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Abstract: Owing to the rapid advent of wireless technology and proliferation of smart sensors,
wireless sensor networks (WSNs) have been widely used to monitor and query the physical world in
many applications based on the Internet of Things (IoT), such as environmental monitoring and event
surveillance. A WSN can be treated as a distributed database to respond to user queries. Skyline
query, as one of the popular queries for multi-criteria decision making, has received considerable
attention due to its numerous applications. In this paper, we study how to process a continuous
skyline query over a sensor data stream in WSNs. We present an energy-efficient continuous skyline
query method called EECS. EECS can avoid the transmission of invalid sensor data and prolong the
lifetime of WSNs. Extensive experiments are conducted, and the experimental results demonstrate
the effectiveness of the proposed method.
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1. Introduction

As the development of wireless technology and proliferation of smart sensors, wireless sensor
networks (WSNs) become important data sources and have been widely used in many applications [1–3].
A WSN normally consists of a large number of distributed sensor nodes that organize themselves
into a multi-hop wireless network. WSNs can provide continuous sensor data stream for a variety
of applications, and the challenge is how to extract the valuable information from the sensor data
stream for these applications because of the limited battery resource on each sensor node. A WSN can
be treated as a distributed database to respond to user queries. TinyDB [4] and Cougar [5] are two
kinds of typical sensing data query system based on WSNs. However, limited by the performance of
the hardware, they can only carry out some basic operations, such as MAX, MIN and other simple
aggregation queries. With the improvement of the WSNs’ hardware performance, the researchers have
begun to study some complex queries, such as Top-k, join, Skyline and so on.

Skyline query, as one of the popular queries for multi-criteria decision making, provides an
efficient method for extracting the valuable information from multi-dimensional datasets. Given a
multi-dimensional data set P containing data p1, p2, ..., pn, the skyline query over P retrieves the set of
all pi in P such that no p j dominates pi. We say p j dominates pi, if p j is better than pi with respect to
at least one attribute, and is at least as good as pi on all other attributes. Most of the existing skyline
query algorithms assume a static dataset, where data is often kept relatively stable unless an explicit
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update operation occurs. However, data is generated in real-time and dynamically changes over time
in many practical applications. For example, the sensor data captured by sensor nodes is dynamic over
time in WSNs. Therefore, the skyline query in WSNs must process query over a sensor data stream,
which is different from skyline query processing on a static dataset. This kind of skyline query over
dynamic data stream can be grouped into two categories, i.e., snapshot skyline query and continuous
skyline query. The snapshot skyline query over a data stream is similar to the traditional skyline
query on a static dataset. That is, it first gets a static snapshot of the data stream at the current time
and then retrieves those data objects not dominated by others on the static snapshot. In contrast,
the continuous skyline query over a data stream involves a dynamic dataset where data objects are
continually being added or removed according to their arrival time and expiration time. Obviously,
the continuous skyline query over a data stream is more complicated than the snapshot skyline query,
and the existing skyline query algorithms based on a static dataset are not suitable for processing
the continuous skyline query over a sensor data stream in WSNs. In addition, most sensor nodes in
a WSN are battery powered, so power consumption should be minimized when processing query
tasks. The energy cost in the query processing procedure consists of the communication cost and the
computation cost of the sensor nodes because the communication cost for transmitting one bit by radio
is typically no less than the computation cost for executing 1,000 CPU instructions [6]. We can consider
the communication cost as the energy cost when the time complexity of the algorithm running on each
sensor node is relatively low, i.e., linear to the data size. Since the energy overhead on communication
dominates the total energy consumption of a sensor [7], the challenge for the continuous skyline query
in WSNs is to fulfill the query task with minimum communication cost. In this paper, we address the
problem of continuous skyline query processing in WSNs and present an energy-efficient continuous
skyline query method.

The rest of this paper is organized as follows. Section 2 reviews related work on skylines queries.
Section 3 defines the problem studied in this work. Section 4 presents the processing method for
continuously computing the current skyline query result over a sensor data stream in WSNs. Section 5
evaluates our method through extensive experiments, and Section 6 concludes this paper.

2. Related Work

The skyline query was first introduced into the data management community by Borzsonyi
et al. [8]. Since then many skyline query algorithms over a static data set have been proposed for
conventional centralized environment [9–13].

However, for many emerging streaming applications, such as intelligent transport, real time
monitoring, etc., the values of data objects are dynamically changing as the states of the monitored
objects are updated. The conventional skyline query algorithms over a static data set have been
difficult to adapt to the dynamic data stream. Some continuous skyline query algorithms have been
proposed for dynamic data streams [14–16]. Tao et al. study skyline query in a stream environment,
where query processing takes into account only a “sliding window” covering the most recent data
objects and propose algorithms that continuously monitor the incoming data and maintain the skyline
incrementally [14]. Wu et al. address the problem of efficient maintenance of a materialized skyline
view in response to skyline removals [15]. Hsueh et al. explore the problem of maintaining continuous
skyline queries efficiently over dynamic objects with d dimensions and propose an efficient update
approach for skyline computations, which facilitates an efficient and incremental skyline update
strategy to create a pre-computed second skyline set [16]. He et al. propose a multiple layer grids
scheme for efficiently processing continuous skyline queries over skewed data set.

The abovementioned continuous skyline query algorithms are all for a centralized computing
environment and inapplicable to WSNs, where the data stream is produced by a large number
of distributed sensor nodes. In order to reduce the energy cost caused by the data transmission
between nodes in WSNs, most of the skyline query algorithms in WSNs are based on the pruning
strategy [17,18]. Wang et al. [17] propose an energy-efficient skyline query method for multidimensional
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sensing data. The method uses a node cut strategy to dynamically generate filtering tuples when
collecting query results instead of issuing queries with filters. Roh et al. [18] propose a filter-based
method for two-dimensional skyline query processing in WSNs, which provides an enhanced efficiency
by reduction of the total wireless communication between sensor nodes. Furthermore, more aspects of
skyline computation in WSNs, such as G-skyline query [19] and Geometry-Based Distributed Spatial
Skyline Query [20], have been studied. However, none of these methods described above provides
support for continuous skyline queries. Chen et al. [21] propose a MINMAX approach for continuous
skyline query in WSNs. The MINMAX approach utilizes properties of the MinMax operator to maintain
the hierarchical threshold and to promote efficiency of skyline computation. The disadvantage of this
method is that the root node is required to send the local result set to leaf nodes, and the leaf nodes
also need to report the updated result set when the skyline result is updated every time. Xin et al. [22]
present an energy efficient algorithm i.e. SWSMA. SWSMA only calculates the data in the sliding
window, which is the latest data for skyline query, and two filtering strategies are adopted, namely
tuple filtering and grid filtering to reduce the amount of data forwarding.

3. Preliminary

Let S be the set of data objects perceived by sensor nodes in a sensor network. Each data object d
in S has a set of attributes denoted by A = {a1, a2, . . . , am}. We use d[ai] to denote the i-th attribute value
of d, which represents a certain feature of a perceived external object, such as temperature, humidity,
and so on. In addition, unlike static data objects, each data object d in S has an arrival time and an
expiration time associated with it. Let tarr(d) and texp(d) represent the arrival time and the expiration
time of d, respectively, which defines d as valid in the time interval [tarr(d), texp(d)]. We use Sc to
denote the current valid snapshot of S, which contains all currently valid data objects of S. Suppose tc

represents the current time, then Sc = {d|tarr(d) ≤ tc ≤ texp(d) and d ∈ S}.
In the following, we formally define continuous skyline query and related concepts.

Definition 1. Data object. A data object d in S is defined as a multi-tuple, i.e., d = (id, d[a1], d[a2], . . . , d[am],
tarr(d), texp(d)), where id is the unique identifier for each data object.

Definition 2. Dominance. Given two data objects dj and dk, we say dj dominates dk denoted by dj ≺ dk, if dj
is better than dk with respect to at least one attribute ai and is at least as good as dk on all other attributes.

Without loss of generality, we assume dominance by preferring a smaller value, so dj ≺ dk is
equivalent to satisfying the following condition: ∀ai ∈ A, dj[ai] ≤ dk[ai] ∧∃ ah ∈ A, dj[ah] < dk[ah].

Definition 3. Snapshot skyline query. A snapshot skyline query over S retrieves those data objects in Sc

that are not dominated by any other data object.

Obviously, a snapshot skyline query over S is equivalent to a skyline query over Sc. Therefore, we
will simply refer to a snapshot skyline query as a skyline query for ease of presentation.

Definition 4. Continuous skyline query. For a given query time interval, the continuous skyline query is
asked to sequentially compute the snapshot skyline query over S at each moment in the query time interval.

Assume that Table 1 is the set of data objects perceived by sensor nodes in a WSN. Figure 1 shows
an example, where the query results of a continuous skyline query over Table 1 is depicted in transition
from time 15 to 18. We can see from Table 1 that each data object contains two attributes and has an
arrival time and an expiration time associated with it. In Figure 1, those data objects connected by
line segments are the query results of a continuous skyline query over Table 1. As shown in Figure 1,
the query results of a continuous skyline query change dynamically over time.
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Table 1. The set of data objects with arrival and expiration times.

id a1 a2 tarr texp

d1 10 9 1 17

d2 8 7 2 16

d3 2 9 4 15

d4 3 6 6 18

d5 6 10 7 22

d6 4 5 9 23

d7 7 4 11 21

d8 9 2 13 24

d9 1 8 16 26

d10 2 5 16 28

d11 4 3 17 27

d12 7 1 18 30Sensors 2019, 19, x 4 of 12 
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Figure 1. The example of a continuous skyline query being shown in transition from times 15 to 18. 
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Figure 1. The example of a continuous skyline query being shown in transition from times 15 to 18.

The key problem of a continuous skyline query is how to efficiently compute and incrementally
update skyline query results in a given query time interval. In the following, we present a novel
energy-efficient continuous skyline query method.
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4. The Energy-Efficient Continuous Skyline Query Method

In this section, we first depict the reference architecture of WSNs in Section 4.1 and then present a
straightforward baseline solution to processing the continuous skyline query in Section 4.2. Lastly,
in Section 4.3 we propose the energy-efficient continuous skyline query algorithm.

4.1. Reference Architecture of WSNs

Figure 2 illustrates the reference architecture of a WSN. As shown in Figure 2, a large number of
distributed sensor nodes are organized into a multi-hop wireless network, which is connected to the
Internet through a sink node. Moreover, a query manager is responsible for receiving, forwarding,
and processing query requests from users for the perceptual data captured by distributed sensor nodes.
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A user-initiated continuous skyline query request, denoted as qr, is represented as a 4-tuple, i.e.,
qr = <csq, ts, ∆t, te > where csq denotes that the user-initiated query is the continuous skyline query,
ts is the start time of the query execution, ∆t represents the time interval between two consecutive
skyline queries, and te denotes the end time of the continuous skyline query.

To process queries over the sensor data stream in a WSN, all sensor nodes in the WSN are
organized into multiple clusters according to low-energy adaptive clustering hierarchy (LEACH) [23]
in this paper. In LEACH, each cluster has one sensor node acting as the cluster head and all non-cluster
head nodes transmit their data to the cluster head. The cluster head receives data from all the cluster
members and transmits data to the sink node.

4.2. Baseline Approach

One of the simplest methods for processing continuous skyline query in a WSN is that all sensor
nodes forward their valid data objects to sink node; sink node sends all the valid data objects to the
query manager via the Internet; and then, the query manager computes skyline over all the valid
data objects periodically using a centralized skyline query algorithm. We call the above method the
centralized computing method for continuous skyline query in a WSN. Obviously, the centralized
computing method asks all sensor nodes in a WSN to transmit their all valid data objects to sink node,
which results in a large amount of energy consumption. Thus, it is not suitable for WSNs with limited
energy. In addition, the method ignores the computing power of each sensor node itself and gives up
on the in-network processing paradigm of WSNs in computing continuous skyline.

In this subsection, we consider the in-network processing technique and propose a naive baseline
approach (BA) for computing continuous skyline query in a WSN. Assume that sink node transmits
the query request <csq, ts, ∆t, te> issued by a user to all cluster heads and each cluster head forwards
<csq, ts, ∆t, te > to its cluster members.

Specifically, BA includes the following steps.

(1) For the query request <csq, ts, ∆t, te>, each sensor node filters out its valid data objects according
to the query execution time and the valid time interval [tarr(d), texp(d)] of each data object d,
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employs a centralized skyline query algorithm such as BNL [8] or SFS [9] to compute the local
skyline over all its valid data objects, and sends the local skyline query result to its cluster head.

(2) Each cluster head employs the centralized skyline query algorithm to compute the cluster’s
skyline over the set of cluster’s candidate data objects and sends the query result to sink node.
The set of cluster’s candidate data objects means the union of the local skyline query results
computed by all sensor nodes located in the cluster.

(3) Sink node employs the centralized skyline query algorithm to compute the final skyline over the
set of global candidate data objects and sends the final query result to the query manager. The set
of global candidate data objects means the union of the cluster’s query results computed by all
cluster heads.

(4) The query manager returns the query result to the user.
(5) When the next query execution time arrives, if it is less than or equal to te, the execution returns

to step (1). Otherwise, the query is terminated.

In this paper, we refer to the snapshot skyline query performed by each sensor node on its valid
data objects as the local skyline query. The snapshot skyline query performed by each cluster head
over the set of cluster’s candidate data objects is called the cluster’s skyline query. Similarly, we refer
to the snapshot skyline query performed by sink node on the set of global candidate data objects as the
final skyline query.

Compared to the centralized computing method, BA reduces the overhead of data communication
between sensor nodes by pre-computing the local skyline at each sensor node and the cluster’s skyline
at each cluster head. However, the query results of the local skyline and the cluster’s skyline still
contain some data objects that can be filtered out in advance, so further optimization and improvement
are needed.

4.3. Energy-Efficient Continuous Skyline Query Algorithm

In this subsection, we present an energy-efficient continuous skyline query algorithm, called EECS.
In EECS, a pruning strategy is proposed to reduce the overhead of data communication between sensor
nodes. To efficiently prune the non-qualifying data objects for the final query result, we first define the
concept of dominant capability for data objects. To facilitate the presentation, Table 2 summarizes the
symbols we use throughout the following sections.

Table 2. Symbols used in this paper.

Symbols Descriptions

S The set of m-dimensional data objects perceived by sensor nodes in a sensor network

{a1, a2, . . . , am} The set of attributes of each data object in S

d A data object of S

d[ai] The i-th attribute value of d

[bi, ei] The domain on attribute ai, i.e., for any data object d, bi ≤ d[ai] ≤ ei

DC(d) The dominant capability of d

md(Si) The maximum dominance data object of data object set Si

Definition 5. Dominant capability. For any data object d of S, the dominant capability of d, denoted by
DC(d), is defined as follows: DC(d) =

∏m
i=1(ei − d[ai]).

Figure 3 shows an example of dominant capability of two-dimensional data objects. In Figure 3,
the area of the dotted rectangle represents the dominant capability of data object d5, and the data
objects located in the area are dominated by d5. Similarly, the area of the filled small rectangle denotes
the dominant capability of data object d1 in Figure 3, and the data objects located in the area are
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dominated by d1. Obviously, the dominant capability of a data object d reflects the dominance area of d,
and all data objects falling within the dominance area must be dominated by d. The greater dominant
capability means the larger dominance area.Sensors 2019, 19, x 7 of 12 
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Further, we give the definition of maximum dominance data object.

Definition 6. Maximum dominance data object. For a given set of valid data objects Si, we say d j (d j ∈ Si)
is the maximum dominance data object of Si, if and only if ∀dk ∈ Si

(
DC(dk) ≤ DC

(
d j

))
. We use md(Si) to

denote the maximum dominance data object of Si.

Now, let us elaborate on EECS presented in this paper. EECS consists of 4 phases and its high-level
description is as follows.

(1) Preprocessing Phase. In this phase, each sensor node (including cluster heads) deletes its expired
data objects in real time, dynamically maintains its valid data objects, and employs a centralized
skyline query algorithm to compute the local skyline over all its valid data objects. At the same
time, each cluster head computes to get the maximum dominance data object of its local skyline
query result.

(2) Query Shipping Phase. Sink node transmits the query request <csq, ts, ∆t, te> issued by a user to all
cluster heads, and each cluster head forwards <csq, ts, ∆t, te> and its maximum dominance data
object md(Si) to its cluster members.

(3) Initial Skyline Calculation Phase. This phase leverages the calculation results of preprocessing
phase and efficient filtering strategy to obtain the skyline query result at the initial query time ts

by means of in-network computation.
(4) Incremental Update Phase. The phase incrementally updates the calculation result of the previous

skyline query to compute the query results at the subsequent continuous query time, which avoids
the extra computational overhead and data communication cost caused by continuous repetitive
skyline calculations.

The procedure of the Initial Skyline Calculation Phase is described as follows.

(1) Node Processing. Each sensor node uses the received md(Si) to filter out the non-qualified data
objects of its local skyline query result generated at ts and get the filtered local skyline query
result. Here, the non-qualified data objects refer to those data objects of the local skyline query
result dominated by md(Si). At the same time, each sensor node sends the filtered local skyline
query result to its cluster head and keeps a copy of the filtered local skyline query result locally.

(2) Cluster Head Processing. Each cluster head merges its filtered local skyline query result with
all received filtered local skyline query results from its cluster members to get its collection of
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cluster’s candidate data objects, employs the centralized skyline query algorithm to compute
its cluster’s skyline query, sends the query result to sink node, and keeps a copy of the query
result locally.

(3) Sink Node Processing. Sink node merges all received query results from cluster heads to get its
collection of global candidate data objects, employs the centralized skyline query algorithm to
compute the final skyline over the collection of global candidate data objects, sends the final
query result to the query manager, and keeps a copy of the final result locally. At the same time,
the query manager returns the query result to the user.

The procedure of the Incremental Update Phase is described as follows.

(1) When the next query time arrives, if it is greater than te, sink node terminates the continuous
skyline query. Otherwise, the following steps are executed.

(2) Sink node deletes all expired data objects in its copy of the final result at the new arrival query
time. Then, sink node computes to get the maximum dominance data object md(Sf) of its copy of
the final result Sf and sends md(Sf) to all cluster heads.

(3) Each cluster head modifies its copy of the query result by deleting all expired data objects and
those data objects dominated by md(Sf), computes to get the maximum dominance data object
md(Sc) of its copy of the query result Sc, and sends md(Sc) and md(Sf) to its all cluster members.

(4) Each sensor node modifies its copy of local skyline query result by deleting all expired data
objects of the copy and then does a dominant check for each new valid data object that has been
added since the last query. Specifically, the method of dominant check is as follows: For a new
added valid data object dk in a sensor node, if dk is dominated by any data object of the copy of
local skyline query result or one of md(Sc) and md(Sf), dk is filtered out; otherwise, dk is added into
a local candidate list, and all data objects in the copy of local skyline query result dominated by
dk, if exist, are deleted. Finally, each sensor node sends all data objects of its local candidate list to
its cluster head and adds all data objects of its local candidate list into its copy of local skyline
query result.

(5) Each cluster head does a dominant check for each data object received from these local candidate
lists of its cluster members. Specifically, for each data object di received from cluster members, if di
is dominated by any data object of the copy of the query result, di is filtered out; otherwise, di is
added into a cluster candidate list, and all data objects in the copy of the query result dominated
by di, if exist, are deleted. Then, each cluster head sends all data objects of its cluster candidate list
to sink node and adds all data objects of its cluster candidate list into its copy of the query result.

(6) Sink node does a dominant check for each data object received from cluster heads. Specifically,
for each data object dj received from cluster heads, if dj is dominated by any data object of the
copy of the final result, dj is filtered out; otherwise, dj is added into the copy of the final result,
and all data objects in the copy of the final result dominated by dj, if exist, are deleted. Then,
sink node sends all data objects of the copy of final query result to the query manager, and the
query manager returns them to the user.

Compared with BA, EECS has two obvious advantages. First, EECS adopts the filtering strategy
based on maximum dominance data object to significantly reduce communication costs in the
continuous skyline query; secondly, EECS proposes the incremental update strategy that uses the
result of the previous skyline query to incrementally generate the next skyline query result with little
computation and communication overhead.

5. Performance Evaluation

In this section, we evaluate the performance of the proposed method (EECS) with BA, MINMAX
and SWSMA through extensive experiments. In what follows, we will first describe the experimental
settings and then present the simulation results.
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5.1. Experimental Setting

Experiments are conducted on a PC with a 3.2 GHz Intel CPU and 4G Byte of memory, running
Win7 with 32 bit. The simulated sensor network is implemented using MATLAB. The simulations
used in our experiments can adjust parameters such as the number of sensor nodes, the transmission
range, and the size of the network area. The default network area is a rectangle grid of 200 m × 200 m,
where 100–500 sensor nodes are randomly distributed. The sink node is placed at the center of the
network. The communication range of each sensor node varies from 20m to 30m. For EECS and the
reference baseline methods (BA and MINMAX), sensor nodes are organized according to the following
two structures: (1) multiple clusters based on LEACH [23] for EECS and BA, and (2) routing tree based
on the shortest path for MINMAX and SWSMA.

For performance evaluation, we adopt the synthetic datasets including the two data distribution,
independent and anti-correlated, which are commonly used for skyline query. The dimension of data
objects ranges from 2 to 5, and the cardinality of dataset is in the range of 10k to 20k. For each data
object, an arrival time and an expiration time associated with it are assigned. Specifically, for each data
object, we randomly pick an arrival time between ts − 10 and te + 10, where ts is the start time of the
continuous skyline query, and te denotes the end time of the continuous skyline query. Then, we pick
the expiration time randomly between the arrival time and te + 10. In our simulation experiments,
each data object will arrive and be deleted according to its arrival time and expiration time, and the
skyline query is continuously computed. The size of query time interval [ts, te] for the continuous
skyline query varies from 200 to 400. Similar to the literature [20], we choose total communication cost as
the main performance metric. Total communication cost, called TCC, denotes the number of the messages
transmitted for computing the continuous skyline query in a time interval [ts, te]. Table 3 summarizes
the main parameters and their settings.

Table 3. Main simulation parameters.

Parameter Range Default Value Description

Nsd 100–500 300 Number of sensor nodes
Cardinality 10–20k 10k Number of data objects
Dimension 2–4 3 Number of attributes each data object contains

[ts, te] [0, 200], [0, 300], [0, 400] [0, 300] Query time interval

5.2. Experimental Results

We first evaluate the influence on performance by the number of sensor nodes. Figure 4 depicts
total communication cost (TCC) as a function of the number of sensor nodes when other simulation
parameters are set to their default values. We can see from Figure 4 that TCC of each method increases
accordingly with the number of sensor nodes over the independent dataset and the anti-correlated
dataset. This is not surprising because the increase in the number of sensor nodes leads to the
corresponding increase in communication overhead between sensor nodes. We can also see from
Figure 4 that EECS significantly outperforms the other three methods in terms of TCC. The reason is that
EECS reduces the overhead of data transmission between sensor nodes through efficient incremental
update and filtering strategy.

Then, we study the effect of cardinality on total communication cost (TCC). Figure 5 illustrates
that TCC as a function of the cardinality of dataset over independent dataset and anti-correlated
dataset when other simulation parameters are set to their default values. The results show that TCC
of each method increases accordingly with the cardinality of dataset. This is because the increase in
the cardinality of dataset leads to the corresponding increase in the amount of data objects processed
and transmitted by sensor nodes. We can see from Figure 5 that EECS is obviously better than the
other three methods in terms of TCC. The reason is EECS is optimized for filtering strategy and skyline
incremental maintenance.



Sensors 2019, 19, 2902 10 of 12

Sensors 2019, 19, x 9 of 12 

 

according to the following two structures: (1) multiple clusters based on LEACH [23] for EECS and 
BA, and (2) routing tree based on the shortest path for MINMAX and SWSMA.  

For performance evaluation, we adopt the synthetic datasets including the two data 
distribution, independent and anti-correlated, which are commonly used for skyline query. The 
dimension of data objects ranges from 2 to 5, and the cardinality of dataset is in the range of 10k to 
20k. For each data object, an arrival time and an expiration time associated with it are assigned. 
Specifically, for each data object, we randomly pick an arrival time between ts − 10 and te + 10, 
where ts is the start time of the continuous skyline query, and te denotes the end time of the 
continuous skyline query. Then, we pick the expiration time randomly between the arrival time and 
te + 10. In our simulation experiments, each data object will arrive and be deleted according to its 
arrival time and expiration time, and the skyline query is continuously computed. The size of query 
time interval [ts, te] for the continuous skyline query varies from 200 to 400. Similar to the literature 
[20], we choose total communication cost as the main performance metric. Total communication cost, 
called TCC, denotes the number of the messages transmitted for computing the continuous skyline 
query in a time interval [ts, te]. Table 3 summarizes the main parameters and their settings. 

Table 3. Main simulation parameters. 

Parameter Range Default 
Value 

Description 

Nsd 100–500 300 Number of sensor nodes 
Cardinality 10–20k 10k Number of data objects 

Dimension 2–4 3 Number of attributes each data object 
contains 

[ts, te] 
[0, 200], [0, 300], [0, 

400] [0, 300] Query time interval 

5.2. Experimental Results 

We first evaluate the influence on performance by the number of sensor nodes. Figure 4 
depicts total communication cost (TCC) as a function of the number of sensor nodes when other 
simulation parameters are set to their default values. We can see from Figure 4 that TCC of each 
method increases accordingly with the number of sensor nodes over the independent dataset and 
the anti-correlated dataset. This is not surprising because the increase in the number of sensor 
nodes leads to the corresponding increase in communication overhead between sensor nodes. We 
can also see from Figure 4 that EECS significantly outperforms the other three methods in terms of 
TCC. The reason is that EECS reduces the overhead of data transmission between sensor nodes 
through efficient incremental update and filtering strategy. 

  
(a) Independent (b) Anti-correlated 

Figure 4. Performance vs. number of sensor nodes. 

0

50

100

150

200

250

100 200 300 400 500

TC
C

(*
10

3 )

Number of sensor nodes (Nsd) 

EECS SWSMA MINMAX BA

0
20
40
60
80

100
120
140

100 200 300 400 500

TC
C

(*
10

4 )

Number of sensor nodes (Nsd)

EECS SWSMA MINMAX BA

Figure 4. Performance vs. number of sensor nodes.

Sensors 2019, 19, x 10 of 12 

 

Then, we study the effect of cardinality on total communication cost (TCC). Figure 5 illustrates 
that TCC as a function of the cardinality of dataset over independent dataset and anti-correlated 
dataset when other simulation parameters are set to their default values. The results show that TCC 
of each method increases accordingly with the cardinality of dataset. This is because the increase in 
the cardinality of dataset leads to the corresponding increase in the amount of data objects 
processed and transmitted by sensor nodes. We can see from Figure 5 that EECS is obviously better 
than the other three methods in terms of TCC. The reason is EECS is optimized for filtering strategy 
and skyline incremental maintenance.   

Further, we study the effect of data dimension on total communication cost (TCC). Figure 6 plots 
that TCC as a function of dimension over independent dataset and anti-correlated dataset when 
other simulation parameters are set to their default values. We can see from Figure 6 that TCC of 
each method increases accordingly with data dimension. This is not surprising because the increase 
in dimension usually leads to the corresponding increase in the number of data objects contained a 
skyline query result set, which inevitably leads to an increase in the amount of data objects 
transmitted between sensor nodes. We can also see from Figure 6 that EECS significantly 
outperforms the other three methods in terms of TCC. The reason is the same as the one for Figure 
5. 

Finally, we study the effect of query time interval [ts, te] on total communication cost (TCC). 
Figure 7 depicts TCC as a function of query time interval over independent dataset and 
anti-correlated dataset when other simulation parameters are set to their default values. The results 
show that TCC of each method increases accordingly with the size of query time interval. This is 
because the increase in the size of query time interval leads to an increase in the number of skyline 
queries. We can see from Figure 7 that EECS significantly outperforms the other three methods in 
terms of TCC. The reason is the same as the one for Figure 5. 

  
(a) Independent (b) Anti-correlated 

Figure 5. Performance vs. cardinality. 

  
(a) Independent (b) Anti-correlated 

Figure 6. Performance vs. dimension. 

0

50

100

150

200

250

10k 12k 14k 16k 18k 20k

TC
C

(*
10

3 )

Cardinality

EECS SWSMA MINMAX BA

0

50

100

150

200

10k 12k 14k 16k 18k 20k

TC
C

(*
10

4 )

Cardinality

EECS SWSMA MINMAX BA

0

100

200

300

400

2 3 4

TC
C

(*
10

3 )

Dimension

EECS SWSMA MINMAX BA

0

100

200

300

400

2 3 4

TC
C

(*
10

4 )

Dimension

EECS SWSMA MINMAX BA

Figure 5. Performance vs. cardinality.

Further, we study the effect of data dimension on total communication cost (TCC). Figure 6 plots
that TCC as a function of dimension over independent dataset and anti-correlated dataset when other
simulation parameters are set to their default values. We can see from Figure 6 that TCC of each
method increases accordingly with data dimension. This is not surprising because the increase in
dimension usually leads to the corresponding increase in the number of data objects contained a
skyline query result set, which inevitably leads to an increase in the amount of data objects transmitted
between sensor nodes. We can also see from Figure 6 that EECS significantly outperforms the other
three methods in terms of TCC. The reason is the same as the one for Figure 5.
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Finally, we study the effect of query time interval [ts, te] on total communication cost (TCC). Figure 7
depicts TCC as a function of query time interval over independent dataset and anti-correlated dataset
when other simulation parameters are set to their default values. The results show that TCC of each
method increases accordingly with the size of query time interval. This is because the increase in the
size of query time interval leads to an increase in the number of skyline queries. We can see from
Figure 7 that EECS significantly outperforms the other three methods in terms of TCC. The reason is
the same as the one for Figure 5.
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6. Conclusions

This paper addresses the problem of continuous skyline query processing in WSNs. The continuous
skyline query is to continuously compute a skyline query over a multidimensional dataset in which
each data object has an arrival time and an expiration time associated with it. Most sensor nodes in a
WSN are battery powered, and wireless communication is one of the major consumers of the sensor
energy. Thus, the challenge for the continuous skyline query in WSNs is to fulfill the query task with
a minimum communication cost. In this paper, we present an energy-efficient continuous skyline
query method, called EECS. It aims at reducing communication cost on processing continuous skyline
query in WSNs. First, the concept of maximum dominance data object is defined for pruning strategy.
Then, a continuous skyline query processing in WSNs is finely abstracted into four hierarchical phases.
Finally, the optimization process for each phase significantly reduces the overhead of data transmission
between sensor nodes by means of real time preprocessing, in-network skyline computation, skyline
incremental update, and pruning strategy. Extensive experiments are conducted, and the experimental
results demonstrate the effectiveness of our methods.

Author Contributions: Conceptualization, Y.X., X.J., and C.-H.H.; formal analysis, Y.X. and C.-H.H.; funding
acquisition, Y.X.; investigation, H.W., L.L., and W.Z.; methodology, Y.X., X.J., and C.-H.H.; software, X.J.; validation,
H.W., L.L., and W.Z.; writing—original draft, Y.X.

Funding: This work is supported by the National Nature Science Foundation of China (61702368, 61170174), Major
Research Project of National Nature Science Foundation of China (91646117) and Natural Science Foundation of
Tianjin (17JCYBJC15200, 18JCQNJC0070).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zhang, D.; Zhang, T.; Zhang, J. A Kind of Effective Data Aggregating Method Based on Compressive Sensing
for Wireless Sensor Network. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 1–15. [CrossRef]

2. Zhang, D.; Zhou, S.; Tang, Y. A low duty cycle efficient MAC protocol based on self-adaption and predictive
strategy. Mob. Netw. Appl. 2018, 23, 828–839. [CrossRef]

http://dx.doi.org/10.1186/s13638-018-1176-4
http://dx.doi.org/10.1007/s11036-017-0878-x


Sensors 2019, 19, 2902 12 of 12

3. Zhang, D.; Niu, H.; Liu, S. Novel PEECR-based Clustering Routing Approach. Soft Comput. 2017, 21,
7313–7323. [CrossRef]

4. Madden, S.; Franklin, M.J.; Hellerstein, J.M.; Hong, W. TinyDB: An Acquisitional Query Processing System
for Sensor Networks. ACM Trans. Database Syst. 2005, 30, 122–173. [CrossRef]

5. Yao, Y.; Gehrke, J. The cougar approach to in-network query processing in sensor networks. ACM SIGMOD Rec.
2002, 31, 9–18. [CrossRef]

6. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless Sensor Networks: A Survey. Comput. Netw.
2002, 38, 393–422. [CrossRef]

7. Pottie, W.; Kaiser, W. Wireless integrated network sensors. Commun. ACM 2000, 43, 51–58. [CrossRef]
8. Borzsony, S.; Kossmann, D.; Stocker, K. The Skyline Operator. In Proceedings of the 17th International

Conference on Data Engineering, Heidelberg, Germany, 2–6 April 2001; pp. 421–430.
9. Chomicki, J.; Godfrey, P.; Gryz, J.; Liang, D. Skyline with Presorting. In Proceedings of the 19th International

Conference on Data Engineering, Bangalore, India, 5–8 March 2003; pp. 717–816.
10. Godfrey, P.; Shipley, R.; Gryz, J. Maximal Vector Computation in Large Data Sets. In Proceedings of the

31st International Conference on Very Large Data Bases, Trondheim, Norway, 30 August–2 September 2005;
pp. 229–240.

11. Bartolini, I.; Ciaccia, P.; Patella, M. Efficient sort-based skyline evaluation. ACM Trans. Database Syst. 2008,
33, 1–45. [CrossRef]

12. Kossmann, D.; Ramsak, F.; Rost, S. Shooting Stars in the Sky: An Online Algorithm for Skyline Queries.
In Proceedings of the 28th International Conference on Very Large Data Bases, Hong Kong, China, 20–23
August 2002; pp. 275–286.

13. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B. Progressive skyline computation in database systems. ACM Trans.
Database Syst. 2005, 30, 41–82. [CrossRef]

14. Tao, Y.; Papadias, D. Maintaining sliding window skylines on data streams. IEEE Trans. Knowl. Data Eng.
2006, 18, 377–391.

15. Wu, P.; Agrawal, D.; Egecioglu, O.; El Abbadi, A. DeltaSky: Optimal Maintenance of Skyline Deletions
without Exclusive Dominance Region Generation. In Proceedings of the 23rd International Conference on
Data Engineering, Istanbul, Turkey, 15–20 April 2007; pp. 486–495.

16. Hsueh, Y.L.; Zimmermann, R.; Ku, W.S. Efficient Updates for Continuous Skyline Computations.
In Proceedings of the 19th International Workshop on Database and Expert Systems Application, Turin, Italy,
1–5 September 2008; pp. 419–433.

17. Wang, Y.; Wei, W.; Deng, Q.; Liu, W.; Song, H. An Energy-Efficient Skyline Query for Massively
Multidimensional Sensing Data. Sensors 2016, 16, 83. [CrossRef] [PubMed]

18. Roh, Y.J.; Song, I.; Jeon, J.H.; Woo, G.K.; Kim, M.H. Energy-Efficient Two-Dimensional Skyline Query
Processing in Wireless Sensor Networks. Proc. Smart Spaces Sens. Netw. 2013, 294–301.

19. Dong, L.; Liu, G.; Cui, X.; Li, T. G-skyline query over data stream in wireless sensor network. Wireless Netw.
2018, 1–16. [CrossRef]

20. Wang, Y.; Song, B.; Wang, J.; Zhang, L. Geometry-Based Distributed Spatial Skyline Queries in Wireless
Sensor Networks. Sensors 2016, 16, 454. [CrossRef] [PubMed]

21. Chen, H.; Zhou, S.; Guan, J. Towards Energy-Efficient Skyline Monitoring in Wireless Sensor Networks.
In Proceedings of the 4th European Conference on Wireless Sensor Networks, Delft, The Netherlands, 29–31
January 2007; pp. 101–116.

22. Xin, J.; Wang, G.; Chen, L.; Zhang, X.; Wang, Z. Continuously Maintaining Sliding Window Skylines in a
Sensor Network. In Proceedings of the 12th International Conference on Database Systems for Advanced
Applications, Bangkok, Thailand, 9–12 April 2007; pp. 509–521.

23. Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for
wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00500-016-2270-3
http://dx.doi.org/10.1145/1061318.1061322
http://dx.doi.org/10.1145/601858.601861
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1145/332833.332838
http://dx.doi.org/10.1145/1412331.1412343
http://dx.doi.org/10.1145/1061318.1061320
http://dx.doi.org/10.3390/s16010083
http://www.ncbi.nlm.nih.gov/pubmed/26761010
http://dx.doi.org/10.1007/s11276-018-1784-2
http://dx.doi.org/10.3390/s16040454
http://www.ncbi.nlm.nih.gov/pubmed/27043563
http://dx.doi.org/10.1109/TWC.2002.804190
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Preliminary 
	The Energy-Efficient Continuous Skyline Query Method 
	Reference Architecture of WSNs 
	Baseline Approach 
	Energy-Efficient Continuous Skyline Query Algorithm 

	Performance Evaluation 
	Experimental Setting 
	Experimental Results 

	Conclusions 
	References

