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Abstract: The problem of fault propagation which exists in the deeply integrated GNSS
(Global Navigation Satellite System)/INS (Inertial Navigation System) system makes it difficult
to identify faults. Once a fault occurs, system performance will be degraded due to the inability
to identify and isolate the fault accurately. After analyzing the causes of fault propagation and the
difficulty of fault identification, maintaining correct navigation solution is found to be the key to
prevent fault propagation from occurring. In order to solve the problem, a novel robust algorithm
based on convolutional neural network (CNN) is proposed. The optimal expansion factor of the robust
algorithm is obtained adaptively by utilizing CNN, thus the adverse effect of fault on navigation
solution can be reduced as much as possible. At last, the fault identification ability is verified by two
types of experiments: artificial fault injection and outdoor occlusion. Experiment results show that
the proposed robust algorithm which can successfully suppress the fault propagation is an effective
solution. The accuracy of fault identification is increased by more than 20% compared with that
before improvement, and the robustness of deep GNSS/INS integration is also improved.

Keywords: deep GNSS/INS integration; fault identification; convolutional neural network; vector
tracking loop

1. Introduction

Modern navigation systems are developing in the direction of multi-sensor and deep information
fusion. GNSS (Global Navigation Satellite System) has all-weather absolute positioning capability,
but it is vulnerable to interference. On the contrary, INS (Inertial Navigation System), which has
excellent anti-interference ability, can only provide relative position information. Thus, they have
strong complementarity in performance. Deeply integrated GNSS/INS systems take into account the
advantages of both GNSS and INS, and implement the deepest information fusion between GNSS and
INS at present. Compared with loose integration and tight integration, deep GNSS/INS integration
not only has better ability of anti-noise and anti-interference [1,2], but also can track weaker satellite
signals [3] and acquire the temporarily occluded signals more quickly [4]. All of these advantages are
attributed to the use of vector tracking loop [5]. The distinctive feature of vector tracking loop is that,
after fusing GNSS and INS data, the navigation filter generates the locally predicted carrier frequency
and code phase for each receiving channel to implement signal tracking. This kind of structure realizes
the information exchange among the receiving channels, which is helpful for strong signals to assist
the reception of weak signals. However, there is a serious problem that, when a receiving channel
contains fault information, the information will spread to the remaining channels, thereby degrading
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the system performance. Therefore, timely detection and identification of faults are important for deep
integration based on vector tracking loop.

Based on the approximate system model, a chi-square test is able to detect faults in real time by
monitoring the difference between the measurements and the estimates of Kalman filter [6]. In order to
weaken the influence of the inaccurate system model on the results of chi-square detection, Bando et al.
propose a method of calculating the covariance of system model error in a stable period [7]. Rife et al.
derive methods to generate rigorous integrity and continuity bounds for chi-square test when the signal
is time-varying [8]. An integrated detection algorithm of combining particle filter and fuzzy inference
system is presented by Bu et al. [9]. The residuals which are generated by particle filter are used as the
inputs of fuzzy inference system to output the different anomaly levels. However, its performance is
limited due to the high computational load of particle filter. Wavelet transformation which can extract
characteristic values from fault data is a powerful mathematical tool for fault diagnostics owing to
its multi-resolution capability [10]. Sun et al. study the method of detecting faults by employing the
adaptive neural fuzzy inference algorithm [11], which allows real-time model-free residual analysis from
Kalman filter estimates, and obtains better detection results than chi-square detection. The machine
learning method SVM (Support Vector Machine) that has the ability to predict test statistics based
on prior knowledge is applied in fault detection [12]. SVM cannot provide the accuracy of predicted
value. However, another machine learning method named GPR (Gaussian Process Regression) is able
to provide both the prediction of unknown input and the variance of prediction. The detection method
of using GPR to predict the innovation of Kalman filter is shown to be especially effective in detecting
gradual faults [13].

The above-mentioned methods can detect whether the GNSS receiver has faults or not, but they
cannot identify the internal faults of GNSS. The whole GNSS is simply isolated from the integrated
navigation system when an abnormality is detected in GNSS. In fact, the GNSS receiver contains
multiple receiving channels to process satellite signals. In abnormal situations, the integrity of the
integrated navigation system is maintained by just removing the fault channels from GNSS receiver,
so that the system can keep working normally.

The w-test method is often used to identify faults by checking whether the corresponding statistic
follows the standard normal distribution or not [14]. RAIM (Receiver Autonomous Integrity Monitoring)
which also makes the same binary hypothesis judgment as a w-test is extended to detect simultaneous
multiple faults in GNSS/INS integrated systems [15]. The multiple solution separation (MSS) algorithm,
which consists of a main estimator using all the available GPS (Global Positioning System) measurements
and sub-estimators using different subsets of the GPS measurements, identifies faults by comparing
the main solution with the different sub-solutions [16]. For deep integration, few researchers focus on
the identification of GNSS fault channels. In [17], the pseudo-range and pseudo-range rate residuals
outputted by each receiving channel are adopted as the monitoring objects to detect whether the
channel is abnormal. In [18], a sub-filter based on Kalman filtering algorithm is proposed to be added
to each receiving channel to identify faults.

The above methods may be effective when the receiving channels are independent of each other.
However, the situation is different in vector tracking loop. Due to the fault propagation problem,
all receiving channels will be abnormal, resulting in the inaccurate identification of fault source.
Thus, from the above analysis, it can be concluded that the inaccurate identification caused by fault
propagation is lack of research, and there is no effective solution so far.

After analyzing the fault propagation path in deep integration, we find that maintaining correct
navigation solution is the key to prevent fault propagation. The robust algorithm that can reduce
the adverse effect of fault information on navigation solution is utilized in this study. It is derived
by applying the maximum likelihood estimation to resist the outlier effect of measurement vector,
and its function is realized by adjusting the covariance matrix of measurement noise with expansion
factors [19]. The Huber weight function that is commonly used outputs the reciprocal of normalized
residual as an expansion factor when the residual value is larger than the preset threshold [20,21].
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However, its performance is restricted by fixed parameter value and limited parameter range. The IGGIII
(Institute of Geodesy and Geophysics III) scheme is another frequently used method to generate
expansion factors [22,23], but it has more parameters to configure, and has the same problem as
Huber. In [24], the fuzzy inference algorithm is proposed to determine the value of expansion factor.
By comparing the difference between the theoretical covariance and the actual covariance of residuals,
the expansion factor is adjusted adaptively. Although fuzzy inference rules can be acquired from prior
knowledge or experience, the exact membership function is difficult to be defined. Thus, the output of
the fuzzy inference algorithm is not guaranteed to be the optimal value.

The neural network is famous for its strong self-learning ability and complex system mapping
ability, and it has the potential to generate expansion factors. CNN (convolutional neural network) is
a kind of deep neural network, and has achieved great success in the field of image processing [25,26].
Moreover, because of the attractive qualities, it has been gradually applied in the field of speech
recognition [27], behavior recognition [28], and fault mode recognition [29,30]. Compared with the
traditional multilayer perceptual neural network (MLP), CNN can deal with more complex classification
problems for its deeper network structure. In the neural network, the number of neurons is greatly
reduced by the pooling operation, and the number of parameters which are needed to be trained is also
reduced by sharing weights. Thus, CNN has the better generalization ability and the lower network
complexity [31]. After sufficient training, CNN is able to output the desired value that meets the error
precision requirement, and adaptively adjust the output according to the changes in the environment.

In this paper, a novel robust algorithm based on CNN is proposed to solve the fault propagation
problem. By utilizing CNN, the optimal expansion factor of the robust algorithm is obtained adaptively
according to the changes of fault. In addition, the performance of the proposed robust algorithm that is
not restricted by parameter range is superior to the traditional robust algorithm. As a result, the adverse
effect of fault data on navigation solution is weakened, and the propagation of fault is prevented.
Eventually, the accuracy of fault identification is improved after solving the fault propagation problem.

The rest of this paper is organized as follows: Section 2 analyses the root cause of fault propagation
and the difficulty of fault identification. In Section 3, it introduces the method of using the robust
algorithm to prevent the propagation of fault information, and describes the robust algorithm based
on CNN. Experiment setup and result analysis are provided in Section 4. In addition, the content of
this paper is summarized in Section 5.

2. Fault Identification Method for Deep Integration

2.1. The Cause of Fault Propagation

In the deeply coupled GNSS/INS integrated system, the vector tracking loop is a feedback loop.
GNSS IF (Intermediate Frequency) data are processed by multiple receiving channels and then put
into the navigation filter. After fusing all the received data in a centralized manner, the navigation
filter outputs the positioning errors to correct INS. Next, the carrier frequency and code phase of
each receiving channel that are predicted by making use of both the INS data and ephemeris are
used to configure the corresponding NCO (Numerically Controlled Oscillator). The structure of deep
GNSS/INS integration is shown in Figure 1.
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Figure 1. The structure of deep GNSS (Global Navigation Satellite System)/INS (Inertial Navigation 
System) integration. 
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Figure 1. The structure of deep GNSS (Global Navigation Satellite System)/INS (Inertial Navigation
System) integration.

The navigation filter is based on the Extended Kalman Filtering algorithm, and the system state is
defined as

∆X =
[
∆Re, ∆Ve, ∆ϕe, ∆Wb, ∆Ab, ∆C

]T
, (1)

where ∆R represents position error vector, ∆V represents velocity error vector, ∆ϕ represents attitude
error vector, ∆W represents the bias error of gyroscope, and ∆A represents the bias error of accelerometer.
∆C = [∆tb, ∆td], ∆tb and ∆td represent the clock bias error and clock drift error of GNSS receiver,
respectively. The superscripts e and b represent the ECEF (Earth-Centered Earth-Fixed) coordinate
system and the body coordinate system, respectively.

Pseudo-range error and pseudo-range rate error are adopted as the measurements of navigation
filter, and then the measurement vector at time k is expressed as

ZNav
k =

[
∆ρ1, ∆

.
ρ1, ∆ρ2, ∆

.
ρ2, . . . . . . , ∆ρN, ∆

.
ρN

]T
, (2)

where ∆ρi and ∆
.
ρi represent pseudo-range error and pseudo-range rate error of the ith receiving

channel, respectively. N is the number of receiving channels.
∆ρi is obtained from code phase error ∆τi, and ∆

.
ρi is obtained from carrier frequency error ∆ fi.

Their expressions are shown in Equations (3) and (4), respectively:

∆ρi =
c

fi,code
∆τi, (3)

∆
.
ρi =

c
fi,carr

∆ fi, (4)

where fi,code denotes code frequency, fi,carr denotes carrier frequency, and c denotes the speed of light.
Extended Kalman Filter (EKF) adopts an iterative method to estimate the system state,

including two processes of prediction and correction.
Prediction:

∆Xk|k−1 = F∆Xk−1, (5)

Pk|k−1 = FPk−1F + Q, (6)

Correction:
Wk = Pk|k−1HT

k

(
HkPk|k−1HT

k + R
)−1

, (7)

∆Xk = ∆Xk|k−1 + Wk
(
ZNav

k −Hk∆Xk|k−1

)
, (8)
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Pk = (I−WkHk)Pk|k−1, (9)

where Pk is the covariance matrix of system state error, Wk is the gain matrix, Q is the covariance
matrix of process noise, and R is the covariance matrix of measurement noise. Hk is the measurement
matrix whose coefficients are unit vectors in the line-of-sight direction from the receiver antenna to
satellites. F is the state transition matrix, whose coefficients are available in [32].

After corrected by the system state of navigation filter, INS output the navigation solution.
Combining navigation solution and ephemeris data, carrier frequency, code frequency and code phase
of the ith satellite signal can be predicted. In [33], their expressions are defined as follows:

f̂i,carr = fIF −
fsa

c

[( .
xi −

.
x
)
αx,i +

( .
yi −

.
y
)
αy,i +

( .
zi −

.
z
)
αz,i − td

]
, (10)

f̂i,code = fcode −
fcode

c

[( .
xi −

.
x
)
αx,i +

( .
yi −

.
y
)
αy,i +

( .
zi −

.
z
)
αz,i − td

]
, (11)

ϕ̂i,k+1 = ϕ̂i,k −
1
c

[
(δxi − δx)αx,i + (δyi − δy)αy,i + (δzi − δz)αz,i − δtb

]
, (12)

where fIF is the intermediate frequency, fsa is the frequency of satellite signal, fcode is the frequency
of pseudo code,

[ .
xi,

.
yi,

.
zi
]

is the velocity vector of the ith satellite, and
[ .
x,

.
y,

.
z
]

is the velocity vector
of receiver. [δxi, δyi, δzi] and [δx, δy, δz] are the position variations of the ith satellite and the receiver
from time k to k + 1, respectively. ∆tb is the clock bias variation of receiver from time k to k + 1, and td
is the clock drift error of receiver.

[
αx,i,αy,i,αz,i

]
is the unit vector in the line-of-sight direction from

receiver antenna to the ith satellite.
When an abnormality occurs in ZNav

k , the value of ∆X is contaminated according to Equation (8).
After corrected by ∆X, INS output a wrong navigation solution. According to Equations (10)–(12),
the navigation solution is shared by all visible satellites. Then, the wrong navigation solution leads to
deviations in the predicted receiving parameters of all satellite signals. Thus, no matter which satellite
is abnormal, its errors will spread to other receiving channels, spoiling the reception of satellite signals.
Moreover, the errors will spread to each other continually. The navigation system eventually loses lock
on all satellite signals with the accumulation of errors.

2.2. Fault Identification Method

If only the pseudo-range errors in ZNav
k are considered, i.e., Zk = [∆ρ1, ∆ρ2, . . . . . . , ∆ρN]

T,
the expressions of innovation Vk and its covariance matrix Ak defined in [34] are

Vk = Zk −Hk∆Xk|k−1, (13)

Ak = E
[
VkVT

k

]
= HkPk|k−1HT

k + R, (14)

where the dimension of Hk needs to be modified to N × 17.
The innovation Vk is assumed to be Gaussian white noise with a zero mean in the fault free

case [35]. However, if a fault occurs, a large deviation will arise between the measurements and the
estimates of Zk. At this moment, the mean value of Vk is greater than zero, so it can be used as the rule
for fault detection.

According to the w-test method, the fault identification statistic is constructed as:

wi,k =

∣∣∣∣∣∣∣∣∣
−eT

i Vk√
eT

i Akei

∣∣∣∣∣∣∣∣∣, (15)

where ei = [0, . . . . . . , 0, 1, 0, . . . . . . , 0]T. It represents that the value of the ith component is 1, and the
rest are 0.
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When there is no fault, wi,k should follow the standard normal distribution, i.e., wi,k ∼ N(0, 1).
Given the false alarm probability Pfa, if

wi,k > N1−Pfa/2(0, 1), (16)

then the ith channel is considered to be faulty; otherwise, it is normal.
From the above analysis, the statistic wi,k is related to ∆ρi. If there is an abnormality in ∆ρi, wi,k

will exceed the alarm threshold. As described in Section 2.1, the fault information is propagated
mutually among the receiving channels in the vector tracking loop. Errors in one channel can spread to
all other channels, resulting in abnormal measurements in all channels. Thus, the actual fault channel
will not be distinguished for the reason that the identification statistics of all channels exceed the
alarm threshold.

3. Robust Algorithm Based on CNN

3.1. The Principle of Robust Algorithm

The problem of fault propagation not only makes all receiving channels work abnormally, but also
increases the difficulty of fault identification, making the deep GNSS/INS integration extremely
vulnerable to fault. In real life, many types of faults are likely to be encountered, such as jamming,
device aging, and occlusion. Therefore, it is necessary to solve the fault propagation problem to
improve fault diagnosis capability.

The basis of fault propagation is that the parameters of all receiving channels are predicted based
on the same navigation solution. Once the navigation solution is wrong, the reception of all channels
will be abnormal. Thus, the key of solving the problem is to maintain the correctness of navigation
solution. The robust algorithm, which can reduce the adverse effect of fault data on navigation solution
by adjusting the parameters of navigation filter, is a promising solution.

In EKF, ∆Xk|k−1 and ∆Xk are the prediction and estimation of ∆Xk−1, respectively.
Then, the prediction error of state vector is expressed as

Ek = ∆Xk − ∆Xk|k−1. (17)

The expression of residual Lk is

Lk = ZNav
k −Hk∆Xk. (18)

If the measurement ZNav
k contains gross errors, the minimum condition is constructed as

σ = LT
k R̃
−1

Lk + ET
k P−1

k|k−1Ek = min, (19)

where R̃ is the covariance matrix of Lk, and Pk|k−1 is the covariance matrix of Ek.
In [36], the solution of Equation (19) is

∆X̃k = ∆Xk|k−1 + Pk|k−1HT
k

(
HkPk|k−1HT

k + R̃
)−1(

ZNav
k −Hk∆Xk|k−1

)
. (20)

Comparing ∆X̃k with ∆Xk in Equation (8), the difference is that the matrix R is replaced by R̃.
It shows that, when there are gross errors in the measurement, the corresponding solution is obtained
by adjusting R. Matrix R, as the covariance matrix of measurement error, reflects the severity of errors.
If the measurements are unreliable, the proportion of measurements in the filtering should be reduced,
and the value of R should be enlarged. However, it should be emphasized that, in order to avoid
changing the results of fault identification, the matrix R in Equation (14) does not need to be adjusted.
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If the members of ZNav
k are independent of each other, R̃ can be regarded as a diagonal matrix, i.e.,

R̃ = diag
{
R̃1,

.̃
R1, R̃2,

.̃
R2, . . . . . . , R̃N,

.̃
RN

}
. As shown in Equation (21), R̃i is obtained by multiplying Ri

and the expansion factor αi together:
R̃i = αiRi, (21)

where αi ≥ 1.
.̃
Ri is calculated in the same way as R̃i.

Expansion factor is generated by CNN in this study, and the generation method will be described
in the following section.

3.2. The Structure of CNN

CNN which is inspired by the structure of nerve cells in the visual cortex extracts and classifies
image information through a multilayer structure. As shown in Figure 2, the structure composed of
seven layers is the basic form of CNN. In order to achieve better performance, CNN usually contains
more layers. A pair of convolutional layer and pooling layer is a group. According to the needs of
practical application, many groups could be added.Sensors 2019, 19, x 7 of 20 
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Figure 2. The typical structure of convolutional neural network (CNN).

In Figure 2, the input layer receives the sample data and preprocesses the data such as normalization.
Then, it packages the data according to the input format to prepare for the next operation. The output
layer provides the probabilities corresponding to different results. Convolutional layer, pooling layer
and fully-connected layer are the decisive parts of CNN. Their structures are much more complex than
that of the two above-mentioned layers, so they are described as follows one by one.

The convolutional layer extracts different levels of image features by convolutional operation.
The higher the level of convolutional layer is, the finer the image features are extracted. It is composed
of several feature planes, each of which shares a convolution kernel with one of the feature planes of
the upper layer. If the upper layer of the current convolutional layer contains multiple feature planes,
there will be multiple convolution kernels. The feature plane of convolutional layer is equal to the sum
of convolution between multiple feature planes and convolutional kernels. Convolutional kernel is
a weight matrix whose coefficients are adjusted during the training period of CNN. The input–output
relationship of convolutional layer is expressed as:

Y j = fcov

 M∑
i=1

cov
(
Xi, Wi, j

)
+ b j

, (22)
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where Y j represents the jth feature plane of convolutional layer. Xi represents the ith feature plane,
which belongs to the upper layer of the current convolutional layer. Wi, j represents the coefficients
of convolutional kernel between Xi and Y j. b j is the bias. M is the number of Xi. The function cov(·)
represents the convolutional operation, and fcov(·) represents the nonlinear activation function of
convolutional layer.

The function of pooling layer is to reduce the number of connections between two convolutional
layers. Through the subsampling operation, some redundant information in the image is removed,
and the main feature of image is obtained. The feature planes of pooling layer and convolutional layer
correspond one to one, and the number of planes is the same. Average pooling and max pooling are
the commonly used methods of subsampling. Average pooling takes the average of sampling area as
the output, while max pooling chooses the maximum of sampling area as the output. The output of
pooling layer is as follows:

S j = fpool

(
Y j

)
, (23)

where S j represents the output of the jth feature plane of pooling layer, and the function fpool(·)

represents the subsampling operation.
Fully-connected layer lies between pooling layer and output layer. It integrates the local features

which are extracted from pooling layer, and transfers the integrated results to the output layer.
The relationship between input and output in fully-connected layer is expressed by Equation (24):

l j = ffc

 L∑
i=1

vi, jci + ε j

, (24)

where l j represents the jth output of fully-connected layer. ci represents the ith neuron of fully-connected
layer. vi, j denotes the connection coefficient between ci and l j. ε j denotes the bias. ffc(·) represents the
nonlinear activation function of the fully-connected layer.

3.3. Configuration of CNN

In this study, the mean values and standard deviations of residuals are the inputs of CNN, and the
probabilities of the corresponding expansion factors are the outputs. The input data are normalized at
first, and then divided into data segments with size of 2 × 10. Each data segment that acts like a picture
is the processing object of CNN. Two rows of elements in the data segment correspond to the mean
values and standard deviations of residuals, respectively. The data length is set to 10 to allow for both
short data processing time and sufficient data quantity.

The residual of each receiving channel contains two components: pseudo-range residual and
pseudo-range rate residual, which correspond to different coefficients of R̃. Thus, two CNNs are
required for each receiving channel. One CNN is for pseudo-range residuals, and the other is for
pseudo-range rate residuals. CNN needs to be trained before being put into use. During the training
stage of CNN, the system structure is shown as follows:

In Figure 3, the pseudo-range residual of the ith receiving channel is shown as an example. Li and
δi denote the mean and standard deviation of residuals, respectively. Abnormal values are artificially
added in the pseudo-range error of the ith receiving channel, and then the value of Ri is adjusted
by different expansion factor. When the positioning error δp is minimized, the optimal expansion
factor α̂i is obtained. Next, CNN starts to be trained. α̂i is compared with the expansion factor αi,
which is predicted by CNN. The smaller the difference between the two factors, the more accurate the
prediction of CNN is. The training goal of CNN is to minimize the difference. Actually, the outputs of
CNN are expressed in probability. Different expansion factors correspond to different probabilistic
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values. At last, the alternative value corresponding to the maximum probability is determined as the
expansion factor of CNN. The loss function is constructed as:

e(W, b) =
1

Ne

Ne∑
j=1

(
o j − ô j

)2
, (25)

where o j represents the jth output of CNN, and ô j represents the expected output. Both o j and ô j are
probabilistic values ranging from 0 to 1. Ne represents the number of CNN output. The expected
probability corresponding to α̂i should be equal to 1, and the others should be equal to 0.
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In the training process, back-propagation is applied to update the trainable parameters in the
neural network by minimizing the loss function [37]. The parameters include the weights of convolution
kernel and the connection coefficients of fully connected layer. Back-propagation is implemented
based on the stochastic gradient algorithm, so the method of updating the parameters is as follows:

Wk+1 = Wk − η
∂e(Wk, bk)

∂Wk
, (26)

bk+1 = bk − η
∂e(Wk, bk)

∂bk
, (27)

where η denotes the learning rate. W0 and b0 are initialed with small random values.
In order to prevent over-fitting in the training process, some measures are taken to increase

the sparsity and randomness of neural network. Firstly, the input and output data of CNN are
normalized. In addition, a weight decay is adopted to limit the growth of the weights and suppress
the effects of static noise [38]. It adds a term in the updating procedure of weights, as shown in
Equations (28) and (29):

Wk+1 = Wk − η(
∂e(Wk, bk)

∂Wk
+ βWk), (28)

bk+1 = bk − η(
∂e(Wk, bk)

∂bk
+ βbk). (29)

In addition, dropout is applied in full-connected layer. It drops neurons and their connections from
the neural network randomly. For the input data, the network is different owing to the randomness
of dropout. This prevents neurons from co-adapting too much and obtains a better generalization
ability [39].

In order to output the corresponding expansion factor adaptively according to the fault value,
CNN must be trained by a large number of fault data. The training data of CNN are composed of the
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mean values and standard deviations of residuals. The range of residual value is related to the severity
of fault, and the standard deviation of residual is related to the carrier to noise density ratio (C/No) of
signal. When fault values vary from 0 to 100 m, the range of pseudo-range residuals is the same as that
of fault values. Assuming that the C/No varies from 30 to 50 dB-Hz, the standard deviation ranges
from 0 to 12. The range of pseudo-range residuals is divided into ten regions, and 10,000 random
numbers are generated in each region denoted by pi (where i ranges from 0 to 9). Meanwhile, the range
of standard deviation is divided into four regions, and 10,000 random numbers are also generated in
each region denoted by q j (where j ranges from 0 to 3). By combining pi and q j, forty sets of data which
correspond to forty different combinations are obtained. Each dataset includes 1000 arrays of two rows
and ten columns. Before being used, these forty datasets are normalized. In addition, they are labeled
by forty tags, which are used as the expected output of CNN.

In practical application, due to the interference of noise and abnormalities, there will be gross
errors in residuals. When processing such data, CNN outputs the probabilities that the data belong to
each combination, and finally chooses the combination corresponding to the maximum probability as
the result of data recognition. It indicates that this recognition method which can filter out gross errors
is robust.

CNN is designed to have seven layers, including two convolutional layers and two pooling layers.
Average pooling is applied in two pooling layers. Sigmoid function is used as the activation function
for both convolutional layer and full-connected layer. Since the size of CNN input data is 2 × 10,
the size of convolutional kernel and the subsampling size of pooling layer are specially designed to be
compatible with this type of data. The detailed configuration information of CNN structure is shown
in Table 1. In addition, 3@2 × 5 denotes that the convolutional layer C1 contains three convolutional
kernels with size of 2 × 5, while 3@2 × 6 denotes three feature planes with size of 2 × 6, which are
results of convolution between input layer and convolutional kernels. In the pooling layers P1 and
P2, only the column elements are sampled with the step length of 2. NA is the abbreviation for “not
applicable”. The batch size is 50, and the number of epochs is 100.

Table 1. The configuration information of convolutional neural network (CNN).

Layer Name Kernel/Subsampling Size Output Size

Input layer NA 2 × 10
Convolutional layer C1 3@2 × 5 3@2 × 6

Pooling layer P1 1 × 2 3@2 × 3
Convolutional layer C2 6@2 × 2 6@2 × 2

Pooling layer P2 1 × 2 6@2 × 1
Full-connected layer NA 12 × 1

Output layer NA 40 × 1

After completing the training, CNN needs to be tested to check whether its output is correct. If the
error ratio is less than the required error accuracy 0.05, it indicates that the training requirement is met;
otherwise, further training is needed. Once the training goal is reached, the structure and coefficients
of CNN are fixed, and then it can be put into use. The structure of deep integration assisted by CNN is
shown in Figure 4.
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Figure 5 shows the complete flowchart of the proposed method. It mainly consists of two parts:
one part is the training process of CNN, and the other is the method of fault identification using the
robust algorithm based on CNN.
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4. Experiment Setup and Result Analysis

4.1. Experiment Setup

GNSS IF data and MEMS (Micro-Electro-Mechanical System) data are simultaneously input into the
Matlab based software receiver to complete GNSS signal tracking and the navigation solution calculation.
Taking into account both the number of satellites and computational complexity, the software receiver
is designed to have eight receiving channels. Figure 6 shows the composition of experimental system.
The parameters of MEMS are shown in Table 2. GPS L1 signals are sampled as GNSS data with the
IF signal sampler SPL-SIS800, of which the IF is 4.02 MHz and the sampling frequency is 20 MHz.
The integration time of correlator is set to 10 ms, and the output rate of navigation solution result
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is 10 Hz. To identify faults, the false alarm probability is set to 0.02, and the corresponding alarm
threshold is 2.58.

Sensors 2019, 19, x 11 of 20 

 

Figure 5 shows the complete flowchart of the proposed method. It mainly consists of two parts: 
one part is the training process of CNN, and the other is the method of fault identification using the 
robust algorithm based on CNN. 

4. Experiment Setup and Result Analysis 

4.1. Experiment Setup 

GNSS IF data and MEMS (Micro-Electro-Mechanical System) data are simultaneously input into 
the Matlab based software receiver to complete GNSS signal tracking and the navigation solution 
calculation. Taking into account both the number of satellites and computational complexity, the 
software receiver is designed to have eight receiving channels. Figure 6 shows the composition of 
experimental system. The parameters of MEMS are shown in Table 2. GPS L1 signals are sampled as 
GNSS data with the IF signal sampler SPL-SIS800, of which the IF is 4.02 MHz and the sampling 
frequency is 20 MHz. The integration time of correlator is set to 10 ms, and the output rate of 
navigation solution result is 10 Hz. To identify faults, the false alarm probability is set to 0.02, and 
the corresponding alarm threshold is 2.58. 

 
Figure 6. Experimental equipment. 

Table 2. Parameters of Micro-Electro-Mechanical System (MEMS). 

Parameter Name Accelerometer Gyro 
bias error (in-run) ±40 μgal 100 °/h 
bias error (initial) ±2 mgal ±0.25 °/s 

scale factor stability ±0.05% ±0.05% 
output frequency 100 Hz 100 Hz 

sampling rate 30 kHz 30 kHz 

In practical application, there are many reasons for the fault of GNSS and INS. Some types of 
fault data are easy to be obtained, such as occlusion leading to temporary loss of GNSS signals, etc. 
However, it is difficult for most fault types. Thus, the commonly used method is to artificially inject 
abnormal values into the collected data to simulate faults. In this study, the experiment includes two 
parts: one is simulation test, and the other is experimental test. The simulation test is to simulate 
different fault modes by injecting various types of abnormal values, and obtain the accuracy of fault 
identification by constructing a large number of fault data, while the experimental test adopts the 
real fault data which are collected from outdoors during multiple satellites are occluded. 

Figure 6. Experimental equipment.

Table 2. Parameters of Micro-Electro-Mechanical System (MEMS).

Parameter Name Accelerometer Gyro

bias error (in-run) ±40 µgal 100 ◦/h
bias error (initial) ±2 mgal ±0.25 ◦/s

scale factor stability ±0.05% ±0.05%
output frequency 100 Hz 100 Hz

sampling rate 30 kHz 30 kHz

In practical application, there are many reasons for the fault of GNSS and INS. Some types of
fault data are easy to be obtained, such as occlusion leading to temporary loss of GNSS signals, etc.
However, it is difficult for most fault types. Thus, the commonly used method is to artificially inject
abnormal values into the collected data to simulate faults. In this study, the experiment includes two
parts: one is simulation test, and the other is experimental test. The simulation test is to simulate
different fault modes by injecting various types of abnormal values, and obtain the accuracy of fault
identification by constructing a large number of fault data, while the experimental test adopts the real
fault data which are collected from outdoors during multiple satellites are occluded.

4.2. Result Analysis

4.2.1. Simulation Test

Considering that the possibility of simultaneous multiple satellite faults in real life is very small,
so only one satellite is injected with fault in the simulation test, and the fault will persist until the
end of simulation. The injected faults are classified into two types: one is the gradual fault with the
abnormal values increasing gradually, and the other is the abrupt fault with a step error appearing at
a certain time. The measurements are the only input of navigation filter, thus the appropriate object
of fault injection is pseudo-range error, which is a component of the measurements. GPS data are
collected outdoors in a static situation.

A ramp error of slope 0.2 m/s is added in the pseudo-range error of satellite 14 to simulate the
gradual fault. The start time of fault injection is 150 s.
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In Figure 7a, position errors in a three-dimensional direction are within the normal range before
fault injection. However, after 150 s, position errors gradually deviate, and the deviations from the
correct position are getting larger and larger. However, in Figure 7b, even after a long time, there are
not obvious deviations in the position errors after fault injection. The results show that, under the
adjustment of the expansion factor, the adverse effect of fault information on the positioning results is
basically eliminated.
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(a) (b) 

 
 

 
Figure 7. Position errors in 3D direction corresponding to gradual fault: (a) before using a robust
algorithm; (b) after using a robust algorithm.

The variances of position error δp
(
δp =

√
δx2 + δy2 + δz2

)
corresponding to different methods

are shown in Table 3. The function Huber only has a configurable parameter d, which is a constant
ranging from 1.0 to 1.5. For the robust algorithm based on Huber, different variances are obtained
by changing the value of parameter d, indicating that the parameter value should be set carefully.
Moreover, the parameter value is limited to a small range, which also restricts the performance of Huber.
However, the robust algorithm based on CNN is more flexible without the limitation of parameter
range. In addition, the proposed robust algorithm is proved to be effective by the result that its
variance is close to that without fault. However, CNN has a complex structure and many convolutional
operations, so its computation is time-consuming. Both the robust algorithm based on CNN and
Huber are tested on a desktop computer equipped with the CPU Intel i5-2400. When processing the
same dataset with size of 2 × 40,000, CNN spends 36.21 s, but Huber spends 0.85 s. Moreover, due to
processing one data block at a time, CNN may be unable to respond to data changes in time. The larger
the data block, the more data processing time it takes. Thus, CNN is not suitable for the applications
with high real-time requirement.

Table 3. Variance of position error corresponding to gradual fault.

Method Variance (m)

No fault 1.802
CNN 2.070

Huber (d = 1) 2.517
Huber (d = 1.25) 2.358
Huber (d = 1.5) 2.832

Figure 8a shows the code phase errors of eight receiving channels. One satellite corresponds to one
receiving channel, and satellite 14 corresponds to channel 2. Starting from 150 s, different deviations
gradually occur in the code phase errors of all eight satellites. This phenomenon shows that the
fault information of channel 2 has spread to the other receiving channels. Considering the results
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in Figure 7a, it is the incorrect positioning results that lead to inaccurate code phases. In Figure 8b,
the code phase errors of eight satellites always stay normal even after fault injection. The propagation
of fault information is successfully suppressed by the robust algorithm. In addition, since the fault
injection object is a pseudo-range error rather than a code phase error, the code phase of satellite 14 is
not contaminated by fault. On the contrary, this code phase is accurate owing to the prediction based
on corrected navigation solution.
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Figure 8. Code phase errors of eight satellite signals corresponding to gradual fault: (a) before using
a robust algorithm; (b) after using a robust algorithm.

In Figure 9a, there are four satellites, whose detection results exceed the alarm threshold due to
the fault propagation problem. The results make it difficult not only to determine the number of fault
satellites, but also to distinguish the actual fault satellite. In Figure 9b, only the detection values of
satellite 14 gradually exceed the alarm threshold after 150 s. Thus, it is easy to confirm that satellite
14 is the only fault satellite. For further comparison, the Monte Carlo test is carried out. The accuracy
of fault identification is increased from 77% to 98% after improvement. It indicates that employing
a robust algorithm is beneficial to identify the gradual fault.
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 Figure 9. The graph of fault identification statistics corresponding to gradual fault: (a) before using

a robust algorithm; (b) after using a robust algorithm.

The second test is to inject the abrupt fault into the collected data. In order to facilitate the
comparison with a gradual fault, satellite 14 is still the object of fault injection. The injection method is
to add an outlier of 30 m in the pseudo-range error from 150 s.

In Figure 10a, the position errors in a three-dimensional direction quickly deviate after fault
injection. However, in Figure 10b, there is no great deviation except for a surge in the period of 151 s
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to 154 s. By comparing the two figures, it demonstrates that the proposed robust algorithm is also
effective in dealing with the abrupt fault. 

2 

 
Figure 10. Position error in 3D direction corresponding to abrupt fault: (a) before using a robust
algorithm; (b) after using a robust algorithm.

Even though the fault type changes, the robust algorithm based on CNN is still superior to
that based on Huber by comparing the variances shown in Table 4. The proposed algorithm that
doesn’t need any adjustment can output the desired factor adaptively according to the changes of fault,
while the performance of Huber is restricted by its parameter. However, since the adjustment of the
robust algorithm lags behind the rapid occurrence of abrupt fault, its variance is much larger than that
without fault.

Table 4. Variance of position error corresponding to abrupt fault.

Method Variance (m)

No fault 1.802
CNN 3.157

Huber (d = 1) 3.606
Huber (d = 1.35) 3.411
Huber (d = 1.5) 3.725

As shown in Figure 11a, different deviations occur instantly in the code phase errors of all eight
satellites after fault injection. The result proves once again that the fault propagation problem does exist
in deep integration. Compared with the gradual fault, the abrupt fault is exposed faster and spreads
faster to the other satellites. In Figure 11b, there is no deviation, proving that the fault propagation
problem is solved by using the proposed robust algorithm.
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Figure 11. Code phase errors of eight satellite signals corresponding to abrupt fault: (a) before using
a robust algorithm; (b) after using a robust algorithm.

In Figure 12a, not only do the detection values of four satellites quickly exceed the alarm threshold,
but also the time of exceeding the threshold is very close. These results make it difficult to identify
the actual fault satellite, thus increasing the probability of misjudgment. On the contrary, it is easy to
identify the satellite 14 as the fault satellite for the reason that only the detection values of satellite
14 exceed the alarm threshold in Figure 12b. Furthermore, 100 sets of simulation data are used for
Monte Carlo test. The test result is that the accuracy of fault identification is up to 97%, which is
increased by 25% after using a robust algorithm.
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 Figure 12. The graph of fault identification statistics corresponding to abrupt fault: (a) before using

a robust algorithm, (b) after using a robust algorithm.

4.2.2. Experimental Test

In cities, GNSS signal occlusion is a common phenomenon due to the blocked factors such as
high buildings, tree shades, and tunnels. Occlusion can lead to signal loss, and then the output of the
corresponding receiving channel is noise. If the fault channel cannot be identified and isolated from
the system in time and accurately, the fault information will inevitably contaminate the navigation
solution. The experimental system shown in Figure 6 is placed in the occluded situation to verify the
robustness of deep integration. The test procedure is to place the trolley in an open area to complete
the processes of searching for stars, positioning and INS alignment. After the system output is stable,
the trolley is pushed along a high building. Then, it is pushed back to the starting point. The test lasts
about 10 minutes for three round trips.
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The data collected at one of the trips is utilized for analysis. Figure 13 shows the changing process
of C/No of GNSS signals. As shown in the figure, the C/No of all GNSS signals was normal from the
beginning to 50 s. Then, during the period of 51 s to 68 s, the signals of satellite 22, 24 and 31 were lost
successively due to the occlusion of high building, and the corresponding C/No decreased rapidly.
After passing the high building, the signals of the three satellites recovered one by one. Next, in the
process of returning along the original route, the occlusion was experienced again. From 189 s to 208 s,
the C/No showed a rapid decline, and the signals of satellite 22, satellite 24 and satellite 31 were lost for
the second time.

 

2 

 
 

 
 
 
 
 

Figure 13. C/No of GNSS signals.

In Figure 14a, the positioning results deviate greatly in the period of 51 s to 68 s and 189 s to 208 s.
These two periods correspond to the time of two satellite signals loss. When three satellite signals
are occluded, the system makes use of the receiving data of the remaining five satellites to maintain
the output of positioning results and predict the code phase and carrier frequency of each satellite
signal. Once the occluded GNSS signals recover, the system quickly captures these signals based on
the predicted loop parameters, then the positioning results return to normal rapidly. After using the
proposed robust algorithm, the positioning results are shown in Figure 14b. Although the position
errors fluctuate slightly during the period of signal occlusion, the maximum deviation does not exceed
10 m, which is much smaller than the deviations in Figure 14a.
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Figure 14. Position errors in 3D direction during occlusion: (a) before using a robust algorithm; (b) after
using a robust algorithm.

Compared with Figure 15a, it can be found that only the three occluded satellites have deviations
in Figure 15b, proving that the propagation of fault information is suppressed by the proposed robust
algorithm. For the three occluded satellites, the deviations of code phase errors are due to the absence
of normal input.

Because of the fault propagation problem, it is difficult to identify the occlude satellites from
detection results in Figure 16a. However, in Figure 16b, only the detection values of the three occluded
satellites exceed the alarm threshold during occlusion. Moreover, once the occluded signals return to
normal, the corresponding detection values decrease rapidly, showing that the detection is accurate
and timely.

In addition, it should be noted that the robust algorithm only has the ability to weaken the impact
of fault information, but cannot completely eliminate the impact. If there are more fault channels,
the adverse impact on navigation solution will be more serious. As shown in Figure 14b, even if
the robust algorithm is utilized, a small surge still appears in the positioning results during signal
occlusion. Considering the improvement that the fault channel can be identified with a high accuracy
when using the proposed robust algorithm, it is preferable to remove the abnormal channel from
the system according to the identification results. After the receiving channels corresponding to the
occluded satellites are isolated from the system, the positioning results are shown in Figure 17. We can
see that the position errors always remain within the normal range. The variance of position error δp
is 2.25, while the variance of position error in Figure 14b is 3.95. The positioning accuracy is further
improved after isolation.
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Figure 15. Code phase errors of eight satellite signals during occlusion: (a) before using a robust
algorithm; (b) after using a robust algorithm.
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Figure 16. The graph of fault identification statistics during occlusion: (a) before using a robust
algorithm; (b) after using a robust algorithm. 
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Figure 17. Position errors in 3D direction after isolating the fault channels.

5. Conclusions

In this paper, a novel robust algorithm which is based on CNN is proposed to be used in the
deeply coupled GNSS/INS integrated system. It improves the accuracy of identifying the fault channel
by solving the fault propagation problem. The validity of the proposed robust algorithm is verified
by two types of experiments: artificial fault injection and outdoor occlusion. Whether it is the fault
injection of a single satellite or the occlusion of multiple satellites, the fault propagation problem is
confirmed to exist in the vector tracking loop. After using the proposed robust algorithm, the fault
propagation problem is solved. As a result, there is no obvious deviation in the positioning results
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and code phase errors. The accuracy of gradual fault identification is increased by 21%, and the
accuracy of abrupt fault identification is increased by 25%. The experiment results prove that the fault
identification ability of deeply integrated GNSS/INS system is improved.
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