Interfacial Debonding Detection for Rectangular CFST Using the MASW Method and Its Physical Mechanism Analysis at the Meso-Level
Abstract
:1. Introduction
1.1. Necessity of Interface Debonding Detection for CFSTs
1.2. Various NDT Detection Techniques for Interfacial Debonding Defects
1.3. Guided Wave-Based NDT Testing and Its Application in Debonding Detection
1.4. MASW-Based Structural Health Monitoring for Composite Structures
2. MASW Method and F-K Transformation
3. Mesoscale Modeling and Wave Propagation Analysis
3.1. Mesoscale Modeling of Concrete Based on RAM
3.2. Boundary Condition
3.3. Time-History Analysis of Stress Wave Propagation in Homogeneous and Mesoscopic Models with and without Debonding Defects
4. Dispersion Analysis Based on the MASW Method
4.1. Theoretical Dispersion Curves of Rayleigh and Lamb Waves
4.2. Time-History Comparison of MASW Measurement
4.3. The Dispersion Analysis with F-K Transformation
5. Concluding Remarks
- (1)
- Due to the existence of debonding defect, the surface waves will turn into two waveforms: Lamb wave propagating in the steel plate and the diffraction wave spreading in concrete core, resulting in different distribution patterns of wave energy. The mesoscale numerical analysis indicates that the debonding defect plays a leading role in the wave propagation process of the surface wave.
- (2)
- The specific location and dimension of the debonding defect can be identified by observing the varying tendency of the signal amplitude, wavelength, and the coaxiality characteristics of the time-history MASW measurement.
- (3)
- For a healthy specimen, the foundation mode (M0) of the dispersion curves calculated with the dispersion analysis is closer to that of the theoretical curve of the Rayleigh wave. Otherwise, it will turn to be like the theoretical solutions of the Lamb wave.
Author Contributions
Funding
Conflicts of Interest
References
- Shakir, A.S.; Guan, Z.W.; Jones, S.W. Lateral impact response of the concrete filled steel tube columns with and without CFRP strengthening. Eng. Struct. 2016, 116, 148–162. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.B.; Tao, Z.; Han, L.H.; Uy, B.; Lam, D.; Kang, W.H. Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Eng. Struct. 2017, 135, 209–221. [Google Scholar] [CrossRef]
- Du, G.; Andjelic, A.; Li, Z.; Lei, Z.; Bie, X. Residual axial bearing capacity of concrete-filled circular steel tubular columns (CFCSTCs) after transverse impact. Appl. Sci. 2018, 8, 793. [Google Scholar] [CrossRef]
- Liu, P.; Ho, G.; Lee, A.; Yin, C. Tianjin Goldin Finance 117 Tower: The solution to a slender geometry. In Proceedings of the Council on Tall Buildings and Urban Habitat (CTBUH) 9th World Congress, Shanghai, China, 19–21 September 2012; pp. 801–808. [Google Scholar]
- Huo, L.; Cheng, H.; Kong, Q.; Chen, X. Bond-Slip Monitoring of Concrete Structures Using Smart Sensors—A Review. Sensors 2019, 19, 1231. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Ren, C.; Deng, Q.; Jin, Q.; Chen, X. Real-time monitoring of bond slip between GFRP bar and concrete structure using piezoceramic transducer-enabled active sensing. Sensors 2018, 18, 2653. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Kong, Q.; Patil, D.; Luo, Z.; Huo, L.; Song, G. Detection of debonding between fiber reinforced polymer bar and concrete structure using piezoceramic transducers and wavelet packet analysis. IEEE Sens. J. 2017, 17, 1992–1998. [Google Scholar] [CrossRef]
- Li, W.; Fan, S.; Ho, S.C.M.; Wu, J.; Song, G. Interfacial debonding detection in fiber-reinforced polymer rebar–reinforced concrete using electro-mechanical impedance technique. Struct. Health Monit. 2018, 17, 461–471. [Google Scholar] [CrossRef]
- Liang, Y.; Li, D.; Parvasi, S.M.; Kong, Q.; Song, G. Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique. Smart Mater. Struct. 2016, 25, 095003. [Google Scholar] [CrossRef]
- Li, W.; Ho, S.C.M.; Patil, D.; Song, G. Acoustic emission monitoring and finite element analysis of debonding in fiber-reinforced polymer rebar reinforced concrete. Struct. Health Monit. 2017, 16, 674–681. [Google Scholar] [CrossRef]
- Di, B.; Wang, J.; Li, H.; Zheng, J.; Zheng, Y.; Song, G. Investigation of Bonding Behavior of FRP and Steel Bars in Self-Compacting Concrete Structures Using Acoustic Emission Method. Sensors 2019, 19, 159. [Google Scholar] [CrossRef]
- Hola, J.; Sadowski, L.; Schabowicz, K. Nondestructive identification of delaminations in concrete floor toppings with acoustic methods. Autom. Constr. 2011, 20, 799–807. [Google Scholar] [CrossRef]
- Clark, M.; McCann, D.; Forde, M. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. Ndt E Int. 2003, 36, 265–275. [Google Scholar] [CrossRef]
- Xue, J.Q.; Briseghella, B.; Chen, B.C. Effects of debonding on circular CFST stub columns. J. Constr. Steel Res. 2012, 69, 64–76. [Google Scholar] [CrossRef]
- Iyer, S.; Sinha, S.K.; Tittmann, B.R.; Pedrick, M.K. Ultrasonic signal processing methods for detection of defects in concrete pipes. Automat. Constr. 2012, 22, 135–148. [Google Scholar] [CrossRef]
- Feng, M.Q.; De Flaviis, F.; Kim, Y.J. Use of microwaves for damage detection of fiber reinforced polymer-wrapped concrete structures. J. Eng. Mech. 2002, 128, 172–183. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Zheng, Y. A Feasibility Study on timber damage detection using piezoceramic-transducer -enabled active sensing. Sensors 2018, 18, 1563. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Parvasi, S.; Kong, Q.; Huo, L.; Lim, I.; Li, M.; Song, G. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach. Smart Mater. Struct. 2015, 24, 1–10. [Google Scholar] [CrossRef]
- Gu, H.; Moslehy, Y.; Sanders, D.; Song, G.; Mo, Y. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations. Smart Mater. Struct. 2010, 19, 1–7. [Google Scholar] [CrossRef]
- Wang, D.; Song, H.; Zhu, H. Numerical and experimental studies on damage detection of a concrete beam based on PZT admittances and correlation coefficient. Constr. Build. Mater. 2013, 49, 564–574. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, H.; Wang, D. A study of concrete slab damage detection based on the electromechanical impedance method. Sensors 2014, 14, 19897–19909. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Voutetaki, M.E.; Chalioris, C.E.; Providakis, C.P.; Angeli, G.M. Detection of flexural damage stages for RC beams using piezoelectric sensors (PZT). Smart Struct. Syst. 2015, 15, 997–1018. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Chalioris, C.E.; Angeli, G.M.; Papadopoulos, N.A.; Favvata, M.J.; Providakis, C.P. Experimental damage evaluation of reinforced concrete steel bars using piezoelectric sensors. Constr. Build. Mater. 2016, 105, 227–244. [Google Scholar] [CrossRef]
- Voutetaki, M.E.; Papadopoulos, N.A.; Angeli, G.M.; Providakis, C.P. Investigation of a new experimental method for damage assessment of RC beams failing in shear using piezoelectric transducers. Eng. Struct. 2016, 114, 226–240. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Karayannis, C.G.; Angeli, G.M.; Papadopoulos, N.A.; Favvata, M.J.; Providakis, C.P. Applications of smart piezoelectric materials in a wireless admittance monitoring system (WiAMS) to Structures-Tests in RC elements. Case Stud. Constr. Mater. 2016, 5, 1–18. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Du, G.; Song, G. Damage detection of L-shaped concrete filled steel tube (L-CFST) columns under cyclic loading using embedded piezoceramic transducers. Sensors 2018, 18, 2171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, J.; Guan, W.; Du, G. Damage detection of concrete-filled square steel tube (CFSST) column joints under cyclic loading using piezoceramic transducers. Sensors 2018, 18, 3266. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.; Mishra, S.; Clark, S.M.; Samali, B. Detection of gaps in concrete–metal composite structures based on the feature extraction method using piezoelectric transducers. Sensors 2019, 19, 1769. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Valipour, M.; Meng, W.; Khayat, K.H.; Chen, G. Distributed fiber optic sensor-enhanced detection and prediction of shrinkage-induced delamination of ultra-high-performance concrete bonded over an existing concrete substrate. Smart Mater. Struct. 2017, 26, 085009. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, T.; Song, G.; Gu, H. Active interface debonding detection of a concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis. Mech. Syst. Signal Pr. 2013, 36, 7–17. [Google Scholar] [CrossRef]
- Xu, B.; Chen, H.; Xia, S. Wave propagation simulation and its wavelet package analysis for debonding detection of circular CFST members. Smart Struct. Syst. 2017, 19, 181–194. [Google Scholar] [CrossRef]
- Xu, B.; Chen, H.; Xia, S. Numerical study on the mechanism of active interfacial debonding detection for rectangular CFSTs based on wavelet packet analysis with piezoceramics. Mech. Syst. Signal Pr. 2017, 86, 108–121. [Google Scholar] [CrossRef]
- Gu, H.; Mo, Y.; Xu, B.; Song, G.; Li, H. Debonding detection of concrete-filled steel tubes using piezoceramic transducers. In Proceedings of the 2011 World Congress on Advances in Structural Engineering and Mechanics (ASEM’11+), Seoul, Korea, 18–22 September 2011; pp. 3643–3649. [Google Scholar]
- Xu, B.; Chen, H.; Mo, Y.L.; Zhou, T. Dominance of debonding defect of CFST on PZT sensor response considering the meso-scale structure of concrete with multi-scale simulation. Mech. Syst. Signal Pr. 2018, 107, 515–528. [Google Scholar] [CrossRef]
- Xu, B.; Chen, H.; Mo, Y.L.; Chen, X. Multi-physical field guided wave simulation for circular concrete-filled steel tubes coupled with piezoelectric patches considering debonding defects. Int. J. Solids Struct. 2017, 122, 25–32. [Google Scholar] [CrossRef]
- Luan, L.; Xu, B.; Chen, H. Numerical simulation on stress wave propagation of steel-concrete composite structures with interface debonding by spectral element method. Eng. Struct. 2017, 34, 145–152. [Google Scholar]
- Wang, C.Y.; Chang, Y.F.; Hsieh, C.H. Nondestructive evaluation of bonding conditions between a steel plate and strengthened concrete structure. J. Chin. Inst. Civ. Hydraul. Eng. 1997, 8, 647–653. [Google Scholar]
- Feng, Q.; Kong, Q.; Jiang, J.; Liang, Y.; Song, G. Detection of Interfacial Debonding in a Rubber–Steel-Layered Structure Using Active Sensing Enabled by Embedded Piezoceramic Transducers. Sensors 2017, 17, 2001. [Google Scholar] [CrossRef]
- Qin, F.; Kong, Q.; Li, M.; Mo, Y.; Song, G.; Fan, F. Bond slip detection of steel plate and concrete beams using smart aggregates. Smart Mater. Struct. 2015, 24, 1–13. [Google Scholar] [CrossRef]
- Luo, M.; Li, W.; Hei, C.; Song, G. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method. Sensors 2016, 16, 2083. [Google Scholar] [CrossRef]
- Lee, F.W.; Lim, K.S.; Chai, H.K. Determination and extraction of Rayleigh-waves for concrete cracks characterization based on matched filtering of center of energy. J. Sound Vib. 2016, 363, 303–315. [Google Scholar] [CrossRef]
- Miller, G.; Pursey, H. On the partition of energy between elastic waves in a semi-infinite solid. Proc. Royal Soc. A Math. Phys. Eng. Sci. 1955, 233, 55–69. [Google Scholar]
- Vasiljevic, M.; Kundu, T.; Grill, W.; Twerdowski, E. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals. J. Acoust. Soc. Am. 2008, 123, 2591–2597. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Chan, H.L.; Chang, F.K. Ultrasonic guided wave active sensing for monitoring of split failures in reinforced concrete. Struct. Health Monit. 2015, 14, 439–448. [Google Scholar] [CrossRef]
- Li, D.; Ruan, T.; Yuan, J. Inspection of reinforced concrete interface delamination using ultrasonic guided wave non-destructive test technique. Sci. China Technol. Sci. 2012, 55, 1–9. [Google Scholar] [CrossRef]
- Mustapha, S.; Ye, L.; Wang, D.; Lu, Y. Assessment of debonding in sandwich CF/EP composite beams using A0 Lamb wave at low frequency. Compos. Struct. 2011, 93, 483–491. [Google Scholar] [CrossRef]
- Gómez, P.; Fernández, J.P.; García, P.D. Lamb Waves and Dispersion Curves in Plates and its Applications in NDE Experiences Using Comsol Multiphysics. In Proceedings of the 2011 COMSOL Conference, Stuttgart, Germany, 26–28 October 2011; pp. 1–5. [Google Scholar]
- Sharma, S.; Mukherjee, A. Nondestructive evaluation of corrosion in varying environments using guided waves. Res. Nondestruct. Eval. 2013, 24, 63–88. [Google Scholar] [CrossRef]
- Miller, T.; Hauser, C.J.; Kundu, T. Nondestructive inspection of corrosion and delamination at the concrete-steel reinforcement interface. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, New Orleans, LA, USA, 17–22 November 2002; pp. 121–128. [Google Scholar]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001. [Google Scholar] [CrossRef]
- Ho, M.; El-Borgi, S.; Patil, D.; Song, G. Inspection and monitoring systems subsea pipelines: A review paper. Struct. Health Monit. 2019, 1–40. [Google Scholar] [CrossRef]
- Wang, G. Beam damage uncertainty quantification using guided Lamb wave responses. J. Intell. Mater. Syst. Struct. 2018, 29, 323–334. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, M.; Hei, C.; Song, G. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival. Smart Mater. Struct. 2018, 27, 035023. [Google Scholar] [CrossRef]
- Luo, M.; Li, W.; Wang, J.; Wang, N.; Chen, X.; Song, G. Development of a novel guided wave generation system using a giant magnetostrictive actuator for nondestructive evaluation. Sensors 2018, 18, 779. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, N.; Ho, S.C.; Song, G. Method for rapid impact localization for subsea structures. IEEE Sens. J. 2018, 18, 3554–3563. [Google Scholar] [CrossRef]
- Zhu, J.; Parvasi, S.M.; Ho, S.C.M.; Patil, D.; Ge, M.; Li, H.; Song, G. An innovative method for automatic determination of time of arrival for Lamb waves excited by impact events. Smart Mater. Struct. 2017, 26, 055013. [Google Scholar] [CrossRef]
- Zheng, Z.; Lei, Y.; Xue, X. Numerical simulation of monitoring corrosion in reinforced concrete based on ultrasonic guided waves. Sci. World J. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Zheng, Z.; Lei, Y. Effects of concrete on propagation characteristics of guided wave in steel bar embedded in concrete. Shock. Vib. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Jain, A.; Sharma, S.G. Monitoring degradation in concrete filled steel tubular section using guided waves. Smart Struct. Syst. 2016, 19, 371–382. [Google Scholar]
- Giri, P.; Kharkovsky, S.; Zhu, X.; Clark, S.M.; Taheri, S.; Samali, B. Characterization of carbon fiber reinforced polymer strengthened concrete and gap detection with a piezoelectric-based sensory technique. Struct. Health Monit. 2019, 18, 72–179. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Hao, H.; Ou, J. Guided wave propagation and spectral element method for debonding damage assessment in RC structures. J. Sound Vib. 2009, 324, 751–772. [Google Scholar] [CrossRef]
- Giri, P.; Kharkovsky, S.; Zhu, X.; Clark, S.; Samali, B. Debonding detection in a carbon fibre reinforced concrete structure using guided waves. Smart Mater. Struct. 2019, 28, 045020. [Google Scholar] [CrossRef]
- Al-Husseini, M.I.; Glover, J.B.; Barley, B.J. Dispersion patterns of the ground roll in eastern Saudi Arabia. Geophysics 1981, 46, 121–137. [Google Scholar] [CrossRef]
- Mari, J. Estimation of static corrections for shear-wave profiling using the dispersion properties of Love waves. Geophysics 1984, 49, 1169–1179. [Google Scholar] [CrossRef]
- Gabriels, P.; Snieder, R.; Nolet, G. In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves. Geophys. Prospect. 1987, 35, 187–196. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Ryden, N.; Park, C.B.; Ulriksen, P.; Miller, R.D. Lamb wave analysis for non-destructive testing of concrete plate structures. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, San Antonio, TX, USA, 6–10 April 2003; pp. 782–793. [Google Scholar]
- Lee, F.W.; Chai, H.K.; Lim, K.S. Characterizing concrete surface notch using Rayleigh wave phase velocity and wavelet parametric analyses. Constr. Build. Mater. 2017, 136, 627–642. [Google Scholar] [CrossRef] [Green Version]
- MOHURD. Technical Specification for Multichannel Transient Surface Wave Investigation; China Architecture & Building Press: Beijing, China, 2017. [Google Scholar]
- Mi, B.; Xia, J.; Shen, C.; Wang, L.; Hu, Y.; Cheng, F. Horizontal resolution of multichannel analysis of surface waves. Geophysics 2017, 82, 51–66. [Google Scholar] [CrossRef]
- Cheng, C.C.; Ke, Y.T.; Hsu, K.T. Using lamb waves to evaluate debonding of steel plate strengthened concrete. Mater. Trans. 2012, 53, 274–278. [Google Scholar] [CrossRef]
- Zerwer, A.; Polak, M.; Santamarina, J. Rayleigh wave propagation for the detection of near surface discontinuities: Finite element modeling. J. Nondestruct. Evaluation 2003, 22, 39–52. [Google Scholar] [CrossRef]
- Chen, H.; Xu, B.; Zhou, T.; Mo, Y.L. Debonding detection for rectangular CFST using surface wave measurement: Test and multi-physical fields numerical simulation. Mech. Syst. Signal Pr. 2019, 117, 238–254. [Google Scholar] [CrossRef]
- ParkSEIS. Park Seismic LLC, 2 Balsam Circle, Shelton, USA. 2018. Available online: http://www.masw.com/index.html (accessed on 29 April 2019).
- Geopsy. 2018. Available online: http://www.geopsy.org/index.html (accessed on 29 April 2019).
- Geogiga. 2018. Available online: http://www.geogiga.com/cn/frontend.php (accessed on 29 April 2019).
- Chen, H.; Xu, B.; Mo, Y.L.; Zhou, T. Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings. Constr. Build. Mater. 2018, 178, 418–431. [Google Scholar] [CrossRef]
- Fuller, W.B.; Thompson, S.E. The laws of proportioning concrete. Trans. Am. Soc. Civ. Eng. 1907, LIX, 67–143. [Google Scholar]
- Walraven, J.; Reinhardt, H. Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading. Heron 1981, 26, 1–68. [Google Scholar]
- Nguyen, K.L.; Treyssede, F.; Dhia, A.S.; Hazard, C. Computation of dispersion curves in elastic waveguides of arbitrary cross-section embedded in infinite solid media. In Proceedings of the 13th International Symposium on Nondestructive Characterization of Materials, Le Mans, France, 20–24 May 2013; pp. 1–8. [Google Scholar]
- Hosseini, S.M.H.; Duczek, S.; Gabbert, U. Non-reflecting boundary condition for Lamb wave propagation problems in honeycomb and CFRP plates using dashpot elements. Compos. Part B Eng. 2013, 54, 1–10. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Q. Characteristic analysis of several commonly used analytic wavelets. Oil Geophys. Prospect. 2007, 42, 651–657. [Google Scholar]
- Luangvilai, K.; Punurai, W.; Jacobs, L.J. Guided Lamb wave propagation in composite plate/concrete component. J. Eng. Mech. 2002, 128, 1337–1341. [Google Scholar] [CrossRef]
- Willberg, C.; Mook, G.; Gabbert, U.; Pohl, J. The phenomenon of continuous mode conversion of Lamb waves in CFRP plates. Key Eng. Mater. 2012, 518, 364–374. [Google Scholar] [CrossRef]
- Weber, R.; Hosseini, S.M.H.; Gabbert, U. Numerical simulation of the guided Lamb wave propagation in particle reinforced composites. Compos. Struct. 2012, 94, 3064–3071. [Google Scholar] [CrossRef]
- Hosseini, S.M.H.; Kharaghani, A.; Kirsch, C.; Gabbert, U. Numerical simulation of Lamb wave propagation in metallic foam sandwich structures: A parametric study. Compos. Struct. 2013, 97, 387–400. [Google Scholar] [CrossRef]
- Tian, Z.; Huo, L.; Gao, W.; Li, H.; Song, G. Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers. Smart Mater. Struct. 2017, 26, 1–10. [Google Scholar] [CrossRef]
- Shen, Y.; Hirose, S.; Yamaguchi, Y. Dispersion of ultrasonic surface waves in a steel–epoxy–concrete bonding layered medium based on analytical, experimental, and numerical study. Case Stud. Nondestruct. Test. Evaluation 2014, 2, 49–63. [Google Scholar] [CrossRef]
Material | Young’s Modulus (GPa) | Poisson’s Ratio | Density (kg/m3) |
---|---|---|---|
Homogeneous concrete | 32.4 | 0.20 | 2500 |
Aggregates | 55.5 | 0.16 | 2700 |
Mortar | 26.0 | 0.22 | 2100 |
ITZ | 25.0 | 0.16 | 2400 |
Steel | 207.0 | 0.28 | 7800 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Xu, B.; Wang, J.; Luan, L.; Zhou, T.; Nie, X.; Mo, Y.-L. Interfacial Debonding Detection for Rectangular CFST Using the MASW Method and Its Physical Mechanism Analysis at the Meso-Level. Sensors 2019, 19, 2778. https://doi.org/10.3390/s19122778
Chen H, Xu B, Wang J, Luan L, Zhou T, Nie X, Mo Y-L. Interfacial Debonding Detection for Rectangular CFST Using the MASW Method and Its Physical Mechanism Analysis at the Meso-Level. Sensors. 2019; 19(12):2778. https://doi.org/10.3390/s19122778
Chicago/Turabian StyleChen, Hongbing, Bin Xu, Jiang Wang, Lele Luan, Tianmin Zhou, Xin Nie, and Yi-Lung Mo. 2019. "Interfacial Debonding Detection for Rectangular CFST Using the MASW Method and Its Physical Mechanism Analysis at the Meso-Level" Sensors 19, no. 12: 2778. https://doi.org/10.3390/s19122778
APA StyleChen, H., Xu, B., Wang, J., Luan, L., Zhou, T., Nie, X., & Mo, Y. -L. (2019). Interfacial Debonding Detection for Rectangular CFST Using the MASW Method and Its Physical Mechanism Analysis at the Meso-Level. Sensors, 19(12), 2778. https://doi.org/10.3390/s19122778