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Abstract: Vehicle-to-Everything (V2X) requires high-speed communication and high-level security.
However, as the number of connected devices increases exponentially, communication networks
are suffering from huge traffic and various security issues. It is well known that performance and
security of network equipment significantly depends on the packet classification algorithm because it
is one of the most fundamental packet processing functions. Thus, the algorithm should run fast
even with the huge set of packet processing rules. Unfortunately, previous packet classification
algorithms have focused on the processing speed only, failing to be scalable with the rule-set size.
In this paper, we propose a new packet classification approach balancing classification speed and
scalability. It can be applied to most decision tree-based packet classification algorithms such as
HyperCuts and EffiCuts. It determines partitioning fields considering the rule duplication explicitly,
which makes the algorithm memory-effective. In addition, the proposed approach reduces the
decision tree size substantially with the minimal sacrifice of classification performance. As a result,
we can attain high-speed packet classification and scalability simultaneously, which is very essential
for latest services such as V2X and Internet-of-Things (IoT).
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1. Introduction

Internet traffic is increasing exponentially every year with the advent of new services such as
Internet-of-Things (IoT) and Vehicle-to-Everything (V2X). The number of connected vehicles is expected
to reach 125 million by 2022 [1]. In addition, the number of IoT devices is increasing over 26 billion,
so we expect the traffic will soar up even faster in the near future [2]. With more traffic, security rules
installed on the network equipment also grow in size and complexity. When we apply the security
rules to incoming packets, we use an algorithm called packet classification, which requires a large
searching table and much processing time.

The packet classification algorithm is not only necessary for security function, but also essential
for basic packet processing in network equipment [3]. For the operation of the algorithm, we first
define the rule-set specifying how to handle the received packets. The rule-set is a large collection of
rules, and each rule consists of a priority and matching conditions for each field in the packet header.
Whenever a packet arrives, the algorithm searches for matching rules by comparing each rule with
the fields in the header, and chooses the highest priority rule among them. Hence, in order to handle
vast traffic, it is critical for network equipment to perform packet classification fast and efficiently.
In other words, the packet classification algorithm is one of the key components that determines
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the performance of network equipment. Recently, networks are growing in size and complexity
tremendously, and the rule-set size is increasing in proportion. Therefore, the packet classification
algorithm should be capable of processing packets at very high speed, even with the huge rule-set.

To resolve this issue, various packet classification algorithms have been proposed in previous
literature [4–6]. The algorithms can be categorized into software and hardware-based approaches.
Hardware based algorithms need specialized hardware chips to boost the classification performance.
However, they cannot support high flexibility to customers’ various demands [7–9]. For software-based
algorithms, some algorithms build a small search table to accommodate a large rule-set with limited
memory [10,11]. Others focus on speeding up the classification process by spending more resources,
in order to support vast traffic [12]. We also propose an approach to increase search speed especially
for multi-classification required [13].

Unfortunately, there is a common tradeoff between search table size and packet classification
speed. For example, our approach can improve the classification speed significantly but also suffers
from a huge table size. Thus, when designing a packet classification algorithm, a popular guideline is
to improve the classification speed by using more memory. Most existing algorithms are based on such
an approach and do not satisfy high classification speed and small memory usage at the same time.

Today a decision tree, which is a well-known searching algorithm, is widely used in packet
classification algorithms. The algorithms construct a decision tree by dividing a rule-set into multiple
sub-partitions repeatedly, according to an internal criterion that determines the partitioning fields
and the partitioning size. When a packet arrives, the algorithms search through the decision tree,
and find a matching rule. Unfortunately, although the decision tree is very popular, we cannot
construct the optimal decision tree in the computationally efficient manner. Indeed, even the
two-means clustering, i.e., the simplest partitioning problem of dividing a set into two partitions is
NP-hard [14,15]. Many decision tree-based packet classification algorithms have been developed and
adopted in the commercial equipment, but they build just a suboptimal decision trees due to the
computational complexity.

In packet classification algorithms using the decision tree, rules in a node are partitioned into
multiple subsets of the rules and each subset is stored in a child node. If a rule satisfies conditions of
more than one partition, it is stored in multiple child nodes. In that case, we say the rule is duplicated.
If the rule duplication happens frequently, we consume more memory space for the decision tree
because the same rule is copied several times in the memory. Hence, we should be careful to choose a
partitioning criterion in order to minimize the rule duplication.

In this paper, we propose a new partitioning algorithm for decision tree-based classification
algorithm to minimize rule duplication significantly. To this end, we define a partitioning preference
coefficient for each partitioning field. The value represents how uniformly rules can be distributed
in the node and how efficiently the rule duplication can be avoided, when each field is chosen as
the partitioning criterion. We define the coefficient as simply as possible since the computational
burden can degrade the partitioning performance. This algorithm can be applied for most decision
tree-based packet classification algorithms and can greatly improve their scalability without sacrificing
classification performance. Since our algorithm improves the common partitioning procedure of
decision tree-based algorithms, it can be applied for most decision tree-based algorithms without
significant modification.

Our contribution is twofold as follows:

• First, we propose a new partitioning field selection algorithm that finds the optimal partitioning
field using the number of unique matching ranges and the number of wildcards. As far as we
know, it is the first approach to use the concept of wildcards based on the matching range of each
node, so the algorithm can minimize duplicated rules compared to existing ones.

• Second, we also propose a new partitioning number per field decision algorithm that chooses two
partitioning fields through the partitioning field selection algorithm on each node, and finds the
number of partitions based on the selected fields to minimize rule duplication. Since it considers
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only two fields to choose the partitioning number in contrast to existing algorithms using multiple
fields, it is fast without the performance degradation.

We organize the remainder of this paper as follows. We briefly explain the related works in
Section 2, and describe the motivation, detailed operation, and features of the proposed algorithm in
Section 3. In Section 4, we analyze the performance of existing algorithms before and after adopting
our proposed algorithm. Conclusion follows in Section 5.

2. Related Works

In this section, we explain two famous packet classification algorithms based on the decision
tree, i.e., HyperCuts [12] and EffiCuts [16]. HyperCuts attains high classification speed while
requiring a huge table. On the contrary, EffiCuts shows much smaller table size but at a sacrifice of
classification performance.

2.1. HyperCuts

HyperCuts extends the previous HiCuts algorithm [17]. However, HyperCuts has its own
unique features. That is, when generating a decision tree, HyperCuts performs the equal-interval
partitioning based on multiple fields, while its predecessor, HiCuts considers only a single field.
This multi-field-based partitioning greatly improves packet classification performance and memory
requirements simultaneously.

Before describing HyperCuts in detail, we explain the meaning of “the number of unique matching
ranges”. We consider the rule-set in Table 1 as an example. Each rule consists of four fields, and each
field has a range of matching values. One distinct range of matching values in each field is called
“unique matching range”. For example, each rule has one matching range for Field 1 in Table 1, so the
set of unique matching ranges is {(0,8), (6,9), (0,15), (9,10), (6,15), (0,2)}. Here, the number of unique
matching ranges is 6.

Table 1. Example of a rule-set where the field sizes of Fields 1 and 2 are 4-bit, and those of Fields 3 and
4 are 3-bit, respectively.

Rule Field 1 Field 2 Field 3 Field 4

Rule 1 (0,8) (0,1) (0,2) (0,5)

Rule 2 (6,9) (0,1) (0,2) (0,5)

Rule 3 (0,15) (4,5) (4,5) (0,5)

Rule 4 (9,10) (12,15) (4,5) (6,7)

Rule 5 (6,15) (6,10) (4,5) (6,7)

Rule 6 (0,8) (8,12) (6,7) (6,7)

Rule 7 (0,2) (13,15) (6,7) (6,7)

When generating a decision tree, HyperCuts needs two configuration parameters, “binth” and
“space factor”, where “binth” is the maximum number of rules stored in the leaf node and “space
factor” is the maximum number of rule duplications allowed in each partitioning operation. To satisfy
the constraints, HyperCuts builds the decision tree as follows. At first, it partitions a root node that
contains the entire rule-set, based on one or more fields. As a result, we obtain multiple subsets of
rules, and to store each subset, corresponding child nodes are generated. This procedure repeats until
all the leaf nodes satisfy the constraints. During the procedure, HyperCuts selects the partitioning
fields and the number of partitions for each field. We describe each step in detail.
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2.1.1. Partitioning Field Selection

HyperCuts should choose the effective partitioning fields prior to conducting partitioning.
However, it is not easy to select optimal partitioning fields. When the number of partitioning fields is
large, more subsets (and accordingly more child nodes) are generated. Hence, the height of the decision
tree decreases, and thus, classification performance improves. Instead, memory usage increases since
each rule can be duplicated to multiple child nodes. We should choose an appropriate number of
partitioning fields to balance search performance and memory requirement simultaneously. For this,
HyperCuts selects one or more fields for partitioning, considering the number of unique matching
ranges. For illustration, we define the following notations.

• d: Total number of fields in rules.
• uk: Number of unique matching ranges for the k-th field, where k ∈ {1, 2, · · · , d}.

• u = 1
d
∑d

k=1 uk: Average number of unique matching ranges.

In HyperCuts, all fields satisfying Equation (1) are chosen as partitioning fields:

uk ≥ u and uk , 1 (1)

For example, if we count unique matching ranges for each field in Table 1, uk’s are 6, 6, 3, and 2 for
k = 1, 2, 3, and 4, respectively. Their average is 4 and according to Equation (1), Fields 1 and 2 become
the partitioning fields.

2.1.2. Partitioning Number Decision

After choosing partitioning fields, HyperCuts determines how many child nodes it should generate
by partitioning the current node. The number of partitions affects memory requirement as well as
classification speed. Unfortunately, it is inefficient and almost impossible to look over all the possible
combinations of fields. Alternatively, HyperCuts calculates the number of near-optimal partitions,
considering each field one-by-one. To describe the approach, we define the following symbols.

• n: Total number of rules in the current node.
• c(k): Number of partitions for the k-th field.
• ρ: Space factor.
• Nmax: Maximum number of partitions.

Now, the maximum c(k) satisfying Equation (2) is determined as the number of partitions for the
k-th field.

c(k) < ρ·n (2)

Since HyperCuts conducts partitioning for multiple fields, the total number of partitions is
c(1)c(2) · · · c(d) =

∏d
k=1 c(k). Thus, HyperCuts creates many child nodes and consumes a large

amount of memory. In order to resolve this issue, the algorithm repeatedly reduces the number of
partitions by half, until it satisfies Equation (3), for the field whose number of partitions is the smallest.
This operation is beneficial to avoid excessive memory usage.

d∏
k=1

c(k) < min
(
ρ·
√

n, Nmax
)

(3)

When more than one field has the same partition number, the algorithm prefers the field with the
smallest matching range. For the rule-set of Table 1, HyperCuts constructs a decision tree of Figure 1,
by choosing the partitioning fields, deciding the number of partitions for each field, and recursively
conducting the partitioning for each node with more rules than “binth”.
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Figure 1. Decision tree generated from Table 1 by HyperCuts, where both binth and space factor are set
to 2 both.

2.2. EffiCuts

EffiCuts aims at cutting the memory requirement down because it is a critical problem of
HyperCuts in practice. EffiCuts builds a decision tree based on HyperCuts. However, differently from
HyperCuts, it creates multiple decision trees for each subset of rules, called “category”. This approach
reduces the rule duplication significantly.

We now explain two important operations of EffiCuts, i.e., tree splitting and tree merging. We here
assume that each rule consists of 5-tuple of source IP, destination IP, source port, destination port,
and protocol.

2.2.1. Tree Splitting

EffiCuts constructs multiple decision trees, contrary to HyperCuts. To this end, the algorithm
splits the entire rule-set into categories in advance, where a “category” means a group of rules with
similar matching ranges for each field. Specifically, EffiCuts defines the wildcard field for each rule
using the following notations:

• FKk
min: Minimum value matching the k-th field. e.g., 0 for protocol field.

• FKk
max: Maximum value matching the k-th field. e.g., 255 for protocol field.

• PKk
min: Minimum value matching the k-th field of a given rule.

• PKk
max: Maximum value matching the k-th field of a given rule.

That is, the k-th field is a wildcard of a rule if it satisfies Equation (4).(
PKk

max − PKk
min

)
≥

(
FKk

max − FKk
min

)
·∆ (4)

where ∆ is the minimum wildcard ratio, usually set to 0.5. If a field of any rule is a wildcard, we call
the field as ‘wildcard field’. We explain the concept of wildcard using the example of Table 1. As the
size of Field 1 is 4-bit, it becomes a wildcard field if there exists any rule whose matching range for
Field 1 is larger than or equal to (15− 0) × 0.5 = 7.5, according to Equation (4). Thus, Field 1 becomes
a wildcard field for Rule 3, 5, and 6. We determine whether each field is wildcard field or not, and
classify all the rules into four categories according to the number of wildcard fields.
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• Category 1: rules with four wildcard fields
• Category 2: rules with three wildcard fields
• Category 3: rules with two wildcard fields
• Category 4: rules with one or zero wildcard field

When each rule consists of 5-tuple, we can divide Category 1 further into five subcategories; all
fields are wildcard except for source IP, or destination IP, or source port, or destination port, or protocol.
Similarly, we can define ten subcategories for Categories 2 and 3 and six subcategories for Category 4.
Conclusively, we classify the rules of Table 1 into 31 subcategories. EffiCuts creates a decision tree
for each subcategory because rule duplication decreases significantly when the rules have similar
characteristics in all fields.

2.2.2. Tree Merging

If we create decision trees for each subcategory using EffiCuts, memory usage decreases drastically
since rule duplication is minimized. However, we should look up all the decision trees for classification
of each packet, which deteriorates the search performance. Thus, we need to limit the total size of
decision trees within a certain number. In EffiCuts, we can reduce the number of decision trees by
merging multiple subcategories into one. Unfortunately, the merge can lead to rule duplication.
To minimize this negative effect, EffiCuts combines similar subcategories only, specifically the
subcategories different in one wildcard field at most. For example, in Figure 2, subcategories 1,
2, 3, and 4 have one different wildcard field each other. Therefore, any two subcategories among
them can be merged into a single subcategory. On the other hand, subcategories 5 and 6 cannot be
merged because they have two different wildcard fields. Tree merging process repeats by comparing
all subcategories, selecting two subcategories, merging them into one category, and constructing a
decision tree in the same way with HyperCuts.
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EffiCuts greatly reduces the rule duplication and thus also the memory requirement, compared to
HyperCuts. However, EffiCuts is known to provide slower packet classification speed than HyperCuts
since there are many decision trees to look over for each packet.

3. Proposed Algorithm

In this section, we explain our partitioning algorithm that minimizes rule duplication.
The proposed algorithm can improve both the memory requirement and the packet classification
performance effectively by solving the limitation of existing decision tree algorithms. For an easy
explanation of the proposed algorithm, we assume that rules consist of 5-tuple such as source IP,
destination IP, source port, destination port, and protocol.
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3.1. Motivation

In a decision tree algorithm, if we use more fields for partitioning a rule-set, the depth of the final
decision tree is generally reduced, thereby improving the packet classification performance. However,
this partitioning process does not use memory efficiently due to significantly generated redundant
nodes. HyperCuts selects the partitioning field based on the number of unique matching ranges for
each field in order to balance packet classification performance and memory usage. Unfortunately,
this approach still has the following problems.

First, it does not consider wildcard fields in partitioning at all. HyperCuts internally adopts the
equal-interval partitioning. That is, if the algorithm selects a field with a large number of unique
matching ranges according to Equation (1) but it is unfortunately a wildcard field, many rules are
duplicated during the partitioning process. Thus, in this case, it should consider wildcard fields and
select a partitioning field to decrease the rule duplication and the memory requirement.

Second, HyperCuts does not determine the optimal number of partitions. If two partitioning
fields lead to the same number of partitions, the number of partitions for a field with smaller matching
range is reduced by half according to the internal algorithm. However, it can be better to choose a field
with larger matching range in reducing the number of partitions. In conclusion, the performance of
the final decision tree severely depends on the partitioning field selection algorithm and the number
of partitions for the field. We can improve the ratio of memory requirement to packet classification
performance by elaborately choosing the partitioning fields as well as the number of partitions.

3.2. Proposed Partitioning Algorithm

We now describe the proposed partitioning algorithm using wildcards in detail. Our algorithm
consists of two sub-algorithms, the partitioning field selection algorithm and the partitioning number
per field decision algorithm. We call the proposed algorithm Selection Based on Wildcards (SBW)
for simplicity.

3.2.1. Partitioning Field Selection Algorithm

We should determine the wildcard field for each node to be partitioned, in order to select the
partitioning field minimizing the rule duplication. We recursively choose the partitioning node until the
decision tree is completed, thereby considering the matching range of the current node. For example,
let us assume that the current node has a partitioned matching range for Field 1 as (0,7), where the
original full range of the field is (0,15). If we make partitions for the node based on Field 1 again,
then we should consider the full matching range as (0,7) instead of (0,15).

However, Equation (4) of EffiCuts determines if a field is a wildcard or not using the full matching
range of the field. For example, Figure 3 shows a two-dimensional representation of matching ranges
for two fields in the rules stored in the root node. Note that ∆ is set to 0.5. For rule R1, we can compare
the matching range of each field with the corresponding range of the field. Then, it is easy to see that
all fields of R1 are wildcards. On the other hand, for R2, we can see that the matching ranges of all the
fields occupy less than 0.5. Thus, R2 does not have a wildcard field.

In the child node of the root node, the wildcard field of each rule can change. We consider Child
1, that is, one of eight child nodes created by partitioning the root node of Figure 3. Figure 4 shows
a two-dimensional representation of the matching ranges for two fields in the rules stored in Child
1. For R1 stored in Child 1, all fields occupy less than 0.5 of the corresponding full ranges, unlike at
the root node. Therefore, R1 stored in Child 1 has no wildcard field. On the other hand, all fields of
R2 occupy more than 0.5 when each field range is compared with its full range in Child 1. Therefore,
all fields of R2 in Child 1 are wildcard fields.
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The original wildcard field is defined only for a root node, but we extend the concept of wildcard
field to each child node also in a decision tree. To define the extended concept of wildcard, we denote
all notations as follows:

• Ni: The ith node.
• NKk

i,min: Minimum value matching the k-th field at node Ni.

• NKk
i,max: Maximum value matching the k-th field at node Ni.

• PKk
i,min: Minimum value matching the k-th field of a given rule at node Ni.

• PKk
i,max: Maximum value matching the k-th field of a given rule at node Ni.

We now define the following condition for the k-th field of a rule stored in node Ni.

min
{
PKk

i,max, NKk
i,max

}
−max

{
PKk

i,min, NKk
i,min

}
≥

(
NKk

i,max −NKk
i,min

)
·∆ (5)
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Equation (5) considers the matching range for wildcard decision in the current node. However,
it causes additional partitioning time since it calculates Equation (5) in every node during partitioning,
until the final decision tree is completed.

The number of unique ranges is used as an indicator of whether rules are evenly distributed to
child nodes or not. As the number increases, the rules tend to be uniformly distributed to the child
nodes without significant rule duplication. For example, if there is only one range, the rules can be
duplicated and distributed to all new child nodes. Then, the memory usage increases and the packet
classification speed decreases.

A wildcard is also an indicator of the rule duplication degree. If there are many rules for which
the selected partitioning field is a wildcard, it causes many rule duplications. It significantly increases
the memory requirement. If such fields are frequently chosen as a partitioning field, the final decision
tree will be huge. Therefore, the selected partitioning field should have rules without wildcards to
minimize the rule duplication. With these observations, our proposed algorithm selects a field with a
small number of wildcards and a large number of unique matching ranges as a partitioning field.

The proposed algorithm can be described as follows. First, the number of unique matching ranges
and the number of wildcards are calculated for each field of every rule stored in the node. Then,
the average values of the numbers for all fields are obtained. Finally, the partitioning preference
coefficient is calculated by using these average values. The partitioning preference coefficient for the
k-th field S(k) is defined as follows:

S(k) =


uk/u

{(ωk+1)/(ω+1)}
2 , uk , 1

0 , otherwise
(6)

where ωk is the number of wildcards for the k-th field and ω = 1
d
∑d

k=1 ωk. In Equation (6), we use
(ωk + 1) instead of ωk to avoid dividing by zero. This coefficient represents how much the specific field
is appropriate for partitioning. If the value is large, the field is suitable for the partitioning criterion.

Existing algorithms such as HyperCuts and EffiCuts select the partitioning field using the number
of unique ranges as in Equation (1). However, the condition does not consider the number of wildcards
at all, which causes considerable rule duplication problems. On the other hand, the proposed algorithm
computes S(k) as in Equation (6) by considering the number of wildcards. Since it has no constraint
such as uk ≥ u from Equation (1), all S(k) cannot be zero, simultaneously. It selects the two fields with
the largest S(k) as partitioning fields through Equation (6).

The existing algorithm such as HyperCuts or EffiCuts can theoretically choose multiple partitioning
fields, even more than two, in contrast to ours. Partitioning using more fields generally shows the
better partitioning result. However, we should note that in practice, the existing algorithm usually
selects only two or fewer fields. This property guarantees that our algorithm does not achieve lower
performance compared to the existing solutions although it just chooses two fields. When we calculate
S(k) through Equation (6) for the rule-set in Table 1, we obtain the result of Table 2. In this example,
Fields 2 and 3 are selected as partitioning fields.

Table 2. Partitioning field selection by calculating S(k) from Table 1.

Field 1 Field 2 Field 3 Field 4

Number of unique matching ranges 6 6 3 2

Average number of unique matching ranges 4.5

Number of wildcards 4 0 0 0

Average number of wildcards 1.75

S(k) 0.19 4.08 2.04 0.14

Selected partitioning fields Field 2, Field 3
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3.2.2. Partitioning Number per Field Decision Algorithm

After we choose two partitioning fields through the above-described algorithm, we should
determine the number of partitions based on the selected fields. The existing algorithm, HyperCuts,
initially determines the number of partitions for each field through Equation (2). After that, it determines
the most efficient partitioning number by considering the combination of partitioning fields through
Equation (3). If the numbers of partitioning fields are the same, the proposed algorithm tries to
reduce the number of partitioning fields with a larger matching range as well as a field with a smaller
matching range using Equation (3), in contrast to the existing algorithm. Then, we separately conduct
partitioning for the two partitioning fields in advance on the current node, and select the most efficient
number of partitions that minimizes rule duplication.

Figure 5 shows the final decision tree generated by reducing the number of partitions of Field 3
among partitioning fields selected in Table 2 using Equation (3). In contrast, Figure 6 shows a final
decision tree generated by reducing the number of partitions of Field 2. Let us assume that binth and
space factor are set to 2. Figure 5 shows that it has smaller duplicated rules than that of Figure 1 which
is generated by the existing algorithm. However, it still has more duplicate rules compared to Figure 6
although it generates a decision tree after reducing the number of partitions of Field 3. Therefore,
we can know that it is necessary to reduce the number of partitions of the field having the largest
matching range to perform a more efficient partitioning. Finally, we can make an algorithm that selects
the partitioning number per field as shown in Figure 7.
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3.3. Features of the Proposed Algorithm

Compared to HyperCuts and EffiCuts, our proposed algorithm has unique features such as high
flexibility, low memory requirement for building and maintaining decision trees, fast building speed,
and fast classification performance.

3.3.1. High Flexibility

The proposed algorithm adopts a new partitioning field selection algorithm that minimizes the
memory requirement in the partitioning process of HyperCuts. Therefore, it can be easily applied
to partitioning process of all packet classification algorithms based on HyperCuts. For example,
EffiCuts classifies a rule-set into sub-rule-sets according to the number of wildcard fields and then
partitions each sub-rule-set in the same way as HyperCuts. Therefore, the proposed algorithm can be
combined into the partitioning process of EffiCuts. In this case, although EffiCuts can reduce memory
requirement significantly compared to HyperCuts, our algorithm can reduce the memory requirement
more than EffiCuts.

3.3.2. Low Memory Requirement

As mentioned earlier, the existing algorithm does not consider wildcards at all in selecting
partitioning fields. However, rule duplication is a serious problem caused by wildcard field and the
memory requirement increases proportionally to the number of wildcard fields.

The proposed algorithm considers both the number of unique matching ranges and the number
of wildcards to reduce the memory requirement. It chooses fields with the smallest wildcard number
as partitioning field by assigning more weight to the number of wildcards than the number of the
unique matching ranges. This minimizes the rule duplication for each partitioning process, which can
significantly reduce the decision tree size and the memory requirement for building the tree.

3.3.3. Fast Decision Tree Building Speed

One of the goals of the proposed algorithm is also to build the decision tree in a short time.
To generate a decision tree fast, the partitioning algorithm should minimize the size of rules in
the generated child nodes for each partitioning. The proposed algorithm finds the most efficient
partitioning number by partitioning the given rule-set in advance according to the obtained partitioning
number. Such an approach can increase the partitioning time more than the original partitioning
algorithm. However, it can perform more efficient partitioning, therefore, generating child nodes with
very small number of rules. Although it takes a longer time in the partitioning process, the total time
for generating the final decision tree can be reduced.

3.3.4. Improved Classification Performance due to Memory Reduction

The decision tree-based packet classification algorithm can easily trade off the memory requirement
and the packet classification performance using “binth” and “space factor” parameters. Accordingly,
if the memory requirement is increased, the classification performance can be improved by adjusting the
parameters. The proposed approach greatly reduces the memory requirement, i.e., just 1/5 compared
to EffiCuts, while maintaining the classification performance almost the same as the original algorithm.
It means that the packet classification performance can be further improved by increasing the memory
requirement until it reaches to the original requirement size through adjusting the parameters.

4. Performance Evaluation

Our proposed algorithm can be used with various classification algorithms based on decision tree
to improve scalability in terms of supportable rule-set size. In this section, we apply our algorithm to
HyperCuts and EffiCuts, which are well known for high classification performance and high scalability,
and compare the performances before and after applying our algorithm. Since HyperCuts is one of
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the fastest classifications and EffiCuts is one of the most memory efficient classification algorithms
among decision tree-based ones, we choose them as target algorithms to be applied with our SBW.
For performance evaluation, we use three rule-sets, i.e. Access Control List (ACL), Firewall (FW),
and IP Chain (IPC), generated by ClassBench [18]. For each type of rule-set, the rule-set size is set
to 20K, 40K, 60K, 80K, and 100K, respectively. For all cases, we set binth to 16 and space factor to 4
that are typically optimal values for existing algorithms. We adopt the following three metrics for
performance evaluation.

• Memory requirement per rule

It is the memory space required for a single rule. This metric is important for scalability of a
packet classification algorithm with the rule-set size. These days, the rule-set size installed in a network
equipment is increasing exponentially. Scalability is one of the most significant features of the packet
classification algorithms. The required memory size per rule should be constant or decrease as the
rule-set size increases, to support large-scale rule-sets.

• Packet classification performance

We measure the packet classification performance by the memory size accessed for packet
classification procedure, because it is a bottleneck of the classification performance. The classification
algorithm extracts key values from the head of each packet, and recursively searches the appropriate
child node by comparing the keys with the matching condition of the traversing node in a decision tree.
The search procedure stops when it reaches a leaf node. Then, the algorithm compares the keys with
each rule stored in the leaf node. We measure the accessed memory size in bytes to accurately estimating
the performance. For precise performance evaluation and analysis, we measure both the average
and the worst performances. Average classification performance shows the overall performance of
network equipment. On the other hand, the worst-case performance determines the specification of
network equipment.

• Table building time

Table building time refers to the time required to generate the final decision tree. We rebuild the
decision tree whenever a rule changes. Even when the rule changes frequently, the packet classification
algorithm should build the search table fast enough to satisfy the requirements of services such as V2X.

4.1. Memory Requirement per Rule

Figure 8 illustrates the average memory requirement of each scheme for one classification rule.
For easy comparison, we normalize the memory requirements of ACL, FW, and IPC rule-sets by those
of HyperCuts, respectively. We can see that our algorithm greatly reduces the required memory size
compared to HyperCuts and EffiCuts. EffiCuts requires smaller memory than HyperCuts. However,
when our SBW is combined with EffiCuts, the benefit is much outstanding. The average reduction
ratio of memory is 60% for HyperCuts with SBW but 89% for EffiCuts with SBW. The memory size is
critical for scalability, so we conclude that our algorithm is capable of supporting large rule-sets.
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4.2. Packet Classification Performance

Figures 9 and 10 show the relative average and the relative worst classification performance,
respectively. The proposed algorithm avoids rule duplication by choosing the partitioning fields in
terms of memory efficiency rather than classification performance. Thus, the classification performance
of our algorithm is inevitably degraded. However, the increasing ratios for average classification
performance are just 7% for HyperCuts with SBW and 5% for EffiCuts with SBW. The ratios for the
worst-case performance are 13% for HyperCuts with SBW and 2.5% for EffiCuts with SBW. We note that
the performance degradation is almost equal regardless of the rule-set size, which is very important
for scalability.
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4.3. Table Building Time

Figure 11 compares decision tree building times of each algorithm. Our proposed algorithm finds
the optimal field by partitioning the rule-set according to all the selected fields and choosing the field
with the minimal duplication rules to achieve near optimal partitioning. Therefore, this approach
takes a relatively long time. As a return, the rule duplication is minimized and therefore, the average
number of rules in the generated child nodes reduces. So, the number of nodes to be partitioned in the
process can be also reduced, which decreases the table building time significantly. Since the number of
child nodes is more sensitive to the building time than repetitive partitioning selection, our decision
tree is faster than the competitors are.
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Since SBW focuses on minimizing duplicated rules, HyperCuts or EffiCuts with SBW can be
improved significantly in terms of memory requirement and building time, essential metrics to support
V2X services in SDNs. Although the trade-off relation between classification speed and memory
requirement exists, we can see that our approach can effectively minimize the side-effects of SBW, so we
can have only marginally decreased classifciation performance. From the experiments, we confirm
that we can obtain many advantages using SBW for existing algorithms.

5. Conclusions

In this paper, we have proposed a new partitioning algorithm to resolve the high memory
requirement and low scalability for existing packet classification algorithms. Differently from
partitioning algorithms of the decision tree-based classification algorithms, we exploit not only
the number of unique range elements but also the number of wildcard fields in the rule partitioning.
Our algorithm selects a partitioning field that minimizes the rule duplication, by weighting the number
of wildcard fields more than the number of unique ranges. For the field chosen, we determine the
optimal number of partitions at the current node. Repeating this procedure, we construct a decision
tree consuming the minimal memory space. We observe that existing packet classification algorithms
with our algorithm outperforms them without ours in various scenarios. In some cases, search time
can increase slightly but with significantly reduced memory usage. When we use the same amount of
memory by adjusting the parameters such as “binth” and “space factor”, search performance improves
highly. Therefore, we conclude that the proposed scheme attains the high-speed packet classification
while supporting a large size rule-set simultaneously.
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