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Abstract: Wearable sensors and advanced algorithms can provide significant decision support for
clinical practice. Currently, the motor symptoms of patients with neurological disorders are often
visually observed and evaluated, which may result in rough and subjective quantification. Using small
inertial wearable sensors, fine repetitive and clinically important movements can be captured and
objectively evaluated. In this paper, a new methodology is designed for objective evaluation and
automatic scoring of bradykinesia in repetitive finger-tapping movements for patients with idiopathic
Parkinson’s disease and atypical parkinsonism. The methodology comprises several simple and
repeatable signal-processing techniques that are applied for the extraction of important movement
features. The decision support system consists of simple rules designed to match universally defined
criteria that are evaluated in clinical practice. The accuracy of the system is calculated based on the
reference scores provided by two neurologists. The proposed expert system achieved an accuracy of
88.16% for files on which neurologists agreed with their scores. The introduced system is simple,
repeatable, easy to implement, and can provide good assistance in clinical practice, providing
a detailed analysis of finger-tapping performance and decision support for symptom evaluation.

Keywords: decision support system; wearable inertial sensors; finger-tapping; automatic scoring;
Parkinson’s disease; atypical parkinsonism; UPDRS

1. Introduction

Wearable sensors and advanced algorithms are increasingly being used for the development of
new clinical support systems for more efficient diagnostics and the evaluation of symptom severity
and disease progress in Parkinson’s disease (PD) [1]. This covers a wide range of applications assessing
different symptoms, such as tremor, hypokinesia, rigidity, and bradykinesia.

Bradykinesia is one of the main manifestations of PD. It is evidenced as slowness of body
movements, especially in tasks that require fine motor control [2]. In clinical practice, bradykinesia
(as well as other motor symptoms) are usually assessed using the Unified Parkinson’s Disease Rating
Scale (UPDRS), in which the third part of the examination is dedicated to motor skill evaluation
(UPDRS III) [3]. Bradykinesia is evaluated using repetitive hand and leg movements, such as
finger-tapping, hand opening/closing, pronation/supination, and foot (or toe) tapping [2]. As a part
of the examination, patients are requested to repeatedly perform specified movements, as fast and
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with the biggest amplitude as possible, during some short period of time, usually 10–15 s [4–7],
or for some specified number of repetitions, e.g., 10 times [8–10]. These movements are evaluated
based on specifically defined criteria, including speed, amplitude, amplitude decrement, and number
of hesitations or freezes. The performance is rated with scores ranging from 0 to 4, in which
the lowest values correspond to normal movements, and higher values are given for more severe
bradykinesia expressed through significant amplitude losses, decreasing speed, or an increased number
of hesitations/freezes. However, in clinical practice, this examination is usually performed visually,
which may result in subjective evaluation and rough quantification. Since precise evaluation represents
a very important part of the long-term monitoring of the disease’s progress and patients’ response to
therapy, researchers have dedicated their effort and time to design new systems that can be used for
the objective evaluation and automatic scoring of symptom severity.

In the literature, different approaches are presented for the objective evaluation and quantification
of PD motor symptom severity, including bradykinesia. The introduced methodologies differ in terms
of applied instrumentation, analysed movements, measurement protocols, the size and composition
of patients’ groups, and implemented signal processing and learning techniques. Some studies
implement RGB or infrared camera systems for measuring clinically important repetitive hand
and leg movements [5,11,12]. Although such systems can provide high-precision measurements,
they have some limitations. They are expensive and require dedicated space for recording (they are
bulky), which significantly limits their applicability in clinical settings [13]. Due to these limitations,
wearable systems, such as smartphones [14], magnetic sensors [13], and inertial measurement units
(IMUs) [7–9,15–20], are increasingly being applied for bradykinesia assessment. IMUs are small,
lightweight, easy to mount, and do not require dedicated space for recording, which makes them more
suitable for fast and reliable everyday clinical applications.

In the literature, bradykinesia is assessed by analysing different repetitive movements, including
finger-tapping [8,13,21], hand opening/closing [16,17], hand pronation/supination [9,10,22], and toe
tapping [23], as well as by simultaneous analysis of different movements [12,20,24]. From finger-tapping
(FT) accelerometer data, researchers extract different features, describing the frequency and
biomechanical properties of the movements, and use them as input into the ordinal logistic regression
model for prediction of UPDRS FT scores [8]. It is shown that scores can be predicted with high
predictive power (the Goodman–Kruskal Gamma score is 0.961). Four parameters extracted from the
FT gyro data were found to be statistically correlated with clinical scores (from r = 0.73 to r = −0.80) [7].
A similar approach is applied to a repetitive hand opening/closing task [16]. Signals are acquired with
small IMUs and described by the dominant grasping frequency and mean angle, and fitted with the
clinical UPDRS scores using a regression model [16]. It is shown that the predicted scores are highly
correlated with the clinical scores (the determination coefficient is r2 = 0.99).

A methodology that combines principal component analysis and multiple linear regression is
applied to quantify bradykinesia severity in FT movements [13]. The method is applied to features that
are extracted from the data recorded using magnetic sensors. It is shown that this approach can provide
scores with a mean square error of 0.45 compared to the reference UPDRS FT scores. Another study
presented a new approach that uses a motion capture system and dynamical features rather than
standard spectral features for automatic scoring of the FT performance [5]. The results show strong
and significant correlations with clinical scores.

In order to describe bradykinesia in multi-joint upper limb movements, researchers have
introduced new performance indexes that are correlated with UPDRS bradykinesia scores and
implemented for differentiation between PD patients with and without bradykinesia [22]. A similar
approach is designed for the evaluation of bradykinesia in walking and sit-to-stand tasks, in which
novel performance indices are successfully used for differentiation between healthy subjects and PD
patients, and ON and OFF states in patients [25]. A support vector machine (SVM) classifier applied to
spectral and nonlinear features achieves high-accuracy results (accuracy, sensitivity, and specificity
above 97%) for the prediction of UPDRS FT scores (0–3) [19]. However, the method is applied to
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gyro signals recorded from healthy subjects who mimick the impaired movements of PD patients.
In another study, SVM was successfully applied (error below 5%) for estimation of the severity of
several symptoms (bradykinesia, tremor, and dyskinesia) in 12 PD patients using the features extracted
from accelerometer data describing multiple upper and lower extremity movements [20]. SVM was
also applied for estimation of bradykinesia severity in a study comprising 78 PD patients and 18 healthy
subjects, who were instructed to perform hand opening/closing for 10 s [4]. It was shown that SVM
can predict clinical scores with an accuracy of 95.349%. Decision trees, applied to features extracted
from inertial signals, were also used for prediction of UPDRS scores for a pronation/supination task,
showing a mean agreement of 0.48 with clinical ratings [10].

Although supervised machine learning algorithms provide prediction of clinical scores with
high accuracy, the applied models are trained on a smaller dataset with subjectively defined data
labels, which may cause subjectivity in the results as well. Because of that, some researchers have
introduced different approaches to this topic. Decision rules can be designed to match exactly the
criteria of the decision-making process and instructions applied in clinical practice. Fuzzy rules were
applied for prediction of clinical scores using inertial data recorded during foot tapping [23] and hand
pronation/supination movements in [9]. Their designed rules provide good results, with an accuracy
of about 90%. Great Lake Technologies proposed a commercialized smartphone application, called
Kinesia One, that provides clinical scores and subscores for different criteria for several bradykinesia
tasks using a inertial sensor positioned on the index finger [26].

In this paper, we propose a new decision support system for the provision of clinical scores based
on the use of inertial data describing finger-tapping movements. The proposed system uses novel metric
and decision rules that are especially designed to capture and evaluate the relevant characteristics of
the finger-tapping movement. The system provides very good results for data obtained from patients
with idiopathic Parkinson’s disease but also with atypical parkinsonism. The output of the system
comprises the kinematic features describing the finger-tapping performance, a graphical presentation
of the recorded data with marked irregularities, and important changes in the signal and bradykinesia
severity scores.

2. Materials and Methods

2.1. Measurement System

The used system comprises two miniature (10 × 12 mm) and lightweight inertial sensors with
three-dimensional (3D) gyroscopes L3G4200 (STMicroelectronics, Geneva, Switzerland) positioned
over the fingernails of the thumb and index finger, as shown in Figure 1 [6]. Inertial sensors are
connected to sensor-control units (SCUs). An SCU acquires and wirelessly transmits sensor data to
a remote computer, where custom-made software controls data acquisition (developed in CVI 9.0, NI
LabWindows, National Instruments, Austin, Texas, USA).
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2.2. Subjects

Fifty-six subjects were recruited for this study from the Clinic of Neurology, Clinical Centre
of Serbia, Belgrade. The subjects included 13 patients (Gender: seven male/six female, Age:
62.23 ± 10.79 years) with idiopathic Parkinson’s disease (PD), 17 patients (Gender: five male/12
female, Age: 58.41 ± 6.41 years) with atypical parkinsonism multiple system atrophy (MSA),
14 patients (Gender: 11 male/three female, Age: 65.71 ± 9.33 years) with atypical parkinsonism
progressive supranuclear palsy (PSP), and 12 healthy controls (HC) (Gender: four male/eight female,
Age: 58.40 ± 7.78 years). The patients were tested during their “off” phase (after at least 12 h of
treatment withdrawal, if possible). Descriptive statistics (average ± standard deviation and median) of
the clinical data for each group of subjects are presented in Table 1, including the Hoehn and Yahr
(H&Y) scale, total UPDRS, UPDRS-III (complete Motor examination scores), and scores given solely for
the finger-tapping task by two neurologists, separately for the less- and more-affected hand.

Table 1. Descriptive statistics of the subjects’ data.

Group Statistics H&Y UPDRS Total UPDRS III
FTN1 Score FTN2 Score

Less AH More AH Less AH More AH

PD
Avg ± std 1.80 ± 0.79 42.60 ± 16.93 24.60 ± 9.07 1.67 ± 0.89 2.17 ± 0.94 1.75 ± 0.97 2.17 ± 0.94
Median 2 36 19.5 2 2 2 2

MSA
Avg ± std 3.18 ± 0.75 77.73 ± 13.70 46.64 ± 9.08 2.31 ± 0.70 2.81 ± 0.54 2.38 ± 0.72 2.81 ± 0.54
Median 3 79 45 2 3 2.5 3

PSP
Avg ± std 3.45 ± 0.93 74.45 ± 20.08 42.91 ± 13.14 2.17 ± 0.94 2.62 ± 0.77 2.08 ± 0.79 2.77 ± 0.73
Median 4 79 46 2.5 3 2 3

HC
Avg ± std / / / 0.44 ± 0.63 0.50 ± 0.73
Median / / / 0 0

1 PD—Parkinson’s disease; MSA—Multiple system atrophy; PSP—Progressive supranuclear palsy; HC—Healthy
controls; H&Y—Hoehn and Yahr scale; UPDRS–Unified Parkinson’s Disease Rating Scale; UPDRS III—Unified
Parkinson’s Disease Rating Scale, Part III—Motor examination; FTN1—Finger-tapping score provided by the first
neurologist; FTN2—Finger-tapping score provided by the second neurologist; Less AH—The less-affected hand,
More AH—The more-affected hand.

2.3. Measurement Methodology

During the recordings, the subjects were sitting in the chair with their arms bent and supported
at the elbow and hands placed in front of them. They were instructed to perform the finger-tapping
test by tapping their thumb and index finger as quickly and as widely as possible for 15 s. Although
instructions provided in the UPDRS test state that patients should tap their fingers 10 times [3], in this
study, longer recordings were acquired to ensure that sufficient data for analysis were available.

In order to become accustomed to the instrumentation and measurement methodology, for each
subject, several trials were recorded per hand, with one minute of rest between the trials. Each trial
was also recorded with a video camera, which filmed the hand in a close-up view. The most
representative recording (one for each hand) was used for further analysis. The recording was selected
by the neurologists as the recording that fullfills the requirements of tapping duration and patients’
understanding of the given instructions. The testing of each subject was performed during one day
at the Clinic of Neurology, Clinical Centre of Serbia, Belgrade. The examination was carried out in
accordance with the ethical standards of the Declaration of Helsinki, and approved by the Ethical
Committee of the School of Medicine, University of Belgrade. All of the participants provided informed
consent prior to participation in the study.

2.4. Scoring by Neurologists

The recorded video data were later examined and scored by two neurologists with more than 10
years of experience, based on their knowledge and experience and the instructions given in the UPDRS,
Part III–Motor examination, task 3.4 Finger tapping. The neurologists were blinded to the subjects’
identity, since the video data show a close-up view of each subject’s hand. The scores were given for



Sensors 2019, 19, 2644 5 of 17

each patient, separately for the left and right hand. The scores given by neurologists are provided in
Table 1, in the last two columns. The scores given for the patients were provided separately for the less-
and more-affected hand (averaged for all patients per group), whereas, in the case of healthy controls,
the scores were averaged for both hands and all HC participants.

2.5. Data Processing and Analysis

The gyro data were recorded with a sampling frequency fs = 200 Hz. Calibrated data were
processed in Matlab 9.0 R2016a (MathWorks, Natick, MA, USA). The flowchart of the expert system for
calculation of UPDRS finger-tapping scores is presented in Figure 2. The inputs to the expert system
are angular velocities from the thumb (

→
ω1) and index finger sensors (

→
ω2). No pre-processing was

performed on the input signals. Upon the sensor’s placement, the coordinate system of the thumb
(X1, Y1, Z1) and the coordinate system of the index finger (X2, Y2, Z2) were rotated with respect to
each other (Figure 1). The angular velocities were transformed and analyzed from the index-finger
coordinate system. The relative angular velocity of the thumb with respect to the index finger was
calculated

→
ωr =

→
ω1 −

→
ω2 [27]. The dominant component of the relative angular velocity ωrd was

automatically selected and used as the input in further data processing and analysis [27]. It was shown
that, in most cases, the dominant component of the relative angular velocity is about the Y2−axis of the
index-finger coordinate system. In other cases (when this component is not dominant), the coordinate
system of the index finger was rotated, so the new Y2−axis represents the dominant rotation.
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Further analysis was divided into one pre-processing block for segmentation to individual taps
and four blocks that calculate features to describe criteria defined in the UPDRS test: tapping amplitude,
amplitude decrement, hesitations and freezes, and tapping speed. The calculated features are then
used as the input to the decision-support system. As the result, a complete analysis of the patient’s
finger-tapping performance, including the finger-tapping score (0–4), is provided.



Sensors 2019, 19, 2644 6 of 17

2.5.1. Individual Taps

In order to evaluate characteristics of the tapping performance for individual taps, segmentation
of the dominant component of the relative angular velocity ωrd was performed. A moving-average
filter was applied to the observed signal with a span equal to ( fS/ f0)/2, where f0 represents the basic
tapping frequency extracted from the spectrum. The filtered signal was normalized to its maximum
value. From the obtained sequence, areas above 0.1 and below −0.1 were identified, corresponding
to regions where positive peaks and negative valleys are located, respectively. Local extrema were
identified for each of the extracted regions. Positive peaks correspond to the maximal closing velocity
(circles, Figure 3), whereas negative valleys represent moments when fingers achieve the maximal
opening velocity (squares, Figure 3). The samples in which the smoothed angular velocity ωrd passes
through a zero value for the first time were identified between each neighbouring maximum and
minimum marker. These samples represent the moments when fingers are closed (“zero posture”).
The sequence was complemented with the first and last sample. The finally obtained samples were
identified as time markers for drift removal and segmentation on individual taps (crosses, Figure 3).
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Figure 3. An example of the normalized dominant component of the relative angular velocity ωrd for
one MSA patient (ID: MSA11) with extracted markers.

2.5.2. Amplitude

One of the evaluation criteria is the tapping amplitude, which evaluates how widely subjects
can tap their fingers. The finger-tapping amplitude is defined as the angle that fingers formed
during repetitive tapping movements. The tapping angle was calculated by integrating the dominant
component of the relative angular velocity ωrd [27]. The drift was removed by using a third-order
polynomial fitted (approximation) through markers corresponding to moments where fingers are
closed (i.e., the angle is equal to zero, red crosses in Figure 4). Upon the drift’s removal, the obtained
angle sequence was segmented into individual taps using the same time markers. The highest aperture
of the fingers (the biggest angle that fingers form) was found for each individual tap and is expressed
in degrees α(i) (◦) (black circles in Figure 4, lower panel). The final parametric result was calculated as
the average of the maximum angles calculated for each tap-αav (◦).



Sensors 2019, 19, 2644 7 of 17

Sensors 2019, 19, x FOR PEER REVIEW 7 of 17 

 

 
Figure 4. Upper panel: Angle estimation. The dashed grey line marks the drifted angle sequence, and 
the solid black line corresponds to the angle sequence after drift removal. Red crosses show “zero 
posture” markers, and the dotted red line presents the polynomial fit used for drift removal. Lower 
panel: Angle amplitude decrement. The solid grey line shows the angle sequence, whereas black 
circles mark the angle amplitudes (highest finger apertures) per tap. The dashed red line presents the 
threshold 𝑇𝐻  used for the detection of decreased amplitudes. The example is given for one MSA 
patient (ID: MSA11). 

2.5.3. Amplitude Decrement 

Physicians evaluate the amplitude decrement according to the part of the tapping sequence at 
which the amplitude starts to decrease. In order to objectively quantify changes of the tapping 
amplitude, we observed tap-to-tap changes in the highest finger apertures calculated for individual 
taps 𝛼(𝑖). The angle amplitude of each individual tap was compared with the previously achieved 
maximum aperture of the fingers. The threshold 𝑇𝐻 = 75%  of the value of the previous maximum 
finger aperture was selected as the optimum (as shown in Figure 4, lower panel). This threshold was 
heuristically determined through extensive analysis of the used signal database. Threshold values 
from 50% to 90% (with a step of 5%) were chosen and tested. The threshold of 75% provides the best 
results for the prediction of scores. It was shown that higher threshold values cause detection of very 
small amplitude changes, which can appear due to normal movement variability. Lower threshold 
values detect angle decrements later in the tapping sequence, with some delay compared to the first 
real significant decrement. Indices of all taps that satisfy this criterion for the amplitude decrease 
were extracted using the chosen threshold 𝑇𝐻 (for the example shown in the lower panel of Figure 
4, all taps are below the threshold except for the first one, which is used as the reference for the 
calculation of the threshold). The indices of the first tap from the obtained sequence were selected as 
the final parametric result and marked with 𝑖ௗ (for the example in Figure 4, that is the second tap 
and, therefore, 𝑖ௗ = 2). 

2.5.4. Hesitations and Freezes 

Hesitations and freezes are manifested as irregularities or breaks of the tapping rhythm that may 
occur in different moments of the tapping performance and represent an important part of the finger-
tapping evaluation. The continuous wavelet transform (CWT) was applied for the detection and 

Figure 4. Upper panel: Angle estimation. The dashed grey line marks the drifted angle sequence, and
the solid black line corresponds to the angle sequence after drift removal. Red crosses show “zero
posture” markers, and the dotted red line presents the polynomial fit used for drift removal. Lower
panel: Angle amplitude decrement. The solid grey line shows the angle sequence, whereas black
circles mark the angle amplitudes (highest finger apertures) per tap. The dashed red line presents the
threshold THα used for the detection of decreased amplitudes. The example is given for one MSA
patient (ID: MSA11).

2.5.3. Amplitude Decrement

Physicians evaluate the amplitude decrement according to the part of the tapping sequence
at which the amplitude starts to decrease. In order to objectively quantify changes of the tapping
amplitude, we observed tap-to-tap changes in the highest finger apertures calculated for individual
taps α(i). The angle amplitude of each individual tap was compared with the previously achieved
maximum aperture of the fingers. The threshold THα = 75% of the value of the previous maximum
finger aperture was selected as the optimum (as shown in Figure 4, lower panel). This threshold was
heuristically determined through extensive analysis of the used signal database. Threshold values
from 50% to 90% (with a step of 5%) were chosen and tested. The threshold of 75% provides the best
results for the prediction of scores. It was shown that higher threshold values cause detection of very
small amplitude changes, which can appear due to normal movement variability. Lower threshold
values detect angle decrements later in the tapping sequence, with some delay compared to the first
real significant decrement. Indices of all taps that satisfy this criterion for the amplitude decrease were
extracted using the chosen threshold THα (for the example shown in the lower panel of Figure 4, all taps
are below the threshold except for the first one, which is used as the reference for the calculation of the
threshold). The indices of the first tap from the obtained sequence were selected as the final parametric
result and marked with idec (for the example in Figure 4, that is the second tap and, therefore, idec = 2).

2.5.4. Hesitations and Freezes

Hesitations and freezes are manifested as irregularities or breaks of the tapping rhythm that
may occur in different moments of the tapping performance and represent an important part of the
finger-tapping evaluation. The continuous wavelet transform (CWT) was applied for the detection



Sensors 2019, 19, 2644 8 of 17

and localization of disruptions of the tapping rhythmicity [28]. It is a time-frequency analysis method
that is suitable for the analysis of transient changes and spikes in rhythmic behaviour [29].

CWT was applied on the dominant component of the relative angular velocity (ωrd). The CWT
method based on the Fast Fourier transform algorithm was used, together with the mother wavelet
function from the complex Morlet family (center frequency f 0 = 1 Hz and time-frequency resolution σ

= 0.7). A matrix of complex CWT coefficients was obtained as a result. We introduced a cross-sectional
area by summing the CWT coefficients perpendicular to the time axis. The obtained characteristic was
normalized with respect to its maximum value and is expressed as a percentage (CSAT (%)). In this way,
we obtain a characteristic that describes the temporal changes in the tapping activity [28]. An example
of the CSAT characteristic for one patient is presented in Figure 5, lower panel. The samples were then
divided according to two thresholds: TH50 = 50% of the average CSAT value, and TH25 = 25% of the
average CSAT value (the dashed grey and dotted black vertical lines in Figure 5, respectively). Samples
with values below TH50 and above TH25 threshold were considered to be parts of the hesitation
sequences (Figure 5, dotted grey vertical lines, with an “H” mark), whereas samples with the smallest
amplitude (below TH25) were considered to be parts of freezes (Figure 5, dotted grey vertical lines,
with an “F” mark). If a hesitation sequence lasts three times longer than the subjects’ average tapping
frequency, then it is considered to be a freeze sequence. In addition, very short sequences (shorter than
one half of the subjects’ average tapping frequency) were discarded from the analysis. The parametric
result comprises the number of hesitation sequences Hnum and the number of freeze sequences Fnum.
Using the average CSAT value for thresholds ensures that the detection of irregularities is adapted to
the intrinsic properties of each signal, considering the signal parts with significant losses in power
(below 50% and 25% of the average) as irregularities. The values of the applied thresholds were verified
through an extensive search of the database. All detected irregularities were confirmed by neurologists
during their visual inspection of video recordings.
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faster, then during those 15 s of the tapping test they perform a larger number of taps, and vice versa. 

Figure 5. Calculation of hesitations and freezes: angular velocity ωrd (upper panel) and calculated
CSAT characteristic (bottom panel). The solid grey horizontal line marks the average CSAT value.
The dashed grey horizontal line corresponds to the upper threshold TH50 = 50% of the CSAT average
value. The dotted black horizontal line shows the lower threshold TH25 = 25% of the CSAT- average
value. Similarly, dotted grey vertical lines show areas that are classified as hesitations (an “H” mark)
and freezes (an “F” mark). The example is given for one PSP patient (ID: PSP14).

2.5.5. Speed

An important criterion for evaluation of bradykinesia in the finger-tapping task is the tapping
speed. During the evaluation, neurologists examine how fast subjects are tapping. If subjects tap
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faster, then during those 15 s of the tapping test they perform a larger number of taps, and vice versa.
Although this can also be evaluated from the number of performed taps and their duration, by using
the calculated matrix of CWT coefficients, the dominant tapping frequency can be found for each time
sample. In this way, all changes of the tapping rhythm are assessed, detected, and included in the
analysis. The vector of coefficients corresponding to one sample was extracted from the CWT matrix.
From the obtained vector, the most prominent frequency was calculated as the frequency at which the
coefficient with the highest value is located (as shown for the i-th sample in Figure 6). The procedure was
repeated for all samples. In this way, the new frequency characteristic f (i) was obtained. The average
value of the frequency characteristic f (i) was calculated and is marked as f (i)av (Hz).
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The example is given for one PSP patient (ID: PSP14).

2.5.6. Decision Support System

In the UPDRS motor scale, Part III–Motor examination, task 3.4 Finger tapping [3], instructions
for bradykinesia evaluation are given as follows:

0 Normal: Regular rhythm, without hesitations or freezes. Fast movement, large amplitude,
no amplitude decrement.

1 Slight: Any of the following: (a) the regular rhythm is broken with one or two interruptions or
hesitations of the tapping movement; (b) slight slowing; (c) the amplitude decrements near the
end of the 10 taps.

2 Mild: Any of the following: (a) three to five interruptions during tapping; (b) mild slowing;
(c) the amplitude decrements midway in the 10-tap sequence.

3 Moderate: Any of the following: (a) over five interruptions during tapping or at least one freeze
in ongoing movement; (b) moderate slowing; (c) the amplitude decrements starting after the
first tap.

4 Severe: Cannot or can only barely perform the task due to slowing, interruptions, or decrements.

Each hand is evaluated separately, in terms of speed, amplitude, hesitation and freezes,
and decrementing amplitude. These criteria are described with the introduced features, which are
then fed to the decision support system. The input feature set includes the average tapping angle αav,
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the average frequency f (i)av , the index of the first tap with a significant angle amplitude decrement idec,
the number of hesitations Hnum, and the number of freezes Fnum. The rules are defined separately for
each feature to give the subscores for each criterion, which are afterwards used for the calculation of
the final score.

As indicated, the lowest score corresponds to “normal” movements. Therefore, the first step
is to find values that could be considered to be the reference for normal movements. The defined
methodology was initially applied to a signal database from the control group that included a subset
of healthy controls with no signs of bradykinesia (scored with 0). During the examination of the
video files, it was noticed that both patients and healthy controls performed the tapping task in two
different ways. In the first group, the subjects tapped as widely as possible at the highest speed that
allows for such a tapping. In the other group, the subjects tapped with smaller amplitudes, but at
their fastest pace. Using the parameters describing the tapping speed and amplitude (αav and f (i)av ,
respectively), the selected healthy controls were divided into two clusters using the k-means algorithm.
The coordinates of the cluster centers were used as the measure for discriminating the two types of
tapping performance. From all three groups of patients, we randomly selected 50% percent of the
files and assigned them to the testing group. By calculating the distance between the center of the
clusters and the data (αav, f (i)av ) obtained from the testing group, each patient was assigned to one of
the two defined clusters (C1, “wider and slower”; C2, “narrower and faster”). The scores provided by
the neurologists are given as the final score and do not provide information about different aspects
(characteristics) of the performance that were analyzed. Because of that, it was necessary to apply
an unsupervised learning algorithm to analyze properties of the features and find a natural grouping
among the data. Testing data corresponding to one of the parameters (αav and f (i)av ) and one of the
clusters (C1 or C2) were additionally divided into four clusters (corresponding to scores 0–3) using the
k-means algorithm. Although there are five scores in the UPDRS test, the data were divided into four
clusters, since the highest score (corresponding to the worst performance) is assigned to patients that
barely perform the task (the movement is affected by multiple types of disturbances simultaneously).
The coordinates of the cluster centers (c1, c2, c3, c4) were used for calculation of decision boundaries:

bi =
ci + ci+1,

2
; i = 1, 2, 3 (1)

where ci and ci+1 represent the centers of two neighbouring clusters and bi represents the calculated
boundary separating the two scores. The procedure was repeated for both clusters C1 and C2, and for
both parameters αav and f (i)av , separately (1: C1 and αav, 2: C2 and αav, 3: C1 and f (i)av , 4: C2 and f (i)av ),
resulting in four sets of boundaries, each with three values. For each analyzed file, decision boundaries
for the αav and f (i)av features were selected from those four sets. If this coordinate pair (αav, f (i)av ) is closer
to the center of the cluster C1 than to the center of the cluster C2, then the patient’s file was assigned to
the cluster C1 and decision boundaries (bα1,2,3 and b f 1,2,3) for cluster C1 were selected, and vice versa.
Decision boundaries for the remaining features (idec and Hnum, Fnum) were set to match the instructions
and criteria given within the UPDRS scale (as mentioned above).

The block scheme of the decision support system is presented in Figure 7. The first part of the
decision-making process is divided into four blocks (each bordered with dashed black line). The inputs
of these blocks are the calculated features: αav, f (i)av , idec, and Hnum, Fnum, respectively. For each feature,
a subscore is calculated separately, based on the range within which the feature value is located. In this
way, the four processing blocks result in four subscores: Sα, S f , Sdec, and SHF, respectively. If the
subscore “3–Moderate” is obtained for at least three out of four features, then the final score SFT is set
to be “4–Severe”. Otherwise, the final score SFT is selected as the maximum obtained subscore among
the four subscores corresponding to the individual features.
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Figure 7. The block scheme of the decision support system. The system is divided into four processing
blocks (bordered with dashed black rectangles). The inputs to the blocks are the calculated features:

αav, f (i)av idec, and Hnum, Fnum, respectively. Each block implements rules and assigns a subscore for the
input feature. The final score SFT is decided based on the results obtained from all four blocks.

2.5.7. Statistical Analysis and Evaluation

To find the agreement between the scores obtained from two neurologists (raters), Cohen’s
kappa statistics for finding intra-rater reliability among categorical data were applied. The results
obtained from the decision support algorithm were compared with the scores given by the neurologists.
The performance was measured using the confusion matrix and the accuracy of the proposed method,
expressed as the percent of equally assigned scores. Initially, results were evaluated for all recordings
(Case I), and later for the recordings equally scored by both raters (Case II).

3. Results

The intra-rater reliability was calculated with the Cohen’s Kappa statistic and it equals to κ = 0.79,
showing some discrepancy between raters’ scores. This result is expected, since the scores are provided
based on their visual and subjective estimation. Overall, 87 recordings obtained from 44 patients (PD:
26 recordings, MSA: 34, PSP: 27) were included in the analysis, as well as 24 recordings obtained from
12 healthy controls. The descriptive statistics for the introduced features are given in Table 2 for each
group of subjects separately.

Table 2. Descriptive statistics (average ± st.deviation) for each feature and group of subjects.

Group f(i)
av (Hz) αav (◦) idec (#) Hnum (#) Fnum (#)

PD 2.04 ± 0.87 63.08 ± 8.54 5.00 ± 5.66 0–4 0
MSA 1.71 ± 1.26 56.27 ± 36.11 4.03 ± 4.74 0–7 0–2
PSP 2.37 ± 1.11 44.87 ± 31.74 5.62 ± 4.88 0–4 0–1
HC 3.32 ± 0.89 80.48 ± 26.55 11.00 ± 10.99 / /

The highest values for the αav and f (i)av parameters were obtained for HC. Among patients, the PD
group achieved the biggest angle amplitude values (on average); however, their tapping frequency
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was found to be lower (on average) compared to the PSP group. This discrepancy shows that we
need to discriminate between the two types of movements and, consequently, use two sets of decision
boundaries for these two features. The feature describing the angle decrement (idec) was found to be
comparable among patients. Although some HC also show a decrease in the angle amplitude, this is
observed later in the tapping sequence (usually after the 10th tap). PD patients did not experience
any freezing during the performance, whereas the number of hesitations was found to be comparable
among groups. Among HC, none of the subjects experienced either hesitation or a freeze.

Figure 8 shows the obtained angle αav and frequency f (i)av features versus the calculated scores.
The performance clusters are shown using the color- and shape-coded representation. It can be seen
that the αav and f (i)av features decrease with higher scores, which is in line with the criteria that is
observed within the UPDRS. In addition, it can be confirmed that files assigned to the cluster C1 are
characterized by larger angle values and a lower tapping frequency, whereas the cluster C2 includes
files with a lower angle amplitude and a larger tapping frequency.
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The results of the expert system are presented in Table 3, for each group separately, as well as the
summary for all patients. The results from the left column were obtained using all the recordings (Case
I—87 recordings, PD: 26, MSA: 34, PSP: 27) and averaged for two raters, whereas the right column
shows results obtained using only the recordings equally scored by both raters (Case II—76 recordings,
PD: 25, MSA: 29, PSP: 22). Results are also presented in Figure 9 by a confusion matrix.

Table 3. Results of the decision support system for each group of patients separately and in total.
The result is provided for two cases: when all recordings are included in the analysis (Case I) and when
only recordings with the same score from both raters are included in the analysis (Case II).

Group Case I
Accuracy (%)

Case II
Accuracy (%)

PD 82.69 ± 2.72 84.00
MSA 82.36 ± 8.32 89.65
PSP 83.76 ± 7.86 90.91

TOTAL 83.33 ± 6.50 88.16
1 PD—Parkinson’s disease; MSA—Multiple system atrophy; PSP—Progressive supranuclear palsy.
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Figure 9. Presentation of results using the confusion matrix. (a) Case I—The result obtained when all
recordings are included. (b) Case II—The result obtained using only recordings on which both raters
agreed. The cells on the diagonal of the confusion matrix show the overall success rate for each score
(expressed as a percentage (%)), whereas the cells outside the diagonal show the error rate for the scores
(expressed as a percentage (%)).

When all recordings are included in the analysis, comparable results are obtained for all three
groups of patients. It is shown that the decision support system provides results that agree with
the scores of the neurologists with a good accuracy (above 80%). This result is improved when only
recordings equally scored by both raters are included in the analysis, achieving nearly 90% matching
between the system results and neurologists’ estimates.

The scores evaluated by the proposed decision system and the scores given by neurologists
(Figure 9) do not exceed a one score difference, except for one patient. In Figure 10, we present the
results of the expert system. The example is given for two patients who were equally scored by both
raters and our expert system (score SFT = 3).
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Figure 10. The result of the expert system comprising a graphical representation with detected
irregularities, calculated features, and the final score. The example is given for one MSA patient (ID:
MSA11), right hand, and one PSP patient (ID: PSP14), right hand.

4. Discussion

In this paper, we introduced a new methodology that enables objective evaluation and
quantification of the finger-tapping test that is usually used for bradykinesia assessment in patients
with Parkinson’s disease. The system comprises two miniature and lightweight gyro sensors that
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record the motion of fingers. The methodology for signal quantification is based on the use of simple,
automatized, and repeatable signal-processing techniques. In this study, 15 s long finger-tapping
sequences were recorded and analyzed. However, the methodology is applicable to other approaches
as well (e.g., a 10-tap-long sequence). Patients with finger-tapping bradykinesia severity ranging from
0 to 4 were included in this study. Most of the studies in the literature include severity stages up
to 3, indicating that patients with the highest severity cannot perform specified tasks at all. In this
study, we included three patients that barely managed to perform the finger-tapping task with
one of their hands. However, their performance was poor and affected by multiple performance
disturbances. Therefore, they were evaluated with the highest bradykinesia severity score (4). In this
way, the performance of the proposed system was examined for the entire range of severity stages.

The parametric result comprises features that can be directly correlated with biomechanical
properties of the movement and can, therefore, be used to assist physicians during the assessment of
bradykinesia in repetitive finger-tapping. For such a purpose, we implemented the time-frequency
method continuous wavelet transform, which allows us to evaluate temporal changes in the tapping
frequency and to detect irregularities in rhythmic tapping behaviour, such as hesitation and freezes.
Numerical integration and drift removal were used for estimation of tapping angle apertures that
are calculated for each tap. Temporal changes in the angle apertures were found and described by
the index of the first tap with a significant amplitude decrement (compared to previously achieved
tapping angle amplitudes). The final feature set is used as the input into the decision support system.

Although the literature suggests that machine learning algorithms can predict scores with a high
degree of accuracy, labels used for learning are given by physicians, which may cause subjectivity in the
obtained results. Typically, only a few dozen recordings are used for learning, which is not a sufficient
number of training examples to obtain a clinically acceptable system. Therefore, the decision support
system consists of simple rules with decision boundaries designed to match the UPDRS scoring criteria.
The decision boundaries for the tapping frequency and angle amplitude are defined according to the
feature values obtained from the healthy controls and testing group of patients using the clustering
techniques. As shown in Figure 8, smaller angle amplitudes and frequencies correspond to higher
scores, which is in line with the criteria that are defined within the UPDRS. The boundaries differ,
and they are selected based on the type of movement: wider and slower (cluster C1, grey circles in
Figure 8) or narrower and faster (cluster C2, black crosses in Figure 8). In addition, using the clustering
techniques, the boundaries are not defined linearly or empirically, but solely based on the grouping of
some randomly selected testing data. The decision boundaries for two other features, i.e., the criteria,
are defined to match the rules defined in the UPDRS.

The results of the decision support system (Table 3) demonstrate that the expert system has
achieved an overall accuracy of 83.33 ± 6.50% (averaged for both raters), whereas this result is
82.69 ± 2.72% for PD, 82.36 ± 8.32% for MSA, and 83.76 ± 7.86 for PSP patients. By analyzing the
recordings that were evaluated with the same score by both raters, the overall accuracy of the system
is increased, achieving 88.16%, whereas this result is 84.00% for PD, 89.65% for MSA, and 90.91%
for PSP patients. In the latter case, the decision support system provides wrong scores for only nine
recordings (out of 76 recordings). The decision support system provides very good results, even for
atypical parkinsonism, in which finger-tapping can be performed differently compared to the typical
PD form [27]. By using a larger number of patients, fine tuning of the decision boundaries can be
performed, providing even better results. The differences in Table 2 between the obtained parameters
indicate that this methodology can be used as the basis for differential diagnostics of typical and
atypical parkinsonism.

As shown in the confusion matrices in Figure 9, the quantification errors are equal to a one score
difference, except for one PD patient, in which our system provides results that are two scores lower
than the score from both raters. The question that arises is whether a scale with such a small resolution
and only four grades of performance is sufficient. Figure 10 shows the results of the expert system for
two patients evaluated by the same score (SFT = 3). These two performances are different: the first
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one has a lower tapping frequency and higher angle apertures, with a significant decrease in the angle
amplitude after the first tap. The second performance has large variations in frequency and angle
amplitudes, as well as four hesitations and one freeze. For the first patient, the resulting score is given
based on the early amplitude decrease, whereas, for the second patient, the score is given based on the
number of performance irregularities. In the UPDRS instructions, it is said that a score is to be given if
any of the criteria (speed, amplitude, amplitude decrease, hesitations/freezes) are satisfied. If different
or more than one criterion is satisfied for different patients, they cannot be compared. Due to that fact,
some researchers have introduced continuous scoring of repetitive hand motions that are used for
bradykinesia evaluation. Although they provide a more detailed scoring system, this evaluation does
not correspond to standardized clinical scores and may be confusing to physicians.

The proposed system provides a complete analysis of repetitive finger-tapping performance,
objective measures of important biomechanical properties of the movement, and a graphical
presentation of the recorded data with specific changes and irregularities marked in the data. The system
can differentiate between different types of performances and provides decision support through
automatically calculated scores and subscores for different criteria for the evaluation of movements.
The scores are given using rules that are specifically designed to match the universal clinical criteria for
evaluation of bradykinesia severity in repetitive finger-tapping movements. In addition, the system
was tested on patients with different forms of parkinsonism and at different disease stages, and for the
full range of symptom severity (from normal to severely impaired movements). The proposed expert
system is detailed and objective, and, therefore, it can be used as a powerful support tool in clinical
practice for the evaluation of symptom severity, monitoring the disease’s progress and a patient’s
response to therapy, and comparisons with other patients. In the future, an intuitive graphical interface
for a software application will be developed to provide a graphical presentation, numerical results for
features, scores and subscores, and a statistical analysis.

Future work will also include collaborations with other researchers and groups to obtain larger
databases and augment the data for analysis in terms of included subjects and the number of tests
used to assess bradykinesia and other motor symptoms. We also plan to develop a metric to be used
for more efficient differential diagnostics of typical and atypical parkinsonism.
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