

 sensors-19-02692

sensors-19-02692

Sensors 2019, 19(12), 2692; doi:10.3390/s19122692

Article

A Strongly Unforgeable Certificateless Signature Scheme and Its Application in IoT Environments

Xiaodong Yang *, Xizhen Pei[image: Orcid], Guilan Chen, Ting Li[image: Orcid], Meiding Wang[image: Orcid] and Caifen Wang[image: Orcid]

Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China

*

Correspondence: yangxd@nwnu.edu.cn

Received: 4 April 2019 / Accepted: 11 June 2019 / Published: 14 June 2019

Abstract

:

With the widespread application of the Internet of Things (IoT), ensuring communication security for IoT devices is of considerable importance. Since IoT data are vulnerable to eavesdropping, tampering, forgery, and other attacks during an open network transmission, the integrity and authenticity of data are fundamental security requirements in the IoT. A certificateless signature (CLS) is a viable solution for providing data integrity, data authenticity, and identity identification in resource-constrained IoT devices. Therefore, designing a secure and efficient CLS scheme for IoT environments has become one of the main objectives of IoT security research. However, the existing CLS schemes rarely focus on strong unforgeability and replay attacks. Herein, we design a novel CLS scheme to protect the integrity and authenticity of IoT data. In addition to satisfying the strong unforgeability requirement, the proposed scheme also resists public key replacement attacks, malicious-but-passive key-generation-centre attacks, and replay attacks. Compared with other related CLS schemes without random oracles, our CLS scheme has a shorter private key, stronger security, and lower communication and computational costs.

Keywords:

certificateless signature; the Internet of Things; data integrity; data authenticity; strong unforgeability; provable security

1. Introduction

The Internet of Things (IoT) is a self-establishing network of smart devices that are equipped with electronics, sensors, software, and actuators and that are connected via the Internet to generate, collect, and exchange data [1]. Since IoT devices connect objects in different environments to the Internet for information exchange and communication to realize intelligent identification, location, tracking, monitoring, management, and other functions, IoT devices have the ability to support a wide range of services. Consequently, the IoT builds a network that covers various things throughout the world via numerous IoT devices, and it enables various human-to-human, human-to-thing, thing-to-thing, and thing-to-thing interactions. Figure 1 shows a variety of IoT applications, including intelligent transportation, military target tracking, surveillance, public safety, smart home, industrial monitoring, smart city, medical equipment, and food traceability [2]. The application of the IoT involves all economic and social aspects of daily life and fundamentally changes the way in which humans interact with the world around them. Hence, the IoT is considered to be an information technology revolution and has become a growth point for the global economy [3].

Various IoT-enabled devices with embedded sensors collect and send IoT data to data centres over public networks; thus, the issues of security and privacy in IoT environments have become increasingly important [4,5]. Only authentic data can be stored in data centres, which requires the integrity and authenticity of the data transmitted by an IoT device to be checked before being stored. The signature-based cryptosystem is technology that provides the integrity, real source, unforgeability, and non-repudiation of the data. An IoT device signs the data using its private key during data transmission, and the data centre confirms the data authenticity and integrity by verifying the validity of the received signature. Therefore, a digital signature scheme can ensure data integrity and data authenticity in the IoT. However, the IoT differs from traditional networks. Most IoT devices have limited computational and processing capabilities, short communication ranges, and restricted storage and power resources. Conventional cryptosystems cannot run on resource-constrained IoT devices. The main reason is that conventional cryptosystems are classified into two categories: PKI-based and ID-based cryptosystems. Traditional PKI-based cryptosystems require certificates to authenticate users’ public keys, which results in a large amount of computational overhead and communication costs to manage and exchange certificates. The identity-based cryptosystem avoids the use of certificates, but there are security flaws in key escrow that make it unsuitable for large-scale network environments. Hence, designing an efficient, secure signature scheme is very important for IoT security.

In a signature scheme, the private key of the signer is used to sign the message, and the validity of the corresponding signature is verified by the signer’s public key. The signature’s validity not only ensures that the signer with the private key can apply a valid signature to the message but also ensures the authenticity and integrity of the message. The user’s public key is generally a random string; thus, authenticating the authenticity of the user’s public key is particularly crucial. In traditional public key infrastructure (PKI) settings, a certificate issued by a fully trusted authority associates the user’s public key with the user’s real identity. The authenticity of the user’s public key can be verified by the legality of the corresponding certificate. However, the storage, distribution, verification, and revocation of certificates in PKI are resource-intensive and computationally expensive tasks [6]. Hence, PKI is unsuitable for resource-constrained IoT environments.

Shamir [7] proposed identity-based cryptography (IBC) to solve the complex certificate management problems in PKI. IBC allows a key generation centre (KGC) to produce the user’s private key, but the corresponding user’s public key comes from their public identity information, such as an e-mail address or mobile phone number. However, KGC can replace the user to decrypt any ciphertext or to forge the signature of any message without being found, which results in the key escrow problem.

The concept of certificateless signature (CLS) was introduced by Al-Riyami and Paterson [8]. In a CLS scheme, the user’s private key consists of two parts: One is a partial private key generated by the KGC, and the other is a secret value calculated independently by the user. The CLS scheme solves the key escrow problem because the KGC is unable to obtain the user’s final private key. In addition, the user generates the corresponding public key based on its secret value, but it is not necessary to verify the authenticity of the public key by using the certificate. In practical applications, the user’s public key is sent to the recipient together with the signature or is obtained from a public directory in a proper manner.

Certificateless signatures have received considerable attention in recent years, and researchers have designed numerous CLS schemes [9,10,11,12]. Most existing CLS schemes [13,14,15] have been proven to be secure in the random oracle model [16], where a cryptographic hash function is modelled as an ideal random oracle. The random oracle paradigm helps construct efficient cryptographic schemes, but it has received substantial criticism. It has been shown that, when random oracles are instantiated with actual hash functions, the cryptographic scheme that proves to be secure using the random oracle model may be unsafe in reality [17]. To overcome this security flaw, Liu et al. [18] designed the first CLS scheme without random oracles. Later, several CLS schemes [19,20,21,22] in the standard model were proposed, but these schemes cannot resist public key replacement (PKR) attacks or malicious-but-passive KGC (MKGC) attacks. In addition, most existing CLS schemes [23,24,25] without random oracles are proven to be existentially unforgeable against adaptive chosen-message attacks. This security notion only ensures that an attacker cannot forge the signature of any new message; it does not guarantee that the attacker generates the valid signature for the signed message. However, some signature schemes are malleable [26]; thus, an attacker can generate multiple valid signatures of the same message by using the previous message–signature pair without the signer’s private key. In other words, these schemes do not satisfy strong unforgeability, which is a stronger security notion than existential unforgeability. Strong unforgeability is desirable in some applications [27,28,29] (such as electronic commerce, construction of certificateless signcryption schemes, and certificateless group signature schemes). If a CLS signature scheme satisfies existential unforgeability and can prevent an attacker from forging a valid signature of a previously signed message, then we say that the CLS scheme is strongly unforgeable. Strong unforgeability is an important property of the CLS scheme, but few CLS schemes [30] satisfy strong unforgeability in the standard model. Unfortunately, none of those strongly unforgeable CLS schemes considers replay attacks [31,32]. Note that the energy of the IoT device is one of the main factors that restricts improvements in network performance. However, replay attacks, which are considered to be one of the major attacks faced by IoT devices, can consume a large amount of node energy. Therefore, a CLS scheme that is applicable to IoT environments must consider replay attacks.

In this paper, motivated by the above concerns, we present a new CLS scheme for IoT environments that is more secure and efficient than the previous CLS schemes. As a potential signature-based authentication technology, our proposed scheme manifests a solution to the problems of data authenticity and data integrity in the IoT. The main contributions of this paper are the following.

	
A novel CLS scheme without random oracles is constructed. Under the collision-resistant hash function (CRHF) and computational Diffie–Hellman (CDH) assumptions, the proposed CLS scheme is proven to be strongly unforgeable against adaptive chosen-message attacks in the standard model.

	
In our CLS scheme, the user’s public key is not only bound to the user’s partial private key but also embedded into the signature of the message. This makes the proposed CLS scheme have a higher security trust level and be capable of resisting PKR attacks and MKGC attacks.

	
The proposed CLS scheme resists replay attacks by verifying the freshness of the timestamp and the validity of the signature. To our best knowledge, our scheme is the first CLS scheme with a strong unforgeability in the standard model that can resist replay attacks.

	
Compared to other CLS schemes in the standard model, our CLS scheme has higher security, a smaller key size, a shorter signature length, and lower computational overhead for signature generation and signature verification.

	
Due to the aforementioned functionalities, our CLS scheme is able to be implemented and deployed in IoT environments where IoT devices have limited computing power, storage space, and communication bandwidth.

The remainder of this paper is organized as follows. We present the relevant CLS works in Section 2. Then, we introduce some preliminaries and security notions of the CLS scheme in Section 3. The proposed CLS scheme and its security proof are presented in Section 4 and Section 5. Section 6 gives the CLS system model for IoT environments and performance analysis. Section 7 concludes this paper.

2. Related Work

The first CLS scheme was proposed by Al-Riyami and Paterson [8]. Later, Huang et al. [33] noted that their CLS scheme [8] was unable to resist PKR attacks and proposed security notions for CLS schemes. Since then, researchers have constructed a large number of provably secure CLS schemes [9,10,11,12,13,14,15] in the random oracle model. Aiming to eliminate the security requirements of ideal random oracles, Liu et al. [18] constructed a CLS scheme without random oracles based on the identity-based signature scheme proposed by Paterson and Schuldt [34]. However, Xiong et al. [19] and Huang et al. [35] demonstrated that Liu et al.’s CLS scheme [18] was insecure against MKGC attacks. To enhance the security of Liu et al.’s CLS scheme [18], Xiong et al. [19] presented an improved scheme, but it was still vulnerable to MKGC attacks [36]. Furthermore, Xia et al. [37] showed that several CLS schemes [18,19,20] without random oracles were susceptible to PKR attacks.

Subsequently, Yu et al. [21] designed a CLS scheme and claimed that their scheme was secure in the standard model. However, Yuan et al. [23] and Pang et al. [27] independently demonstrated that Yu et al.’s CLS scheme [21] was insecure against PKR or MKGC attacks. As a countermeasure, Yuan et al. [23] designed an enhanced scheme, but it did not satisfy strong unforgeability. Based on the Boneh–Boyen signature [38] and Pointcheval–Sanders signature [39], Canard and Trinh [25] constructed a CLS scheme with a low computational cost. However, Canard and Trinh’s CLS scheme [25] was existentially unforgeable in the standard model. Subsequently, Huang et al. [22] constructed a CLS scheme with strong unforgeability in the standard model. Unfortunately, Yang et al. [30] demonstrated that Huang et al.’s CLS scheme [22] failed to achieve a strong unforgeability and was vulnerable to MKGC attacks. Furthermore, Yang et al. [30] presented a secure CLS scheme, but their scheme still has some drawbacks, including a longer private key size and a higher computational overhead than those of the previous schemes.

Digital signatures are widely used to ensure data authenticity and integrity. Yeh et al. [4] devised a CLS scheme for IoT environments. However, Jia et al. [40] demonstrated that Yeh et al.’s scheme [4] was insecure against PKR attacks and then proposed a new CLS scheme to overcome the flaws of Yeh et al.’s scheme [4]. Based on technologies such as RSA, DSA, and Merkle tree, Li et al. [41] proposed an IoT data communication framework to provide integrity and authenticity. Frädrich et al. [42] used redactable signature [43] to design another framework for the IoT environment to allow the redaction of parts from signed data and proved its security in the random oracle model. To achieve the security requirements in IoT, Challa et al. [44] presented a new signature-based authenticated key establishment scheme for the IoT environment. Based on Nyberg’s fast one-way accumulator [45], Yao et al. [46] designed a lightweight multicast authentication mechanism for small scale IoT applications. Yang et al. [47] proposed a certificateless aggregate signature scheme for vehicular ad hoc networks to reduce transmission bandwidth and verification overhead of signatures. To protect the identity privacy of IoT devices, Yang et al. [48] constructed a strong designated-verifier proxy re-signature (SDVPRS) scheme in the standard model and applied it to the IoT environment. Unfortunately, the existing data integrity and authenticity schemes in IoT have two drawbacks. (1) Some schemes [41,42,44,46,47,48] require heavy management and communication overheads of certificates to achieve authenticity authentication of the user’s public key. (2) Most of the schemes [4,40,41,42,44,46,47] are proved to be secure in the random oracle model. To fill thess gaps, Karati et al. [3] presented a secure CLS scheme for IoT environments in the standard model, but their scheme did not consider a strong unforgeability and replay attacks. To our best knowledge, designing an efficient CLS scheme that both satisfies strong unforgeability in the standard model and is resistant to PKR attacks, MKGC attacks, and replay attacks remains an open issue. Therefore, in this paper, we advance such a construction for IoT environments to ensure data integrity and data authenticity.

3. Preliminaries

Here, we briefly review some preliminary knowledge, including the definition of bilinear pairings, the complexity assumptions, and the security model of the CLS schemes.

3.1. Bilinear Paring

Assume that G1 and G2 are cyclic groups with the same order of prime p and that g is any generator of G1. A bilinear pair e:G1×G1→G2 is a map that satisfies the following conditions [23]:

	
Bilinearity: e(ga,gb)=e(g,g)ab for all a,b∈Zp.

	
Nondegeneracy: e(g,g)≠1.

	
Computability: There is an algorithm that can efficiently calculate e(ga,gb) for any a,b∈Zp.

3.2. Complexity Assumptions

Given two elements g,h∈G1, the discrete logarithm (DL) problem [30] is to find an integer a∈Zp such that h=ga.

Let A denote an attacker with probabilistic polynomial time (PPT). The advantage ε of A to solve the DL problem in G1 is defined as

AdvADL=Pr[A(g,h)=a:a∈Zp]≥ε.

Definition 1 (DL assumption).

We say that the DL assumption holds in G1 if there is no PPT attacker A to solve the DL problem with a non-negligible advantage ε.

Given three elements, g,ga,andgb∈G1 for unknown, randomly chosen a,b∈Zp, the computational Diffie–Hellman (CDH) problem [22] is to calculate gab∈G1.

The advantage ε that any PPT adversary A can solve the CDH problem in G1 is defined as

AdvACDH=Pr[A(g,ga,gb)=gab:a,b∈Zp]≥ε.

Definition 2 (CDH assumption).

The CDH assumption holds in G1 if there is no PPT attacker A to solve the CDH problem with a non-negligible advantage ε.

Suppose that {Hk} represents a family of hash functions Hk:{0,1}∗→{0,1}n, where n is the length of the output value of Hk and k is an index. Given the index k, the collision resistance of hash function (CRHF) [30] Hk is to find m0≠m1 such that Hk(m0)=Hk(m1). The advantage ε of any PPT adversary A in breaking the collision resistance of Hk is defined as

AdvACRHF=Pr[A(k)=(m0,m1):m0≠m1,Hk(m0)=Hk(m1)]≥ε.

Definition 3 (CRHF assumption).

A hash family {Hk} is collision resistant if the advantage ε of any PPT adversary A to break the collision resistance of hash function Hk is negligible.

3.3. Security Model of CLS

A CLS scheme consists of six algorithms, as follows:

	
Setup: This algorithm takes as input a security parameter λ, and it outputs the master secret key msk and system parameters param.

	
SetPubKey: This algorithm takes as input param and an identity ID, and it outputs a secret value uskID and a public key pkID.

	
PSKExtract: This algorithm takes as input param, ID, and pkID, and it returns a partial private key pskID for identity ID.

	
SetSecKey: Upon receiving param, uskID, and pskID, this algorithm outputs a private key skID.

	
Sign: This algorithm takes as input param, an identity ID’s private key skID and public key pkID, a timestamp T, and a message m, and it returns a signature σ on m.

	
Verify: Upon receiving param, ID, pkID, T, m, and σ, this algorithm outputs 1 if σ is a valid signature of ID on m with respect to T and pkID, and it outputs 0 otherwise.

According to the security model for CLS presented in References [15,35], a CLS scheme’s security should consider two types of adversaries: type I and type II adversaries. A type I adversary is a PKR attacker who knows the secret value of the targeted entity and who can replace any entity’s public key with its own. A type I adversary models an outside attacker who is not capable of possessing the master secret key of the KGC. In contrast, a type II adversary models an honest-but-curious KGC attacker who holds the master secret key of the KGC and generates the partial private key of any entity. However, a type II adversary can neither perform the entity’s PKR nor obtain the secret value of the targeted entity. To meet more realistic security requirements, Au et al. [49] presented an enhanced security model in which a type II adversary is viewed as an MKGC attacker. In this case, a malicious KGC can access the master secret key of the KGC and may embed extra trapdoors in the system parameters and the master secret key during the initialization phase of the system. Hence, the type II adversary that we focus on is an MKGC attacker. Here, the security model for a strongly secure CLS scheme is formalized via the following games (denoted Games 1 and 2) between a challenger C and an adversary A∈{A1,A2}.

Game 1: Executed between a challenger C and a type I adversary A1.

	
Initialization: C first runs the algorithm Setup to obtain the master secret key msk and system parameters param. C then runs the algorithm SetPubKey to output the secret value usk∗ and corresponding public key pk∗ of the targeted entity. Finally, C sends param and (usk∗,pk∗) to A1 while keeping msk secret.

	
Queries: A1 can adaptively access the following oracles with C.

	–

	
Public Key QueryOpk(IDi): Upon receiving an identity IDi, C runs the algorithm SetPubKey to obtain a public key pki and sends it to A1.

	–

	
Public Key Replacement (PKR) QueryOrep(IDi,pki′): Upon receiving such a query, C finds and replaces the original public key pki of identity IDi with a new public key pki′.

	–

	
Partial Private Key QueryOpsk(IDi,pki): Upon receiving an identity IDi and a public key pki, C runs the algorithm PSKExtract to generate a partial private key pski and sends it to A1.

	–

	
Private Key QueryOsk(IDi): When A1 initiates a private key inquiry about an identity IDi, C executes the algorithm SetSecKey to produce a private key ski and sends it to A1. Note that C returns the symbol ⊥ if IDi has already appeared in PKR queries.

	–

	
Signing QueryOsign(IDi,T,m): Upon receiving an identity IDi, a timestamp Tm and a message m, C first executes the algorithm SetSecKey to produce a private key ski and then uses ski, T, and the identity IDi’s matching public key pki to execute the algorithm Sign to produce a signature σi on m. Finally, C sends σi to A1.

	
Forgery: A1 eventually outputs a forged signature σ∗ on a message m∗ corresponding to an identity ID∗, a timestamp T∗, and the targeted public key pk∗. It is said that A1 wins this game when the following conditions are fulfilled:

	(1)

	
Verify(param,ID∗,pk∗,T∗,m∗,σ∗)=1.

	(2)

	
ID∗ is not requested in Opsk(IDi,pki) and Osk(IDi).

	(3)

	
(ID∗,T∗,m∗,σ∗) is not an output of the oracle Osign(IDi,T,m).

Game 2: Executed between a challenger C and a type II adversary A2. To launch malicious attacks more easily, A2 is allowed to set some trapdoors during the initialization phase of the game.

	
Initialization: C invokes A2 to produce the master secret key msk and system parameters param. Then, C runs the algorithm SetPubKey to produce the secret value usk∗ and the corresponding public key pk∗ of the targeted entity. Finally, C sends pk∗ to A2 while keeping usk∗ secret.

	
Queries: A2 can adaptively access the oracles Opk(IDi), Osk(IDi), and Osign(IDi,T,m), which are defined in Game 1, and C responds in the same way as it does in Game 1.

	
Forgery: A2 eventually outputs a forged signature σ∗ on a message m∗ corresponding to an identity ID∗, a timestamp T∗, and the targeted public key pk∗. It is said that A2 wins this game when the following conditions are fulfilled:

	(1)

	
Verify(param,ID∗,pk∗,T∗,m∗,σ∗)=1.

	(2)

	
ID∗ is not requested in Osk(IDi).

	(3)

	
(ID∗,T∗,m∗,σ∗) is not an output of the oracle Osign(IDi,T,m).

AdvAiSUF=Pr[Aisucceeds] denotes the advantage that Ai wins the above games, where i∈{1,2}.

Definition 4.

A CLS scheme is said to be strongly unforgeable against adaptive chosen message attacks if the advantages AdvA1SUF and AdvA2SUF are negligible for all PPT type I adversaries A1 and type II adversaries A2.

4. Proposed CLS Scheme

Based on Waters’ scheme [26] and its variants [28,34], we propose an undeniable and strongly unforgeable CLS scheme in the standard model. Our CLS scheme is described as follows.

	
Setup: Upon giving the security parameter λ as input, the KGC produces the master secret key and system parameters by performing the following steps.

	(1)

	
Select G1 and G2 as two cyclic groups with prime order p, a generator g of G1, and a bilinear pairing e:G1×G1→G2.

	(2)

	
Select two random values α,β∈Zp∗ and compute g1=gα and g2=gβ.

	(3)

	
Select two random elements u0,v0∈G1 and two vectors u→=(ui) and v→=(vj) of lengths nu and nm, respectively, where ui,vj∈G1 for i=1,…,nu and j=1,…,nm.

	(4)

	
Select three collision-resistant hash functions H1:{0,1}∗→{0,1}nu, H2:{0,1}∗→{0,1}nm, and H3:{0,1}∗→Zp∗.

	(5)

	
Secretly keep the master key msk=gαβ and publicly broadcast the system parameters param={G1,G2,p,g, e,g1,g2,u0,v0,u→,v→,H1,H2,H3}.

	
SetPubKey: An entity with identity ID randomly selects θ1,θ2,θ3∈Zp∗ and computes

pkID,1=gθ1,pkID,2=gθ2andpkID,3=gθ3.

Then, the entity computes uskID=gθ1θ2 as its secret value and sets its public key pkID=(pkID,1,pkID,2,pkID,3).

	
PSKExtract: Given an identity ID and a public key pkID of an entity, the KGC first computes a vector Q→=H1(ID,pkID)=(Q1,…,Qnu)∈{0,1}nu and UID=u0∏i=1nuuiQi. Then, the KGC selects s∈Zp∗ at random and computes

pskID,1=gαβ(UID)sandpskID,2=gs.

Finally, the KGC sends the partial private key pskID=(pskID,1,pskID,2) to the entity via a secure channel.

After receiving pskID=(pskID,1,pskID,2) from the KGC, the entity can check the correctness of pskID by verifying

e(pskID,1,g)=e(g2,g1)e(UID,pskID,2).

If this equation holds, then the entity accepts pskID as a valid partial private key.

	
SetSecKey: The entity with identity ID selects a random value r∈Zp∗ and computes a vector Q→=H1(ID,pkID)=(Q1,…,Qnu)∈{0,1}nu and UID=u0∏i=1nuuiQi, where pkID is ID’s public key. Then, the entity uses its secret value uskID and partial private key pskID=(pskID,1,pskID,2) to compute its private key

skID=(skID,1,skID,2)=(pskID,1·uskID·(UID)r,pskID,2·gr)=(gαβ(UID)s·gθ1θ2·(UID)r,gs·gr)=(gαβgθ1θ2(UID)s+r,gs+r).

	
Sign: The signer with identity ID generates a signature of a message m by performing the following steps.

	(1)

	
Select a random value rm∈Zp∗ and compute σ3=grm.

	(2)

	
Choose the current timestamp T and compute a vector M→=H2(m,T)=(M1,…,Mnm)∈{0,1}nm and Vm=v0∏j=1nmvjMj.

	(3)

	
Compute

h=H3(m,T,ID,pkID,skID,2,σ3,param),σ1=skID,1·((pkID,3)hVm)rm,σ2=skID,2,

where skID=(skID,1,skID,2) and pkID=(pkID,1,pkID,2,pkID,3) are the private and public keys of identity ID, respectively.

	(4)

	
Output σ=(σ1,σ2,σ3) as a signature of m.

	
Verify: Given the signer’s identity ID and public key pkID=(pkID,1,pkID,2,pkID,3), timestamp T, and a signature σ=(σ1,σ2,σ3) of message m, the verifier first chooses the current time T′. Then, the verifier verifies the legality of σ as follows.

	(1)

	
If T′−T>δ, where δ is a threshold value, the verifier refuses to verify the validity of σ and exits.

	(2)

	
If T′−T≤δ, the verifier computes Q→=H1(ID,pkID), UID, M→=H2(m,T), Vm and

h=H3(m,T,ID,pkID,skID,2,σ3,param).

Then, the verifier checks

e(σ1,g)=e(g2,g1)·e(pkID,1,pkID,2)·e(UID,σ2)·e((pkID,3)hVm,σ3).

If this equation holds, the verifier accepts σ and outputs 1; otherwise, the verifier rejects σ and outputs 0.

Correctness: The correctness of a signature σ=(σ1,σ2,σ3) on a message m is presented as follows:

e(σ1,g)=e(skID,1·((pkID,3)hVm)rm,g)=e(gαβgθ1θ2(UID)s+r·((pkID,3)hVm)rm,g)=e(gαβ,g)·e(gθ1θ2,g)·e((UID)s+r,g)·e(((pkID,3)hVm)rm,g)=e(gα,gβ)·e(gθ1,gθ2)·e(UID,gs+r)·e((pkID,3)hVm,grm)=e(g2,g1)·e(pkID,1,pkID,2)·e(UID,σ2)·e((pkID,3)hVm,σ3).

5. Security Proof

In our CLS scheme, the algorithm SetSecKey randomizes the entity’s secret value uskID and partial private key pskID=(pskID,1,pskID,2) to generate the final private key skID=(skID,1,skID,2)=(pskID,1·uskID·(UID)r,pskID,2·gr). Hence, it is not feasible for a malicious KGC to produce a valid signature without the secret value uskID. Additionally, the KGC cannot derive the entity’s private key skID from the master secret key msk and the entity’s partial private key pskID.

To prevent PKR and MKGC attacks, a part pkID,3 of the entity’s public key is embedded in the signature σ. Only each entity can produce its legal public key pkID=(pkID,1,pkID,2,pkID,3)=(gθ1,gθ2,gθ3); thus, the malicious KGC can neither set the entity’s public key at will nor derive the secret value uskID from the signature. Furthermore, it is impossible to obtain the value (pkID,3)rm directly from the entity’s public key pkID and the public value σ3=grm of the signature unless the adversary can solve the CDH problem.

The algorithm PSKExtract binds each entity’s public key pkID, identity ID, and partial private key pskID, which can enhance the trust level of the proposed CLS scheme. If the KGC attempts to replace the entity’s public key pkID, then the entity’s identity ID and the new public key must be re-bound to compute a new partial private key, which results in the entity’s identity ID corresponding to two public keys and two partial private keys. Therefore, our CLS scheme can easily determine whether the KGC replaced the entity’s public key.

In addition, H3 is a collision-resistant hash function. The hash value h combines the message m, the identity ID, public key pkID, two values σ2, and σ3 in the signature, a timestamp T, and system parameters param as h=H3(m,T,ID,pkID,skID,2,σ3,param). Hence, an attacker cannot forge a new valid signature from an existing signature on a message; that is, an adversary cannot generate a valid signature on any previously signed/new message in our CLS scheme.

In the following, we introduce two theorems to demonstrate that our CLS scheme satisfies a strong unforgeability against PKR and MKGC attacks in the standard model. Reduction technology is used to prove the strong unforgeability of the proposed scheme; specifically, if an attacker breaks the security of the scheme, a solver then uses the attacker’s ability to solve the underlying hard problem related to the scheme. However, this problem is intractable in reality; thus, such an attacker does not exist. Furthermore, we prove that the proposed CLS scheme can resist replay attacks.

Theorem 1.

In the standard model, our CLS scheme is strongly unforgeable against PKR attacks. Specifically, there is a type I adversary A1 that breaks the security of the proposed CLS scheme with advantage ε1 after making at most qpk public key queries, qpsk partial private key queries, qrep PKR queries, qsk private key queries, and qs signing queries. Then, an algorithm C can use the forgery of A1 to solve the CDH problem with advantage ε1′.

Proof.

C is given a random instance (g,ga,gb)∈G13 of the CDH problem, and C’s goal is to output gab with the help of A1. The algorithm C simulates the challenger in Game 1 and responds to A1’s queries as follows.

	
Initialization: C first sets lu=2(qpsk+qsk+qs) and lm=2qs such that lu(nu+1)<p and lm(nm+1)<p. Then, C simulates the algorithm Setup by performing the following steps:

	(1)

	
Randomly select ku(0≤ku≤nu) and km(0≤km≤nm).

	(2)

	
Randomly select x0,x1,…,xnu∈Zlu, y0,y1, …,ynu∈Zp, c0,c1,…,cnm∈Zlm, and d0,d1,…, dnm∈Zp.

	(3)

	
Select three hash functions H1:{0,1}∗→{0,1}nu, H2:{0,1}∗→{0,1}nm, and H3:{0,1}∗→Zp∗. Note that the adopted hash functions are not considered to be random oracles in the following proof.

	(4)

	
Set g1=ga and g2=gb, where ga and gb are from the input of the instance of the CDH problem. Note that the master secret key is implicitly set to msk=gab.

	(5)

	
Assign u0=g2−luku+x0gy0, ui=g2xigyi for i=1,…,nu, v0=g2−lmkm+c0gd0, and vj=g2cjgdj for j=1,…,nm, and set u→=(u1,…,unu) and v→=(v1,…,vnm).

	(6)

	
Select three random integers θ1∗,θ2∗,θ3∗∈Zp∗ and compute pk1∗=gθ1∗, pk2∗=gθ2∗, and pk3∗=gθ3∗. Next, set the secret value of the targeted entity to usk∗=gθ1∗θ2∗ and the corresponding public key to pk∗=(pk1∗,pk2∗,pk3∗).

	(7)

	
Send system parameters param={G1,G2,p,g, e,g1,g2,u0,v0,u→,v→,H1,H2,H3} and the targeted entity’s secret value/public key pair (usk∗,pk∗) to A1.

From the perspective of A1, the distribution of the system parameters produced by C is identical to the real construction.

In our CLS scheme, we have Q→=H1(ID,pkID)=(Q1,…,Qnu)∈{0,1}nu for an identity ID and a public key pkID, and we have M→=H2(m,T)=(M1, …,Mnm)∈{0,1}nm for a message m and a timestamp T. Aiming to simplify the analysis, we define the following four functions:

F(ID)=−luku+x0+∑i=1nuxiQi,J(ID)=y0+∑i=1nuyiQi,K(m)=−lmkm+c0+∑j=1nmcjMj,L(m)=d0+∑j=1nmdjMj.

Hence, we have the following equations:

UID=u0∏i=1nuuiQi=g2F(ID)gJ(ID),Vm=v0∏j=1nmvjMj=g2K(m)gL(m).

	
Queries: C maintains a list L={(IDi,θi,1,θi,2,θi,3, uski,pki,pski,ski)}, which is initially empty. C constructs the following oracles to answer a series of A1’s queries.

	–

	
Public Key QueryOpk(IDi): When A1 initiates such an inquiry for an identity IDi, C looks up the corresponding entry in the list L. If IDi is found in L, C returns pki to A1. Otherwise, C randomly selects θi,1,θi,2,θi,3∈Zp∗ and computes the secret value uski=gθi,1θi,2 and the public key pki=(pki,1,pki,2,pki,3)=(gθi,1,gθi,2,gθi,3). Then, C stores {(IDi,θi,1,θi,2,θi,3,uski,pki)} in L and sends pki to A1.

	–

	
Public Key Replacement QueryOrep(IDi,pki′): If there is an entry for the identity IDi in the list L, C replaces the original public key pki of IDi with a new public key pki′. Otherwise, C directly sets pki′ as the public key of IDi.

	–

	
Partial Private Key QueryOpsk(IDi,pki): When A1 requests a partial private key of an identity IDi and a public key pki, C returns pski to A1 if there is an entry for IDi and pki in the list L. Otherwise, C computes F(IDi) and J(IDi).

	(1)

	
If F(IDi)≠0modlu, C randomly selects si∈Zp∗ and calculates a partial private key

pski=(pski,1,pski,2)=(g1−J(IDi)F(IDi)(UIDi)si,g1−1F(IDi)gsi),

where UIDi=u0∏k=1nuukQi,k and Q→i=H1(IDi, pki)=(Qi,1,…,Qi,nu)∈{0,1}nu. Then, C stores the partial private key of the corresponding entry in L and sends pski to A1.

	(2)

	
If F(IDi)=0modlu, C terminates the simulation.

Note that the partial private key pski=(pski,1,pski,2) generated by C is legal.

pski,1=g1−J(IDi)F(IDi)(UIDi)si=g2a(g2F(IDi)gJ(IDi))−aF(IDi)(UIDi)si=g2a(UIDi)si−aF(IDi)=gab(UIDi)si−aF(IDi),pski,2=g1−1F(IDi)gsi=gsi−aF(IDi).

Then, we have

e(pski,1,g)=e(g2,g1)e(UIDi,pski,2).

Hence, from A1’s perspective, the partial private key pski simulated by C is computationally indistinguishable from that computed by the real KGC.

	–

	
Private Key QueryOsk(IDi): When A1 requests the private key of an identity IDi, C checks for an entry of IDi in L. If it exists, C returns ski to A1; otherwise, C computes F(IDi) and J(IDi). If F(IDi)=0modlu, C terminates; otherwise, C initiates a public key query about IDi to acquire a secret value uski and a public key pki and then initiates a partial private key query with (IDi,pki) to acquire a partial private key pski. Next, C executes the algorithm SetSecKey to create a private key ski, stores ski of the corresponding entry in L and sends ski to A1.

	–

	
Signing QueryOsign(IDi,T,m): Upon receiving an identity IDi, a timestamp T, and a message m, C issues a query Opk(IDi) to acquire a public key pki=(pki,1,pki,2,pki,3) and the triplet (θi,1,θi,2,θi,3). Then, C proceeds as follows.

	(1)

	
If F(IDi)≠0modlu, C first makes a query Osk(IDi) to acquire a private key ski and then runs the algorithm Sign to generate a signature σi of m. Finally, C sends σi to A1.

	(2)

	
If F(IDi)=0modlu, C computes K(m). If K(m)=0modlm, C terminates; otherwise, C randomly selects ri,rm∈Zp∗ and computes Q→i=H1(IDi,pki), UIDi, M→=H2(m,T), and Vm. Furthermore, C computes

σi,2=gri,σi,3=g1−1K(m)grm,hi=H3(m,T,IDi,pki,σi,2,σi,3,param),σi,1=(UIDi)rig1−L(m)−hiθi,3K(m)((pki,3)hiVm)rmgθi,1θi,2.

Finally, C sends σi=(σi,1,σi,2,σi,3) to A1.

For r˜m=rm−aK(m), we have

σi,1=(UIDi)rig1−L(m)−hiθi,3K(m)((pki,3)hiVm)rmgθi,1θi,2=(UIDi)rigab(g2K(m)gL(m)ghiθi,3)−aK(m)((pki,3)hiVm)rmgθi,1θi,2=gabgθi,1θi,2(UIDi)ri((pki,3)hiVm)rm−aK(m)=gabgθi,1θi,2(UIDi)ri((pki,3)hiVm)r˜m,σi,2=gri,σi,3=g1−1K(m)grm=grm−aK(m)=gr˜m.

Clearly, the signature σi=(σi,1,σi,2,σi,3) generated by C is legal because σi satisfies the following verification equation:

e(σi,1,g)=e(gabgθi,1θi,2(UIDi)ri((pki,3)hiVm)r˜m,g)=e(ga,gb)e(gθi,1,gθi,2)e(UIDi,gri)e((pki,3)hiVm,gr˜m)=e(g2,g1)·e(pki,1,pki,2)·e(UIDi,σi,2)e((pki,3)hiVm,σi,3).

From A1’s perspective, the signatures simulated by C are computationally indistinguishable from those produced by the real signer.

	
Forgery: A1 eventually outputs a signature σ∗=(σ1∗,σ2∗,σ3∗) on a message m∗ corresponding to an identity ID∗, a timestamp T∗, and targeted public key pk∗. If F(ID∗)≠0modp or K(m∗)≠0modp, C terminates; otherwise, C computes h∗=H3(m∗,T∗,ID∗,pk∗,σ2∗,σ3∗,param) and uses (θ1∗,θ2∗,θ3∗) to output gab as a solution to the CDH instance as follows:

σ1∗gθ1∗θ2∗(σ2∗)J(ID∗)(σ3∗)L(m∗)+h∗θ3∗=g2agθ1∗θ2∗(UID∗)rID∗((pk3∗)h∗Vm∗)rm∗gθ1∗θ2∗(grID∗)J(ID∗)(grm∗)L(m∗)+h∗θ3∗=g2a(g2F(ID∗)gJ(ID∗))rID∗((gθ3∗)h∗(g2K(m∗)gL(m∗)))rm∗(gJ(ID∗))rID∗(gθ3∗)rm∗h∗(gL(m∗))rm∗=g2ag2F(ID∗)rID∗g2K(m∗)rm∗(sinceF(ID∗)=K(m∗)=0modp)=g2a=gab.

Now, we analyze the probability that C can successfully solve the CDH problem. If the following conditions hold, C completes the above simulation without aborting.

	(1)

	
All partial private key queries on (IDi,pki) have F(IDi)≠0modlu.

	(2)

	
All private key queries on IDi have F(IDi)≠0modlu.

	(3)

	
All signing queries on (IDi,T,m) have F(IDi)≠0modlu or K(m)≠0modlm.

	(4)

	
In the forgery phase, F(ID∗)=0modp and K(m∗)=0modp.

Here, we define four independent events Xi, X∗, Yj, and Y∗ as follows.

	
Xi:F(IDi)≠0modlu for the ith query, where 1≤i≤qpsk+qsk+qs.

	
X∗:F(ID∗)=0modp.

	
Yj:K(mj)≠0modlm for the jth query, where 1≤j≤qs.

	
Y∗:K(m∗)=0modp.

Because the events ⋂i=1qpsk+qsk+qsXi, X∗, ⋂j=1qsYj, and Y∗ are independent, the probability that C does not terminate is

Pr[¬abort]≥Pr[⋂i=1qpsk+qsk+qsXi∩X∗∩⋂j=1qsYj∩Y∗]=Pr[X∗]·Pr[⋂i=1qpsk+qsk+qsXi|X∗]·Pr[Y∗]·Pr[⋂j=1qsYj|Y∗].

From lu(nu+1)<p, lm(nm+1)<p, 0≤ku≤nu, 0≤km≤nm, x0,x1,…,xnu∈Zlu and c0,c1,…,cnm∈Zlm, we have 0≤luku<p, 0≤lmkm<p, 0≤x0+∑i=1nuxiQi<p and 0≤c0+∑j=1nmcjMj<p. Therefore, it is easy to derive F(ID)=0modlu and K(m)=0modlm from F(ID)=0modp and K(m)=0modp, respectively. Moreover, F(ID)≠0modlu implies that F(ID)≠0modp, and K(m)≠0modlm implies that K(m)≠0modp. Since x0,x1,…,xnu and c0,c1,…,cnm are randomly chosen, we obtain the probabilities of the events X∗ and Y∗ as follows:

Pr[X∗]=Pr[F(ID∗)=0modp]≥Pr[F(ID∗)=0modp∩F(ID∗)=0modlu]=Pr[F(ID∗)=0modlu]Pr[F(ID∗)=0modp|F(ID∗)=0modlu]=1lu1nu+1,Pr[Y∗]=Pr[K(m∗)=0modp]≥Pr[K(m∗)=0modp∩K(m∗)=0modlm]=Pr[K(m∗)=0modlm]Pr[K(m∗)=0modp|K(m∗)=0modlm]=1lm1nm+1.

Furthermore, we have

Pr[⋂i=1qpsk+qsk+qsXi|X∗]=1−Pr[⋃i=1qpsk+qsk+qs¬Xi|X∗]≥1−∑i=1qpsk+qsk+qsPr[¬Xi|X∗]=1−qpsk+qsk+qslu,Pr[⋂j=1qsYj|Y∗]=1−Pr[⋃j=1qs¬Yj|Y∗]≥1−∑j=1qsPr[¬Yj|Y∗]=1−qslm.

Since lu=2(qpsk+qsk+qs) and lm=2qs, we write

Pr[¬abort]≥1lu·1nu+1·1−qpsk+qsk+qslu1lm·1nm+1·1−qslm=116qs(nu+1)(nm+1)(qpsk+qsk+qs).

Therefore, if A1 breaks the strong unforgeability of the proposed CLS scheme with advantage ε1, then C has an advantage ε1′≥ε116qs(nu+1)(nm+1)(qpsk+qsk+qs) to solve the given instance of the CDH problem. □

Theorem 2.

In the standard model, the proposed CLS scheme is strongly unforgeable against MKGC attacks launched by the type II adversary A2. Concretely, assuming that A2 compromises the security of our CLS scheme with advantage ε2 after making at most qpk public key queries, qsk private key queries, and qs signing queries, then an algorithm C can use A2’s forgery to solve the CDH problem in G1 with advantage ε2′.

Proof.

Supposing that a PPT adversary A2 breaks the strong unforgeability of our CLS scheme in an adaptive chosen-message attack, we can construct an algorithm C that calls A2 as a subroutine to violate the CDH assumption. Assuming that C is given a random instance (g,A=ga,B=gb)∈G13, to calculate gab, C simulates the challenger in Game 2 to answer all A2’s queries.

	
Initialization: For the given values qsk, qs, nu, and nm, C sets lu=2(qsk+qs) and lm=2qs such that lu(nu+1)<p and lm(nm+1)<p. C selects a random element θ∗∈Zp∗ and calculates pk3∗=gθ∗. Then, C sets the targeted entity’s public key pk∗=(pk1∗,pk2∗,pk3∗)=(A=ga,B=gb,gθ∗) and sends parameters (G1,G2,p,g,e) and pk∗ to A2.

Subsequently, A2 performs the following steps to produce other system parameters and the master secret key.

	(1)

	
Select two random integers ku and km, where 0≤ku≤nu and 0≤km≤nm.

	(2)

	
Randomly select x0,x1,…,xnu∈Zlu, c0,c1,…,cnm∈Zlm and y0,y1, …,ynu, d0,d1,…, dnm∈Zp.

	(3)

	
Select three collision-resistant hash functions H1:{0,1}∗→{0,1}nu, H2:{0,1}∗→{0,1}nm, and H3:{0,1}∗→Zp∗.

	(4)

	
Assign u0=B−luku+x0gy0, ui=Bxigyi for i=1,…,nu, v0=B−lmkm+c0gd0, and vj=Bcjgdj for j=1,…,nm and set u→=(u1,…,unu) and v→=(v1,…,vnm).

	(5)

	
Select two random values α,β∈Zp∗ and compute g1=gα, g2=gβ and msk=gαβ.

	(6)

	
Send parameters (g1,g2,u0,v0,u→,v→,H1,H2,H3) and the master secret key msk to C.

Note that the secret value of the targeted entity is usk∗=gab, which is unknown to C, and the system parameters are param={G1,G2,p,g,e,g1,g2,u0, v0,u→,v→,H1,H2,H3}.

As the initialization phase in Theorem 1, we define the following four functions:

F(ID)=−luku+x0+∑i=1nuxiQi,J(ID)=y0+∑i=1nuyiQi,K(m)=−lmkm+c0+∑j=1nmcjMj,L(m)=d0+∑j=1nmdjMj.

Furthermore, we have the following equations:

UID=u0∏i=1nuuiQi=BF(ID)gJ(ID),Vm=v0∏j=1nmvjMj=BK(m)gL(m).

	
Queries: C maintains an initially empty list L2 of tuples {(IDi,θi,1,θi,2,θi,3,pki,ski)} and builds the following oracles to answer the queries initiated by A2.

	–

	
Public Key QueryOpk(IDi): When A2 issues such a query on an identity IDi, C looks up the corresponding entry in list L2 and sends pki to A2. Otherwise, if L2 does not store this entry, C randomly selects θi,1,θi,2,θi,3∈Zp∗ and computes the public key pki=(pki,1,pki,2,pki,3)=(Aθi,1,Bθi,2,gθi,3)=(gaθi,1,gbθi,2,gθi,3). Note that the secret value is uski=gabθi,1θi,2, but a and b are unknown to C. Then, C stores {(IDi, θi,1,θi,2,θi,3,pki)} in L2 and transmits pki to A2.

	–

	
Private Key QueryOsk(IDi): Upon receipt of a query on an identity IDi, C returns ski to A2 if IDi is found in L2; otherwise, C makes a query Opk(IDi) to obtain a public key pki=(pki,1,pki,2,pki,3) and the triplet (θi,1,θi,2,θi,3) and then verifies whether F(IDi)=0modlu.

	(1)

	
If F(IDi)=0modlu, C exits the simulation.

	(2)

	
If F(IDi)≠0modlu, C selects si∈Zp∗ and uses the master secret key msk=gαβ to compute

ski,1=A−J(IDi)θi,1θi,2F(IDi)gαβ(UIDi)si,ski,2=A−θi,1θi,2F(IDi)gsi,

where UIDi=u0∏k=1nuukQi,k and Q→i=H1(IDi, pki)=(Qi,1,…,Qi,nu)∈{0,1}nu. Then, C stores the private key of the corresponding entry in L2 and sends ski=(ski,1,ski,2) to A2.

The correctness of ski simulated by C is

ski,1=A−J(IDi)θi,1θi,2F(IDi)gαβ(UIDi)si=gαβgabθi,1θi,2(gbF(IDi)gJ(IDi))−aθi,1θi,2F(IDi)(UIDi)si=gαβgabθi,1θi,2(UIDi)si−aθi,1θi,2F(IDi)=gαβgabθi,1θi,2(UIDi)s˜i,ski,2=A−θi,1θi,2F(IDi)gsi=gsi−aθi,1θi,2F(IDi)=gs˜i,

where s˜i=si−aθi,1θi,2F(IDi). Hence, the above equations indicate that ski=(ski,1,ski,2) is a valid private key of identity IDi.

	–

	
Signing QueryOsign(IDi,T,m): Upon receiving a message m, an identity IDi, and a timestamp T, C issues a query Opk(IDi) to obtain a public key pki=(pki,1,pki,2,pki,3) and a triplet (θi,1,θi,2,θi,3). Then, C considers the following two cases:

	(1)

	
If F(IDi)≠0modlu, C makes a query Osk(IDi) to obtain a private key ski and then runs the algorithm Sign to generate a signature σi on m. Finally, C sends σi to A2.

	(2)

	
If F(IDi)=0modlu, C computes K(m). If K(m)=0modlm, C quits the simulation; otherwise, C randomly selects ri,rm∈Zp∗ and computes Q→i=H1(IDi,pki), UIDi, M→=H2(m,T), and Vm. Furthermore, C computes

σi,2=gri,σi,3=A−θi,1θi,2K(m)grm,hi=H3(m,T,IDi,pki,σi,2,σi,3,param),σi,1=gαβ(UIDi)riA(L(m)−hiθi,3)θi,1θi,2K(m)((pki,3)hiVm)rm.

Finally, C sends σi=(σi,1,σi,2,σi,3) to A2.

Let r˜m=rm−aθi,1θi,2K(m); then, we have

σi,1=gαβ(UIDi)riA(L(m)−hiθi,3)θi,1θi,2K(m)((pki,3)hiVm)rm=gαβgabθi,1θi,2(gbK(m)gL(m)ghiθi,3)−aθi,1θi,2K(m)(UIDi)ri((pki,3)hiVm)rm=gαβgabθi,1θi,2((BK(m)gL(m))(gθi,3)hi)−aθi,1θi,2K(m)(UIDi)ri((pki,3)hiVm)rm=gαβgabθi,1θi,2(UIDi)ri((pki,3)hiVm)rm−aθi,1θi,2K(m)=gαβgabθi,1θi,2(UIDi)ri((pki,3)hiVm)r˜m,σi,2=gri,σi,3=A−θi,1θi,2K(m)grm=g−aθi,1θi,2K(m)grm=grm−aθi,1θi,2K(m)=gr˜m.

The simulated signature σi=(σi,1,σi,2,σi,3) satisfies the following signature verification equation; thus, σi is a valid signature on message m:

e(σi,1,g)=e(gαβgabθi,1θi,2(UIDi)ri((pki,3)hiVm)r˜m,g)=e(gαβ,g)e(gabθi,1θi,2,g)e((UIDi)ri,g)e(((pki,3)hiVm)r˜m,g)=e(gα,gβ)e(gaθi,1,gbθi,2)e(UIDi,gri)e((pki,3)hiVm,gr˜m)=e(g2,g1)e(pki,1,pki,2)e(UIDi,σi,2)e((pki,3)hiVm,σi,3).

	
Forgery: A2 eventually outputs a signature σ∗=(σ1∗,σ2∗,σ3∗) on a message m∗ corresponding to an identity ID∗, a timestamp T∗, and the targeted public key pk∗. If F(ID∗)≠0modp or K(m∗)≠0modp, C terminates; otherwise, C calculates h∗=H3(m∗,T∗,ID∗,pk∗,σ2∗,σ3∗,param) and then uses θ∗ and gαβ to output the CDH value gab by calculating

σ1∗gαβ(σ2∗)J(ID∗)(σ3∗)L(m∗)+h∗θ∗=gαβgab(UID∗)rID∗((pk3∗)h∗Vm∗)rm∗gαβ(grID∗)J(ID∗)(grm∗)L(m∗)+h∗θ∗=gab(BF(ID∗)gJ(ID∗))rID∗((pk3∗)h∗(BK(m∗)gL(m∗)))rm∗(gJ(ID∗))rID∗(gθ∗)rm∗h∗(grm∗)rm∗L(m∗)=gabBF(ID∗)rID∗BK(m∗)rm∗(sinceF(ID∗)=K(m∗)=0modp)=gab.

Here, we discuss the probability of C outputting a correct solution for the CDH instance. C completes the above simulation if all of the following events occur:

	
F(IDi)≠0modlu during private key queries.

	
F(IDi)≠0modlu or K(m)≠0modlm during signing queries.

	
F(ID∗)=0modp and K(m∗)=0modp in the forgery phase.

The probability of C completing the simulation is analogous to that in Theorem 1. We define four independent events, Xi, X∗, Yj, and Y∗, as follows:

	
Xi:F(IDi)≠0modlu for 1≤i≤qsk+qs.

	
X∗:F(ID∗)=0modp.

	
Yj:K(mj)≠0modlm for 1≤j≤qs.

	
Y∗:K(m∗)=0modp.

Similar to the probability analysis in Theorem 1, we give the probability of C not aborting as

Pr[¬abort]=Pr[⋂i=1qsk+qsXi∩X∗∩⋂j=1qsYj∩Y∗]=Pr[X∗]Pr[⋂i=1qsk+qsXi|X∗]Pr[Y∗]Pr[⋂j=1qsYj|Y∗]=1lu(nu+1)1−qsk+qslu1lm(nm+1)1−qslm=116qs(qsk+qs)(nu+1)(nm+1).

Hence, C can solve the given instance of the CDH problem with advantage ε2′≥ε216qs(qsk+qs)(nu+1)(nm+1). □

We obtain Theorem 3 by combining Theorems 1 and 2, as follows.

Theorem 3.

In the standard model, our CLS scheme is strongly unforgeable against adaptive chosen-message attacks corresponding to type I and II adversaries under the CDH and CRHF assumptions.

Theorem 4.

Our CLS scheme is resistant to replay attacks.

Proof.

In replay attacks, the adversary generally initiates two types of attacks [31,32]. One is to directly replay the intercepted message and the corresponding signature, and the other is to modify the timestamp in the signature of the intercepted message and to create a new signature for the message.

In the first type of attack, it is assumed that the adversary replays an intercepted combination of message m, timestamp T, and signature σ generated by an IoT device. Upon receiving this combination {m,T,σ}, the data centre compares the timestamp T in the combination with the current timestamp T′. If the value of T′−T exceeds the threshold δ, the data centre can determine that m in this combination is a replayed message and can discard m. Therefore, the first type of attack has no effect on our CLS scheme. □

Since our CLS scheme satisfies strong unforgeability, the attacker cannot generate a legal signature for any message. Therefore, in the second type of attack, the attacker can only use the existing combination {m,T,σ} to initiate the attack. In the proposed scheme, the timestamp T is bound to the message m, i.e., M→=H2(m,T). Additionally, the timestamp T is embedded in the parameter h in the form of h=H3(m,T,ID,pkID,σ2,σ3,param) and is also embedded in the signature σ of the message m in the form of (pk3)rmh. If the attacker wants to replace T in the signature σ with a new timestamp T∗, the attacker needs to calculate h∗=H3(m,T∗,ID,pkID,σ2,σ3,param) and (pk3)rmh∗. Although an attacker can calculate h∗ and (pk3)h∗, the difficulty in calculating rm from (pk3)rmh is equivalent to solving the DL problem. However, if the attacker does not know rm, then they cannot calculate the correct value (pk3)rmh∗. In addition, T∗ must satisfy the conditions H2(m,T)=H2(m,T∗) and H1(m,T)=H1(m,T∗), which is equivalent to finding a collision of the hash functions H2 and H3. Since the DL problem is unsolvable in reality and the functions H2 and H3 are CRHF, the second type of attack does not compromise the security of our CLS scheme. In summary, the proposed CLS scheme can efficiently withstand replay attacks.

6. Application in IoT Environments and Performance Analysis

6.1. System Model

In a CLS scheme for IoT environments, it is very important that data are not modified and that the source of the data is authentic during data transmission. Therefore, we mainly focus on the integrity and authenticity of IoT data in our system while simultaneously reducing the bandwidth, computational cost, and storage overhead for IoT devices. Figure 2 shows our CLS system model for IoT environments, which consists of three entities: PKG, data centre, and IoT device.

	
PKG: This entity is primarily responsible for producing system parameters and computing partial private keys for the data centre and each IoT device. The PKG sends system parameters to all of the entities through a public channel and transmits an individual partial private key to each entity via a secure channel.

	
Data centre: This entity has a strong computing power and storage space; thus, it can check the integrity and authenticity of the data by verifying the signature sent by each IoT device and can store the authentic data for other users to use. Initially, the data centre submits its identity information to the PKG to apply for the corresponding partial private key; it then saves the system parameters and partial private key sent by the PKG.

	
IoT device: This entity equipped with sensors has limited computational and memory resources and limited battery capacity. During the registration of the IoT device, the PKG generates a unique partial private key based on the physical address of each IoT device. After the IoT device is embedded with system parameters and its private key, it signs messages collected from the physical world and sends the corresponding signatures along with messages to the data centre.

6.2. Performance Analysis

In this subsection, we analyze the performance of the proposed CLS scheme. Compared with other cryptographic operations, bilinear pairing and exponentiation are the most time-consuming operations [22,28]; hence, our efficiency analysis mainly emphasizes the computational costs of these two operations. Table 1 and Table 2 compare the performance of our CLS scheme and other related CLS schemes [21,22,23,27,30] without random oracles in terms of private key size, signature length, computational cost, and security. In Table 1, the KeySize and SigSize columns list the sizes of the private key and signature, respectively. The Sign and Verify columns present the computational costs of the algorithms Sign and Verify, respectively. Let P and E represent the execution times of a bilinear pairing and an exponentiation, respectively. Let nu represent the length of an identity, and let |G1| and |p| represent the lengths of an element in G1 and Zp, respectively. In Table 2, the columns Type I, Type II, and Replay attacks show whether the CLS scheme can resist PKR attacks, MKGC attacks, and replay attacks, respectively. The SUF column denotes whether the CLS scheme satisfies a strong unforgeability in the standard model. It should be noted that the key length affects the storage capacity of the IoT device and the data center and that the signature length affects the communication capabilities of the IoT device and the storage capacity of the data center. In addition, the overhead of signature generation and signature verification affect the computing power of the IoT device and the data center, respectively.

From Table 1 and Table 2, the length of the private key in our CLS scheme is 2|G1|, which is the shortest among the six CLS schemes. The size of the signature in the proposed CLS scheme is 3|G1|, which is equivalent to that of the schemes presented in References [22,23,27] but smaller than that of other schemes [21,30]. In the signing phase, our CLS scheme requires three exponentiations, as does Yuan et al.’s scheme [23], but is superior to other schemes [21,22,27,30]. In the verification phase, the computational cost of the proposed CLS scheme is E+5P, which is lower than that of the five other CLS schemes. Moreover, the efficiency of the verification process in our CLS scheme can be improved by a pre-calculation. Note that the verification equation for signature legitimacy is as follows:

e(σ1,g)=e(g2,g1)·e(pkID,1,pkID,2)·e(UID,σ2)·e((pkID,3)hVm,σ3).

Here, e(g2,g1) and e(pkID,1,pkID,2) can be pre-computed; thus, the time cost of verification in our CLS scheme can be reduced to one exponentiation and 3 bilinear pairings. Furthermore, only our CLS scheme can resist PKR attacks, MKGC attacks, and replay attacks while satisfying a strong unforgeability.

We also evaluated the performance of the proposed CLS scheme via experiments conducted with the PBC-0.47-VC cryptographic library [50]. The simulation program was run on a laptop equipped with a basic configuration of a 2.50 GHz CPU, 8 GB RAM, and the 64-bit Windows 10 operating system. To obtain faster pairing computation, we selected the Type A curve in the PBC library, which is a super-singular curve y2=x3+x built with the 512-bit order of the base field. The results of the experiment are presented in Figure 3, Figure 4, Figure 5 and Figure 6.

The IoT device must secretly store its private key; therefore, the size of the private key is important for an IoT device with a limited storage capacity. As shown in Figure 3, the size of the private key in our CLS scheme is 256 bits, which is 92.8% of that in Yuan et al.’s CLS scheme [23]. However, the size of the private key increases linearly with the length of the entity’s identity in Yang et al.’s CLS scheme [30]. For example, if the length nu of the entity’s identity is 100 bits, then the private key size in our CLS scheme is approximately 11% of that in Yang et al.’s CLS scheme [30]. In other words, our CLS scheme has a higher performance in private key length.

Since IoT devices possess limited battery power and communication bandwidth, one of the goals of our CLS scheme is to reduce the communication overhead of IoT devices. The most critical factor affecting communication cost is signature size. Figure 4 shows that the signature size of our CLS scheme and that of Yuan et al. [23] is 384 bits, while the signature size of Yang et al.’s CLS scheme [30] is 532 bits. Hence, the proposed CLS scheme has a lower communication overhead.

Due to the characteristics of IoT devices, such as limited computing and processing power, the computational overhead of generating signatures for IoT devices should be as small as possible. Figure 5 shows that the cost of signature generation in our CLS scheme is almost the same as that in Yuan et al.’s CLS scheme [23] but less than that in Yang et al.’s CLS scheme [30].

The data centre has a strong computation and storage capability to verify the validity of signatures sent by IoT devices. Figure 6 shows that the proposed CLS scheme greatly reduces the computational overhead of signature verification and that its performance is superior to that of the other two schemes [23,30].

A scheme in the random oracle model usually has a higher computational performance, but its security depends on the ideal random oracle. Both our scheme and Yang et al.’s [48] scheme are provable in the standard model, and their security only depends on the difficulty of the associated mathematical problems. Therefore, these two schemes have higher security than other schemes [4,40,41,42,44,46,47]. Our scheme and Yang et al.’s scheme [48] use CLS and SDVPRS respectively to guarantee the integrity and authenticity of data in IoT. We compare the signature generation and verification overhead of two schemes, and the corresponding results are shown in Figure 7 and Figure 8.

From Figure 7, we can see that the computational cost of signature generation in our scheme is lower than that in the scheme of Reference [48]. This is because the signature generation in the scheme of Reference [48] requires an additional bilinear pairing operation. Figure 8 shows that the time consumption of signature verification in the scheme of Reference [48] is lower than ours, but the scheme in Reference [48] does not satisfy the properties of a strong unforgeability and replay attack resistance. As a result, our scheme has a higher security.

In summary, the results of all the above experimental analyses are consistent with those of the theoretical analysis in Table 1. Therefore, we conclude that our CLS scheme is applicable to IoT environments.

7. Conclusions

The IoT is profoundly changing production activities, social management, and public services, but ensuring the integrity and authenticity of data is an important issue for IoT. To solve this problem, a new CLS scheme for IoT environments is presented in this paper. In addition to protecting data integrity and data authenticity, our CLS scheme also reduces the computational and communication costs for IoT devices. The proposed CLS scheme is proven to be strongly unforgeable against adaptive chosen-message attacks under the CDH and CRHF assumptions in the standard model. Additionally, our CLS scheme can withstand replay attacks. Furthermore, the performance comparisons demonstrate that our CLS scheme outperforms the previous CLS schemes without random oracles. The Internet of Vehicles is considered to be one of the most potential areas in IoT and has wide application prospects in the field of intelligent transportation. Compared with ordinary sensors, the vehicle terminal equipment has a more stable power supply and higher computing power and storage space. Hence, our CLS scheme is suitable for the Internet of Vehicles.

Author Contributions

X.Y. wrote the original draft. X.P. conducted security analysis. G.C. and T.L. designed the simulation experiments. M.W. re-edited the draft. C.W. validated the rightness and feasibility of the proposed scheme.

Funding

This research was funded by the National Natural Science Foundation of China under Grant 61662069, the China Postdoctoral Science Foundation under Grant 2017M610817, and the Foundation for Excellent Young Teachers by Northwest Normal University under Grant NWNU-LKQN-14-7.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Yang, Y.; Wu, L.; Yin, G.; Li, L.; Zhao, H. A survey on security and privacy issues in Internet-of-Things. IEEE Internet Things J. 2017, 4, 1250–1258. [Google Scholar] [CrossRef]

	

Shen, L.; Ma, J.; Liu, X.; Wei, F.; Miao, M. A secure and efficient id-based aggregate signature scheme for wireless sensor networks. IEEE Internet Things J. 2017, 4, 546–554. [Google Scholar] [CrossRef]

	

Karati, A.; Islam, S.H.; Karuppiah, M. Provably secure and lightweight certificateless signature scheme for IIoT environments. IEEE Trans. Ind. Inform. 2018, 14, 3701–3711. [Google Scholar] [CrossRef]

	

Yeh, K.H.; Su, C.; Choo, K.K.R.; Chiu, W. A novel certificateless signature scheme for smart objects in the Internet-of-Things. Sensors 2017, 17, 1001. [Google Scholar] [CrossRef] [PubMed]

	

Conti, M.; Dehghantanha, A.; Franke, K.; Watson, S. Internet of Things security and forensics: Challenges and opportunities. Future Gener. Comput. Syst. 2018, 78, 544–546. [Google Scholar] [CrossRef]

	

Perlman, R. An overview of PKI trust models. IEEE Netw. 2018, 13, 38–43. [Google Scholar] [CrossRef]

	

Shamir, A. Identity-based cryptosystems and signature schemes. In Proceedings of the CRYPTO 1984, Santa Barbara, CA, USA, 19–22 August 1984; pp. 47–53. [Google Scholar]

	

Al-Riyami, S.S.; Paterson, K.G. Certificateless public key cryptography. In Proceedings of the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, 30 November–4 December 2003; pp. 452–473. [Google Scholar]

	

Yum, D.H.; Lee, P.J. Generic construction of certificateless signature. In Proceedings of the Australasian Conference on Information Security and Privacy, Sydney, Australia, 13–15 July 2004; pp. 200–211. [Google Scholar]

	

Wan, Z.; Weng, J.; Li, J. Security mediated certificateless signatures without pairing. J. Comput. 2010, 12, 1862–1869. [Google Scholar] [CrossRef]

	

Xiong, H.; Guan, Z.; Chen, Z.; Li, F. An efficient certificateless aggregate signature with constant pairing computations. Inf. Sci. 2013, 219, 225–235. [Google Scholar] [CrossRef]

	

He, D.; Tian, M.; Chen, J. Insecurity of an efficient certificateless aggregate signature with constant pairing computations. Inf. Sci. 2014, 268, 458–462. [Google Scholar] [CrossRef]

	

Chen, Y.C.; Tso, R.; Mambo, M.; Huang, K.; Horng, G. Certificateless aggregate signature with efficient verification. Secur. Commun. Netw. 2015, 13, 2232–2243. [Google Scholar] [CrossRef]

	

Kang, B.; Wang, M.; Jing, D. An efficient certificateless aggregate signature scheme. Wuhan Univ. J. Nat. Sci. 2017, 22, 165–170. [Google Scholar] [CrossRef]

	

Wang, L.; Chen, K.; Long, Y.; Wang, H. An efficient pairing-free certificateless signature scheme for resource-limited systems. Sci. China Inf. Sci. 2017, 60, 119102. [Google Scholar] [CrossRef]

	

Bellare, M.; Rogaway, P. The exact security of digital signatures-How to sign with RSA and Rabin. In Proceedings of the Theory and Applications of Cryptographic Techniques, Konstanz, Germany, 2–6 May 1999; pp. 399–416. [Google Scholar]

	

Canetti, R.; Goldreich, O.; Halevi, S. The random oracle methodology, revisited. J. ACM 2004, 51, 557–594. [Google Scholar] [CrossRef]

	

Liu, J.K.; Au, M.H.; Susilo, W. Self-generated-certificate public key cryptography and certificateless signature/encryption scheme in the standard model. In Proceedings of the 2nd ACM Symposium on Information, Computer and Communications Security, Singapore, 20–22 March 2007; pp. 273–283. [Google Scholar]

	

Xiong, H.; Qin, Z.; Li, F. An improved certificateless signature scheme secure in the standard model. Fundam. Inf. 2008, 88, 193–206. [Google Scholar]

	

Yuan, Y.; Li, D.; Tian, L.; Zhu, H. Certificateless signature scheme without random oracles. In Proceedings of the Information Security and Assurance, Seoul, Korea, 18–20 August 2009; pp. 31–40. [Google Scholar]

	

Yu, Y.; Mu, Y.; Wang, G.; Xia, Q.; Yang, B. Improved certificateless signature scheme provably secure in the standard model. IET Inf. Secur. 2012, 6, 102–110. [Google Scholar] [CrossRef]

	

Hung, Y.H.; Huang, S.S.; Tseng, Y.M.; Tsai, T.T. Certificateless signature with strong unforgeability in the standard model. Informatica 2016, 26, 663–684. [Google Scholar] [CrossRef]

	

Yuan, Y.; Wang, C. Certificateless signature scheme with security enhanced in the standard model. Inf. Process. Lett. 2014, 114, 492–499. [Google Scholar] [CrossRef]

	

Tsai, T.T.; Huang, S.S.; Tseng, Y.M. Secure certificateless signature with revocation in the standard model. Math. Probl. Eng. 2014, 2014, 1–16. [Google Scholar] [CrossRef]

	

Canard, S.; Trinh, V.C. An Efficient certificateless signature scheme in the standard model. In Proceedings of the Information Systems Security, Rome, Italy, 8–9 December 2016; pp. 175–192. [Google Scholar]

	

Waters, B. Efficient identity-based encryption without random oracles. In Proceedings of the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, 22–26 May 2005; pp. 114–127. [Google Scholar]

	

Pang, L.; Zhao, H.; Zhou, X.; Li, H. Strongly unforgeable and efficient proxy signature scheme with fast revocation secure in the standard model. Int. J. Distrib. Sens. Netw. 2016, 12, 1–12. [Google Scholar] [CrossRef]

	

Tsai, T.T.; Tseng, Y.M.; Huang, S.S. Efficient strongly unforgeable ID-based signature without random oracles. Informatica 2014, 25, 505–521. [Google Scholar] [CrossRef]

	

Kwon, S. An identity-based strongly unforgeable signature without random oracles from bilinear pairings. Inf. Sci. 2014, 276, 1–9. [Google Scholar] [CrossRef]

	

Yang, W.; Weng, J.; Luo, W.; Yang, A. Strongly Unforgeable Certificateless Signature Resisting Attacks from Malicious-But-Passive KGC. Secur. Commun. Netw. 2017, 5704865, 1–8. [Google Scholar] [CrossRef]

	

Huang, Y.; Zhang, X.; Yu, B. Efficient anti-replay identity-based signature scheme for wireless body area network. J. Cryptol. Res. 2017, 4, 447–457. [Google Scholar]

	

Pei, H.L.; Shang, T.; Liu, J.W. Secure network coding method merged with timestamp and homomorphic signature. J. China Inst. Commun. 2013, 34, 28–35. [Google Scholar]

	

Huang, X.; Susilo, W.; Mu, Y.; Zhang, F. On the security of certificateless signature schemes from Asiacrypt 2003. In Proceedings of the Cryptology and Network Security, Xiamen, China, 14–16 December 2005; pp. 13–25. [Google Scholar]

	

Paterson, K.G.; Schuldt, J.C. Efficient identity-based signatures secure in the standard model. In Proceedings of the Australasian Conference on Information Security and Privacy, Melbourne, Australia, 3–5 July 2006; pp. 207–222. [Google Scholar]

	

Huang, X.; Mu, Y.; Susilo, W.; Wong, D.S.; Wu, W. Certificateless signature revisited. In Proceedings of the Australasian Conference on Information Security and Privacy, Townsville, Australia, 2–4 July 2007; pp. 308–322. [Google Scholar]

	

Shim, K.A.; Lee, Y.R. Security pitfalls of the certificateless signature and multi-receiver signcryption schemes. Fund. Inf. 2011, 112, 365–376. [Google Scholar]

	

Xia, Q.; Xu, C.X.; Yu, Y. Key replacement attack on two certificateless signature schemes without random oracles. Key Eng. Mater. 2010, 439, 1606–1611. [Google Scholar] [CrossRef]

	

Boneh, D.; Boyen, X. Short signatures without random oracles. In Proceedings of the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, 13–17 April 2008; pp. 56–73. [Google Scholar]

	

Pointcheval, D.; Sanders, O. Short randomizable signatures. In Proceedings of the Cryptographers’ Track at the RSA Conference, San Francisco, CA, USA, 29 February–4 March 2016; pp. 111–126. [Google Scholar]

	

Jia, X.; He, D.; Liu, Q.; Choo, K.K.R. An efficient provably-secure certificateless signature scheme for Internet-of-Things deployment. Ad Hoc Netw. 2018, 71, 78–87. [Google Scholar] [CrossRef]

	

Li, X.; Wang, H.; Yu, Y.; Qian, C. An IoT data communication framework for authenticity and integrity. In Proceedings of the IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation, Pittsburgh, PA, USA, 18–21 April 2017; pp. 159–170. [Google Scholar]

	

Frädrich, C.; Pöhls, H.C.; Popp, W.; Rakotondravony, N.; Samelin, K. Integrity and authenticity protection with selective disclosure control in the cloud and IoT. In Proceedings of the International Conference on Information and Communications Security, Singapore, 29 November–2 December 2016; pp. 197–213. [Google Scholar]

	

Steinfeld, R.; Bull, L.; Zheng, Y. Content extraction signatures. In Proceedings of the International Conference on Information Security and Cryptology, Seoul, Korea, 6–7 December 2001; pp. 285–304. [Google Scholar]

	

Challa, S.; Wazid, M.; Das, A.K.; Kumar, N.; Reddy, A.G.; Yoon, E.J.; Yoo, K.Y. Secure signature-based authenticated key establishment scheme for future IoT applications. IEEE Access 2017, 5, 3028–3043. [Google Scholar] [CrossRef]

	

Nyberg, K. Fast accumulated hashing. In Proceedings of the International Workshop on Fast Software Encryption, Cambridge, UK, 21–23 February 1996; pp. 83–87. [Google Scholar]

	

Yao, X.; Han, X.; Du, X.; Zhou, X. A lightweight multicast authentication mechanism for small scale IoT applications. IEEE Sens. J. 2013, 13, 3693–3701. [Google Scholar] [CrossRef]

	

Yang, X.; Chen, C.; Ma, T.; Li, Y.; Wang, C. An improved certificateless aggregate signature scheme for vehicular ad-hoc networks. In Proceedings of the IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 12–14 October 2018; pp. 2334–2338. [Google Scholar]

	

Yang, X.D.; Xiao, L.K.; Chen, C.L.; Wang, C.F. A strong designated verifier proxy re-signature scheme for IoT environments. Symmetry 2018, 10, 580. [Google Scholar] [CrossRef]

	

Au, M.H.; Mu, Y.; Chen, J.; Wong, D.S.; Liu, J.K.; Yang, G. Malicious KGC attacks in certificateless cryptography. In Proceedings of the 2nd ACM symposium on Information, Computer and Communications Security, Singapore, 20–22 March 2007; pp. 302–311. [Google Scholar]

	

Lynn, B. The Pairing-Based Cryptography Library. Available online: http://crypto.stanford.edu/pbc (accessed on 14 June 2019).

[image: Sensors 19 02692 g001 550]

Figure 1. Internet of Things (IoT) applications.

Figure 1. Internet of Things (IoT) applications.

[image: Sensors 19 02692 g001]

[image: Sensors 19 02692 g002 550]

Figure 2. System model of the proposed certificateless signature (CLS) scheme for IoT.

Figure 2. System model of the proposed certificateless signature (CLS) scheme for IoT.

[image: Sensors 19 02692 g002]

[image: Sensors 19 02692 g003 550]

Figure 3. A comparison of the private key size.

Figure 3. A comparison of the private key size.

[image: Sensors 19 02692 g003]

[image: Sensors 19 02692 g004 550]

Figure 4. A comparison of the communication cost.

Figure 4. A comparison of the communication cost.

[image: Sensors 19 02692 g004]

[image: Sensors 19 02692 g005 550]

Figure 5. A comparison of the signature generation cost.

Figure 5. A comparison of the signature generation cost.

[image: Sensors 19 02692 g005]

[image: Sensors 19 02692 g006 550]

Figure 6. A comparison of the signature verification cost.

Figure 6. A comparison of the signature verification cost.

[image: Sensors 19 02692 g006]

[image: Sensors 19 02692 g007 550]

Figure 7. A comparison of the signature generation cost between CLS-based and SDVPRS-based authentication schemes.

Figure 7. A comparison of the signature generation cost between CLS-based and SDVPRS-based authentication schemes.

[image: Sensors 19 02692 g007]

[image: Sensors 19 02692 g008 550]

Figure 8. A comparison of the signature verification cost between CLS-based and SDVPRS-based authentication schemes.

Figure 8. A comparison of the signature verification cost between CLS-based and SDVPRS-based authentication schemes.

[image: Sensors 19 02692 g008]

[image: Table]

Table 1. A comparison of the CLS scheme performance.

Table 1. A comparison of the CLS scheme performance.

	Scheme
	KeySize
	SigSize
	Sign
	Verify

	Yu et al. [21]
	|p|+2|G1|
	4|G1|
	7E
	E+5P

	Yuan et al. [23]
	|p|+2|G1|
	3|G1|
	3E
	E+6P

	Pang et al. [27]
	|p|+2|G1|
	3|G1|
	7E
	4E+5P

	Huang et al. [22]
	3|G1|
	3|G1|
	5E
	3E+6P

	Yang et al. [30]
	(4+nu)|p|+2|G1|
	|p|+4|G1|
	10E
	3E+7P

	Our scheme
	2|G1|
	3|G1|
	3E
	E+3P

[image: Table]

Table 2. A comparison of the security attributes.

Table 2. A comparison of the security attributes.

	Scheme
	Type I
	Type II
	SUF
	Replay Attacks

	Yu et al. [21]
	No
	No
	No
	No

	Yuan et al. [23]
	Yes
	Yes
	No
	No

	Pang et al. [27]
	Yes
	Yes
	No
	No

	Huang et al. [22]
	Yes
	No
	No
	No

	Yang et al. [30]
	Yes
	Yes
	Yes
	No

	Our scheme
	Yes
	Yes
	Yes
	Yes

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file13.jpg

media/file4.png

nav.xhtml

 sensors-19-02692

 		
 sensors-19-02692

media/file16.png

media/file2.png

media/file5.jpg

media/file3.jpg

media/file1.jpg

media/file7.jpg

media/file10.png

media/file12.png

media/file9.jpg

media/file0.png

media/file14.png

media/file8.png

media/file11.jpg

media/file6.png

media/file15.jpg

