate, 1.55% and the MIGM an error rate, 1.55%, in the CAN-To-MOST conversion, the existing
in-vehicle gateway causes an error rate, 1.66% and the MIGM an error rate, 0.45%, in FlexRay-To-CAN
conversion, the existing in-vehicle gateway causes an error rate, 1.94% and the MIGM an error rate,
1.59%, and in the MOST-To-CAN conversion, the existing in-vehicle gateway causes an error rate,
2.59%, and the MIGM an error rate, 2.53%. Therefore, the error rate of the MIGM was lower than that
of the existing in-vehicle gateway by about 0.5%. When a CAN message was converted to another
protocol message, it had higher performance than other cases by 1%.

4.2. The In-VDM Performance Analysis

To analyze the performance of In-VDM, three experiments were conducted. In two experiments,
NNVP was compared with multi-layer perceptron (MLP) and long short-term memory (LSTM) in
computation time and accuracy, while in the other experiment, RPS was compared with a support
vector machine (SVM) and fuzzy in test loss. According to the experimental environment, the number
of test data sets was 100, 150, 200, 300, 400, and 500 sets, the computation speed was 3.20 GHz, and the
RAM memory size was 16 GB.

Figure 14a shows that the computation time of the NNVP was improved by 44.894% and 62.719%
more than that of the MPL and the LSTM separately as the number of test data sets increased from 100
to 500 sets. Figure 14b shows that the accuracy of the NNVP was higher by about 1% than that of the
MLP but similar to that of the LSTM on average. Since there was little difference between them in
accuracy but the NNVP was more efficient in computation time, NNVP was more suitable than the
MPL and LSTM in vehicle self-diagnosis by using payloads.

Sensors 2019, 19, 2534 22 of 24

Sensors 2019, 19, x FOR PEER REVIEW 22 of 24

them in accuracy but the NNVP was more efficient in computation time, NNVP was more suitable
than the MPL and LSTM in vehicle self-diagnosis by using payloads.

(a) Computation time (b) Accuracy

Figure 14. The (a) computation time and (b) accuracy according to test data.

Figure 15 shows a test data loss and over-fitting when RPS, SVM, and fuzzy were used to
diagnose parts of a vehicle. The RPS had a loss similar to the SVM and about 0.2 less than the fuzzy.
However, since the SVM had over-fitting, RPS was most suitable for part diagnosis of vehicles.

Figure 15. The accuracy according to the test data.

5. Conclusion

The LAVS for autonomous vehicle self-diagnosis proposed in this paper consists of the MIGM
for communication not only between in-vehicle protocols but also between diagnostic results and the
server and the In-VDM for part self-diagnosis and total vehicle self-diagnosis. Here, the In-VDM
consists of the RPS for part diagnosis and the NNVS for total vehicle diagnosis. The LAVS guarantees
the compatibility of in-vehicle protocols by using the MIGM and the self-diagnosis of a vehicle by
using the In-VDM.

The conversion time of the MIGM was improved more than that of the existing in-vehicle
gateway by about an average of 28.67%, the error rate of the MIGM was lower than that of the existing
in-vehicle gateway by about 0.5%, the computation time of the NNVP was improved by 44.894% and
62.719% more than that of the MPL and the LSTM separately, and the accuracy of the NNVP was
higher by about 1% than that of the MLP but similar to that of the LSTM on average. The RPS had a
test loss similar to the SVM and about 0.2 less than the fuzzy and the SVM had over-fitting. Therefore,
the LAVS was most suitable for not only in-vehicle communication but also part diagnosis and total
diagnosis of vehicles.

In addition, this paper would contribute to the following. First, the safety problem will be a
major obstacle to supply autonomous vehicles. If the self-diagnosis of autonomous vehicles solves
this problem, it will greatly contribute to the supply of autonomous vehicles by changing the
perception of customers. Second, an autonomous vehicle executes its self-diagnosis independently,

Figure 14. The (a) computation time and (b) accuracy according to test data.

Figure 15 shows a test data loss and over-fitting when RPS, SVM, and fuzzy were used to diagnose
parts of a vehicle. The RPS had a loss similar to the SVM and about 0.2 less than the fuzzy. However,
since the SVM had over-fitting, RPS was most suitable for part diagnosis of vehicles.

Sensors 2019, 19, x FOR PEER REVIEW 22 of 24

them in accuracy but the NNVP was more efficient in computation time, NNVP was more suitable
than the MPL and LSTM in vehicle self-diagnosis by using payloads.

(a) Computation time (b) Accuracy

Figure 14. The (a) computation time and (b) accuracy according to test data.

Figure 15 shows a test data loss and over-fitting when RPS, SVM, and fuzzy were used to
diagnose parts of a vehicle. The RPS had a loss similar to the SVM and about 0.2 less than the fuzzy.
However, since the SVM had over-fitting, RPS was most suitable for part diagnosis of vehicles.

Figure 15. The accuracy according to the test data.

5. Conclusion

The LAVS for autonomous vehicle self-diagnosis proposed in this paper consists of the MIGM
for communication not only between in-vehicle protocols but also between diagnostic results and the
server and the In-VDM for part self-diagnosis and total vehicle self-diagnosis. Here, the In-VDM
consists of the RPS for part diagnosis and the NNVS for total vehicle diagnosis. The LAVS guarantees
the compatibility of in-vehicle protocols by using the MIGM and the self-diagnosis of a vehicle by
using the In-VDM.

The conversion time of the MIGM was improved more than that of the existing in-vehicle
gateway by about an average of 28.67%, the error rate of the MIGM was lower than that of the existing
in-vehicle gateway by about 0.5%, the computation time of the NNVP was improved by 44.894% and
62.719% more than that of the MPL and the LSTM separately, and the accuracy of the NNVP was
higher by about 1% than that of the MLP but similar to that of the LSTM on average. The RPS had a
test loss similar to the SVM and about 0.2 less than the fuzzy and the SVM had over-fitting. Therefore,
the LAVS was most suitable for not only in-vehicle communication but also part diagnosis and total
diagnosis of vehicles.

In addition, this paper would contribute to the following. First, the safety problem will be a
major obstacle to supply autonomous vehicles. If the self-diagnosis of autonomous vehicles solves
this problem, it will greatly contribute to the supply of autonomous vehicles by changing the
perception of customers. Second, an autonomous vehicle executes its self-diagnosis independently,

Figure 15. The accuracy according to the test data.

5. Conclusions

The LAVS for autonomous vehicle self-diagnosis proposed in this paper consists of the MIGM
for communication not only between in-vehicle protocols but also between diagnostic results and
the server and the In-VDM for part self-diagnosis and total vehicle self-diagnosis. Here, the In-VDM
consists of the RPS for part diagnosis and the NNVS for total vehicle diagnosis. The LAVS guarantees
the compatibility of in-vehicle protocols by using the MIGM and the self-diagnosis of a vehicle by
using the In-VDM.

The conversion time of the MIGM was improved more than that of the existing in-vehicle gateway
by about an average of 28.67%, the error rate of the MIGM was lower than that of the existing in-vehicle
gateway by about 0.5%, the computation time of the NNVP was improved by 44.894% and 62.719%
more than that of the MPL and the LSTM separately, and the accuracy of the NNVP was higher by
about 1% than that of the MLP but similar to that of the LSTM on average. The RPS had a test loss
similar to the SVM and about 0.2 less than the fuzzy and the SVM had over-fitting. Therefore, the LAVS
was most suitable for not only in-vehicle communication but also part diagnosis and total diagnosis
of vehicles.

In addition, this paper would contribute to the following. First, the safety problem will be a
major obstacle to supply autonomous vehicles. If the self-diagnosis of autonomous vehicles solves this
problem, it will greatly contribute to the supply of autonomous vehicles by changing the perception of
customers. Second, an autonomous vehicle executes its self-diagnosis independently, not dependent

Sensors 2019, 19, 2534 23 of 24

on the server, so the processing speed will be improved highly. Therefore, it will prevent the accident
in advance and in real time.

This study was conducted with government support, and the current experiment was conducted
with existing actual data. Further research will be conducted with actual data in real time vehicles and
commercialized through industrial and university cooperation.

Author Contributions: Conceptualization, B.L. and Y.J.; methodology, S.S.; software, S.S.; validation, B.L. and Y.J.;
writing—original draft preparation, S.S. and Y.J.; writing—review and editing, B.L.; visualization, B.L.; supervision,
B.L.; project administration, B.L.; funding acquisition, B.L.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. NRF-2018R1A2B6007710).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Automated Vehicles for Safety. Available online: https://www.nhtsa.gov/technology-innovation/automated-
vehicles-safety (accessed on 30 December 2018).

2. Radier, B.; Salaun, M.; Guette, G.; Nait-Abdesselam, F. A vehicle gateway to manage IP multimedia subsystem
autonomous mobility. Int. J. Auton. Adapt. Commun. Syst. 2010, 3, 159–177. [CrossRef]

3. Xie, G.; Zeng, G.; Kurachi, R.; Takada, H.; Li, Z.; Li, R.; Li, K. WCRT Analysis of CAN Messages in
Gateway-Integrated In-Vehicle Networks. IEEE Trans. Veh. Technol. 2017, 66, 9623–9637. [CrossRef]

4. Kim, M.H.; Lee, S.; Lee, K.C. Performance Evaluation of Node-mapping-based Flexray-CAN Gateway for
in-vehicle Networking System. Intell. Autom. Soft Comput. 2014, 21, 251–263. [CrossRef]

5. Kim, J.H.; Seo, S.H.; Hai, N.T.; Cheon, B.M.; Lee, Y.S.; Jeon, J.W. Gateway Framework for In-Vehicle Networks
Based on CAN, FlexRay, and Ethernet. IEEE Trans. Veh. Technol. 2015, 64, 4472–4486. [CrossRef]

6. Benslimane, A.; Taleb, T.; Sivaraj, R. DynaMIGM Clustering-Based Adaptive Mobile Gateway Management
in Integrated VANET—3G Heterogeneous Wireless Networks. IEEE J. Sel. Areas Commun. 2011, 29, 559–570.
[CrossRef]

7. Omar, H.A.; Zhuang, W.; Li, L. Gateway Placement and Packet Routing for Multihop In-Vehicle Internet
Access. IEEE Trans. Emerg. Top. Comput. 2015, 3, 335–351. [CrossRef]

8. Shafiee, K.; Leung, V.C.M. Connectivity-aware minimum-delay geographic routing with vehicle tracking in
VANETs. Ad Hoc Netw. 2010, 9, 131–141. [CrossRef]

9. Bruglieri, M.; Cappanera, P.; Nonato, M. The Gateway Location Problem: Assessing the impact of candidate
site selection policies. Discret. Appl. Math. 2013, 165, 96–111. [CrossRef]

10. Lee, Y.S.; Kim, J.H.; Jeon, J.W. FlexRay and Ethernet AVB Synchronization for High QoS Automotive Gateway.
IEEE Trans. Veh. Technol. 2017, 66, 5737–5751. [CrossRef]

11. Noura, A.; Kaouther, A.; Mohammed, A.; Azzedine, B. A reliable quality of service aware fault tolerant
gateway discovery protocol for vehicular networks. Wirel. Commun. Mob. Comput. 2015, 15, 1485–1495.

12. Daun, X.; Liu, Y.; Wang, X. SDN Enabled 5G-VANET: Adaptive Vehicle Clustering and Beamformed
Transmission for Aggregated Traffic. IEEE Commun. Mag. 2015, 55, 120–127. [CrossRef]

13. Ju, K.; Chen, L.; Wei, H.; Chen, K. An Efficient Gateway Discovery Algorithm with Delay Guarantee for
VANET-3G Heterogeneous Networks. Wirel. Pers. Commun. 2014, 77, 2019–2036. [CrossRef]

14. Jeong, Y.N.; Son, S.R.; Jeong, E.H.; Lee, B.K. An Integrated Self-Diagnosis System for an Autonomous Vehicle
Based on an IoT Gateway and Deep Learning. Appl. Sci. 2018, 8, 1164. [CrossRef]

15. Jeong, Y.N.; Son, S.R.; Jeong, E.H.; Lee, B.K. A Design of a Lightweight In-Vehicle Edge Gateway for the
Self-Diagnosis of an Autonomous Vehicle. Appl. Sci. 2018, 8, 1594. [CrossRef]

16. Mu, J.; Xu, L.; Duan, X.; Pu, H. Study on Customer Loyalty Prediction Based on RF Algorithm. JCP 2013, 8,
2134–2138. [CrossRef]

17. Kalantarian, H.; Sarrafzadeh, M. Audio-based detection and evaluation of eating behavior using the
smartwatch platform. Comput. Biol. Med. 2015, 65, 1–9. [CrossRef]

18. Huang, T.; Yu, Y.; Guo, G.; Li, K. A classification algorithm based on local cluster centers with a few labeled
training examples. Knowl.-Based Syst. 2010, 23, 563–571. [CrossRef]

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
http://dx.doi.org/10.1504/IJAACS.2010.031089
http://dx.doi.org/10.1109/TVT.2017.2737035
http://dx.doi.org/10.1080/10798587.2014.981999
http://dx.doi.org/10.1109/TVT.2014.2371470
http://dx.doi.org/10.1109/JSAC.2011.110306
http://dx.doi.org/10.1109/TETC.2015.2395077
http://dx.doi.org/10.1016/j.adhoc.2010.06.003
http://dx.doi.org/10.1016/j.dam.2013.06.017
http://dx.doi.org/10.1109/TVT.2016.2636867
http://dx.doi.org/10.1109/MCOM.2017.1601160
http://dx.doi.org/10.1007/s11277-014-1622-5
http://dx.doi.org/10.3390/app8071164
http://dx.doi.org/10.3390/app8091594
http://dx.doi.org/10.4304/jcp.8.8.2134-2138
http://dx.doi.org/10.1016/j.compbiomed.2015.07.013
http://dx.doi.org/10.1016/j.knosys.2010.03.015

Sensors 2019, 19, 2534 24 of 24

19. Kalantarian, H.; Sarrafzadeh, M. Probabilistic time-series segmentation. Pervasive Mob. Comput. 2017, 41,
397–412. [CrossRef]

20. Tahani, D.; Riyad, A. Diagnosis of Diabetes by Applying Data Mining Classification Techniques. Int. J. Adv.
Comput. Sci. Appl. 2016, 7, 329–332.

21. AI-Jarrah, O.Y.; AI-Hammdi, Y.; Yoo, P.D.; Muhaidat, S.; AI-Qutayri, M. Semi-supervised multi-layered
clustering model for intrusion detection. Digit. Commun. Netw. 2018, 4, 277–286. [CrossRef]

22. Meeragandhi, G.; Appavoo, K.; Srivatsa, S.K. Effective Network Intrusion Detection using Classifiers Decision
Trees and Decision rules. Int. J. Adv. Netw. Appl. 2010, 2, 686–692.

23. Quiroz, J.C.; Mariun, N.; Mehrjou, M.R.; Izadi, M.; Misron, N.; Mohd Radzib, M.A. Fault detection of broken
rotor bar in LS-PMSM using random forests. Measurement 2018, 116, 279–280. [CrossRef]

24. V2X Communication Application Technology and Development Direction. Available online: http://www.
krnet.or.kr/board/data/dprogram/1832/J2-2.pdf (accessed on 30 September 2018).

25. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach.
Learn. Res. 2010, 9, 249–256.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.pmcj.2017.03.005
http://dx.doi.org/10.1016/j.dcan.2017.09.009
http://dx.doi.org/10.1016/j.measurement.2017.11.004
http://www.krnet.or.kr/board/data/dprogram/1832/J2-2.pdf
http://www.krnet.or.kr/board/data/dprogram/1832/J2-2.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Gateway
	Random-Forest

	A Design of the Lightweight Autonomous Vehicle Self-Diagnosis (LAVS)
	Overview
	The Multi-Protocol Integrated Gateway Module (MIGM)
	A Design of a Message Interface Sub-Module (MIS)
	A Design of a Message Storage Sub-Module (MSS)
	A Design of the Message Conversion Sub-Module (MCS)
	A Design of a WAVE Message Generation Sub-Module (WMGS)

	A Design of an In-Vehicle Diagnosis Module (In-VDM)
	A Design of the Random-Forest Part-Diagnosis Sub-Module (RPS)
	A Design of a Neural Network Vehicle-Diagnosis Sub-Module (NNVS)

	The Performance Analysis
	The MIGM Performance Analysis
	The In-VDM Performance Analysis

	Conclusions
	References

