Silicon-Based Sensors for Biomedical Applications: A Review
Abstract
:1. Introduction
2. Utilisation of Silicon for Biomedical Applications
2.1. Planar Sensors
2.2. Polysilicon-Based Sensors
2.3. D printed and Optical Sensors
2.4. Ion-Sensitive Field-Effect Transistors
2.5. Silicon-On-Insulator Sensors
2.6. Silicon Nanowires
2.7. Piezoresistive Sensors
2.8. Integrated/Hybrid Sensors
3. Current Challenges and Future Opportunities
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhansali, S.; Vasudev, A. MEMS for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Adhikari, K.K.; Qiang, T.; Wang, C.; Sung, H.K.; Wang, L.; Wu, Q. High-sensitivity radio frequency noncontact sensing and accurate quantification of uric acid in temperature-variant aqueous solutions. Appl. Phys. Express 2018, 11, 117001. [Google Scholar] [CrossRef]
- Sze, S.M. Semiconductor Sensors; Wiley: New York, NY, USA, 1994; Volume 55. [Google Scholar]
- Serene, M.; Babu, R.; Alex, Z.C. Sensitivity Analysis of Micro-Mass Optical MEMS Sensor for Biomedical IoT Devices. In Internet of Things and Personalized Healthcare Systems; Springer: Singapore, 2019. [Google Scholar]
- Qiang, T.; Wang, C.; Liu, M.Q.; Adhikari, K.K.; Liang, J.G.; Wang, L.; Li, Y.; Wu, Y.M.; Yang, G.H.; Meng, F.Y.; et al. High-Performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-Ion etching. Sens. Actuators B Chem. 2018, 258, 704–714. [Google Scholar] [CrossRef]
- Kumari, S.K.; Mathana, J.M. Blood Sugar Level Indication Through Chewing and Swallowing from Acoustic MEMS Sensor and Deep Learning Algorithm for Diabetic Management. J. Med. Syst. 2019, 43, 1. [Google Scholar] [CrossRef] [PubMed]
- Gómez, V.; Soto Rodriguez, P.; Kumar, P.; Zaman, S.; Willander, M.; Nötzel, R. An InN/InGaN Quantum Dot Electrochemical Biosensor for Clinical Diagnosis. Sensors 2013, 13, 13917–13927. [Google Scholar]
- Rodriguez, P.E.S.; Gómez, V.J.; Kumar, P.; Willander, M.; Nötzel, R. Highly sensitive and fast anion selective InN quantum dot electrochemical sensors. Appl. Phys. Express 2013, 6, 115201. [Google Scholar]
- Alvi, N.H.; Soto Rodriguez, P.E.D.; Gómez, V.J.; Kumar, P.; Amin, G.; Nur, O.; Willander, M.; Nötzel, R. Highly Efficient Potentiometric Glucose Biosensor Based on Functionalized InN Quantum Dots. Appl. Phys. Lett. 2012, 101, 153110. [Google Scholar] [CrossRef]
- Harraz, F.A. Porous silicon chemical sensors and biosensors: A review. Sens. Actuators B Chem. 2014, 202, 897–912. [Google Scholar] [CrossRef]
- Santos, H.A. Porous Silicon for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Silicon Wafer Production Process. Available online: https://www.sas-globalwafers.co.jp/eng/products/wafer/process.html (accessed on 27 June 2019).
- Saliterman, S.S. Fundamentals of BioMEMS and Medical Microdevices; Wiley-Interscience: Bellingham, WA, USA, 2006. [Google Scholar]
- Wang, Z.; Lee, S.; Koo, K.-I.; Kim, K. Nanowire-based sensors for biological and medical applications. IEEE Trans. Nanobiosci. 2016, 15, 186–199. [Google Scholar] [CrossRef]
- Pramanik, C.; Saha, H. Low pressure piezoresistive sensors for medical electronics applications. Mater. Manuf. Process. 2006, 21, 233–238. [Google Scholar] [CrossRef]
- Nag, A.; Zia, A.I.; Mukhopadhyay, S.; Kosel, J. Performance enhancement of electronic sensor through mask-less lithography. In Proceedings of the 9th International Conference on Sensing Technology (ICST), Auckland, New Zealand, 8–10 December 2015; pp. 374–379. [Google Scholar]
- Herzer, N.; Hoeppener, S.; Schubert, U.S. Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chem. Commun. 2010, 46, 5634–5652. [Google Scholar] [CrossRef]
- Chen, H.; Xue, M.; Mei, Z.; Bambang Oetomo, S.; Chen, W. A review of wearable sensor systems for monitoring body movements of neonates. Sensors 2016, 16, 2134. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.; Sahakian, A.V.; Swiryn, S. Sensing and Documentation of Body Position during Ambulatory ECG Monitoring; IEEE: Piscataway, NJ, USA, 2000. [Google Scholar]
- Iwasaki, W.; Nogami, H.; Takeuchi, S.; Furue, M.; Higurashi, E.; Sawada, R. Detection of site-specific blood flow variation in humans during running by a wearable laser Doppler flowmeter. Sensors 2015, 15, 25507–25519. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Hanasaka, Y.; Katsuda, Y.; Hirota, R.; Ishiguro, T.; Takada, K.; Uryu, M.; Ogawa, H. Human pulse detection using multiple silicon microphones toward estimation of physical condition. Inf. Technol. J. 2012, 11, 476–479. [Google Scholar] [CrossRef]
- Li, Y.Y.; Cunin, F.; Link, J.R.; Gao, T.; Betts, R.E.; Reiver, S.H.; Chin, V.; Bhatia, S.N.; Sailor, M.J. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 2003, 299, 2045–2047. [Google Scholar] [CrossRef] [PubMed]
- Mariani, S.; Pino, L.; Strambini, L.M.; Tedeschi, L.; Barillaro, G. 10000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors. ACS Sens. 2016, 1, 1471–1479. [Google Scholar] [CrossRef]
- Washburn, A.L.; Shia, W.W.; Lenkeit, K.A.; Lee, S.-H.; Bailey, R.C. Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays. Analyst 2016, 141, 5358–5365. [Google Scholar] [CrossRef] [Green Version]
- Fritz, J.; Cooper, E.B.; Gaudet, S.; Sorger, P.K.; Manalis, S.R. Electronic detection of DNA by its intrinsic molecular charge. Proc. Natl. Acad. Sci. USA 2002, 99, 14142–14146. [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, J.; Saif, M.T.A. MEMS sensors and microsystems for cell mechanobiology. J. Micromech. Microeng. 2011, 21, 054002. [Google Scholar] [CrossRef]
- Ciuti, G.; Ricotti, L.; Menciassi, A.; Dario, P. MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: A review on research activities in Italy. Sensors 2015, 15, 6441–6468. [Google Scholar] [CrossRef]
- Sharma, H.; Alvi, P.; Dalela, S.; Akhtar, J. Role of MEMS in biomedical application: A review. Sens. Transducers 2010, 115, 1. [Google Scholar]
- Jivani, R.R.; Lakhtaria, G.J.; Patadiya, D.D.; Patel, L.D.; Jivani, N.P.; Jhala, B.P. Biomedical microelectromechanical systems (BioMEMS): Revolution in drug delivery and analytical techniques. Saudi Pharm. J. 2016, 24, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Grayson, A.C.R.; Shawgo, R.S.; Johnson, A.M.; Flynn, N.T.; Li, Y.; Cima, M.J.; Langer, R. A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 2004, 92, 6–21. [Google Scholar] [CrossRef]
- Judy, J.W. Biomedical applications of MEMS. In Proceedings of the Measurement and Science Technology Conference, Anaheim, CA, USA, 31 January–1 February 1991; pp. 403–414. [Google Scholar]
- Arshak, A.; Arshak, K.; Lyons, G.; Waldron, D.; Morris, D.; Korostynska, O.; Jafer, E. Review of the potential of a wireless MEMS microsystem for biomedical applications. Sens. Rev. 2005, 25, 277–286. [Google Scholar] [CrossRef]
- Wang, W.; Soper, S.A. Bio-MEMS: Technologies and Applications; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Dheringe, N.; Rahane, S. Recent advances in mems sensor technology biomedical mechanical thermo-fluid & electromagnetic sensors. Int. J. Electron. Commun. Instrum. Eng. Res. Dev. 2013, 3, 73–90. [Google Scholar]
- He, B.; Morrow, T.J.; Keating, C.D. Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 2008, 12, 522–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schander, A.; Stemmann, H.; Kreiter, A.; Lang, W. Silicon-Based Microfabrication of Free-Floating Neural Probes and Insertion Tool for Chronic Applications. Micromachines 2018, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Boric-Lubecke, O.; Droitcour, A.D.; Lubecke, V.M.; Lin, J.; Kovacs, G.T. Wireless IC Doppler radars for sensing of heart and respiration activity. In Proceedings of the 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, Niš, Yugoslavia, 1–3 October 2003; pp. 337–344. [Google Scholar]
- Weisfield, R.L.; Hartney, M.A.; Street, R.A.; Apte, R.B. New amorphous-silicon image sensor for x-ray diagnostic medical imaging applications. In Proceedings of the Medical Imaging: Physics of Medical Imaging, San Diego, CA, USA, 22–24 February 1998; pp. 444–453. [Google Scholar]
- Kovacs, G.T.; Storment, C.W.; Halks-Miller, M.; Belczynski, C.R.; Santina, C.D.; Lewis, E.R.; Maluf, N.I. Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves. IEEE Trans. Biomed. Eng. 1994, 41, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Borkholder, D. Cell based Biosensors Using Microelectrodes. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1998. [Google Scholar]
- Ksendzov, A.; Lin, Y. Integrated optics ring-resonator sensors for protein detection. Opt. Lett. 2005, 30, 3344–3346. [Google Scholar] [CrossRef]
- Gary, P.A. Modeling and Optimization of a Silicon Photosensor for a Reading Aid; Stanford University CA Stanford Electronics Labs: Stanford, CA, USA, 1967. [Google Scholar]
- Hill, D. Progress in medical instrumentation over the past fifty years. J. Phys. E Sci. Instrum. 1968, 1, 697. [Google Scholar] [CrossRef]
- Wise, K.D. Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage. Sens. Actuators A Phys. 2007, 136, 39–50. [Google Scholar] [CrossRef]
- Kotzar, G.; Freas, M.; Abel, P.; Fleischman, A.; Roy, S.; Zorman, C.; Moran, J.M.; Melzak, J. Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 2002, 23, 2737–2750. [Google Scholar] [CrossRef]
- Durini, D. High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Smith, C.S. Piezoresistance effect in germanium and silicon. Phys. Rev. 1954, 94, 42. [Google Scholar] [CrossRef]
- Tufte, O.; Chapman, P.; Long, D. Silicon diffused-element piezoresistive diaphragms. J. Appl. Phys. 1962, 33, 3322–3327. [Google Scholar] [CrossRef]
- Afsarimanesh, N.; Mukhopadhyay, S.C.; Kruger, M. Molecularly imprinted polymer-based electrochemical biosensor for bone loss detection. IEEE Trans. Biomed. Eng. 2018, 65, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Nag, A.; Zia, A.I.; Li, X.; Mukhopadhyay, S.C.; Kosel, J. Novel Sensing Approach for LPG Leakage Detection: Part I—Operating Mechanism and Preliminary Results. IEEE Sens. J. 2016, 16, 996–1003. [Google Scholar] [CrossRef]
- Nag, A.; Zia, A.I.; Li, X.; Mukhopadhyay, S.C.; Kosel, J. Novel Sensing Approach for LPG Leakage Detection—Part II: Effects of Particle Size, Composition, and Coating Layer Thickness. IEEE Sens. J. 2016, 16, 1088–1094. [Google Scholar] [CrossRef]
- Van Putten, M.; Van Putten, M.; Van Putten, A.; Pompe, J.; Bruining, H. A silicon bidirectional flow sensor for measuring respiratory flow. IEEE Trans. Biomed. Eng. 1997, 44, 205–208. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, J.; Li, C.; Ma, D.; Lee, C.; Lee, S. Silicon nanowires as chemical sensors. Chem. Phys. Lett. 2003, 369, 220–224. [Google Scholar] [CrossRef]
- Otte, N. The silicon photomultiplier-a new device for high energy physics, astroparticle physics, industrial and medical applications. In Proceedings of the IX International Symposium on Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments, Stanford, CA, USA, 3–6 April 2006; pp. 1–9. [Google Scholar]
- Laschi, S.; Mascini, M. Planar electrochemical sensors for biomedical applications. Med. Eng. Phys. 2006, 28, 934–943. [Google Scholar] [CrossRef]
- Mamishev, A.V.; Sundara-Rajan, K.; Yang, F.; Du, Y.; Zahn, M. Interdigital sensors and transducers. Proc. IEEE 2004, 92, 808–845. [Google Scholar] [CrossRef]
- Diamond, G.G.; Hutchins, D.A. A new capacitive imaging technique for NDT. In Proceedings of the European Conference NDT, Berlin, Germany, 25–29 September 2006; p. 229. [Google Scholar]
- Osoinach, B. Proximity Capacitive Sensor Technology for Touch Sensing Applications. Available online: cache.freescale.com/files/sensors/doc/white_paper/PROXIMITYWP.pdf (accessed on 27 June 2019).
- Anandan, N.; George, B. A wide-range capacitive sensor for linear and angular displacement measurement. IEEE Trans. Ind. Electron. 2017, 64, 5728–5737. [Google Scholar] [CrossRef]
- Afsarimanesh, N.; Mukhopadhyay, S.C.; Kruger, M. Planar Interdigital Sensors and Electrochemical Impedance Spectroscopy. In Electrochemical Biosensor: Point-of-Care for Early Detection of Bone Loss; Springer: Berlin, Germany, 2019; pp. 33–44. [Google Scholar]
- Cheng, B. Security Imaging Devices with Planar Capacitance Sensor Arrays. Ph.D. Thesis, University of Manchester, Manchester, UK, 2008. [Google Scholar]
- Frounchi, J.; Dehkhoda, F. High-speed capacitance scanner. In Proceedings of the 3rd World Congress on Industrial Process Tomography, Banff, AB, Canada, 2–5 September 2003; pp. 846–852. [Google Scholar]
- Hu, X.; Yang, W. Planar capacitive sensors–Designs and applications. Sens. Rev. 2010, 30, 24–39. [Google Scholar] [CrossRef]
- Musayev, J.; Adlgüzel, Y.; Külah, H.; Eminoğlu, S.; Akln, T. Label-free DNA detection using a charge sensitive CMOS microarray sensor chip. IEEE Sens. J. 2014, 14, 1608–1616. [Google Scholar] [CrossRef]
- Afsarimanesh, N.; Mukhopadhyay, S.C.; Kruger, M. Performance Assessment of Interdigital Sensor for Varied Coating Thicknesses to Detect CTX-I. IEEE Sens. J. 2018, 18, 3924–3931. [Google Scholar] [CrossRef]
- Afsarimanesh, N.; Alahi, M.E.E.; Mukhopadhyay, S.C.; Kruger, M. Development of IoT-Based Impedometric Biosensor for Point-of-Care Monitoring of Bone Loss. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 211–220. [Google Scholar] [CrossRef]
- Fernandez, R.E.; Stolyarova, S.; Chadha, A.; Bhattacharya, E.; Nemirovsky, Y. MEMS composite porous silicon/polysilicon cantilever sensor for enhanced triglycerides biosensing. IEEE Sens. J. 2009, 9, 1660–1666. [Google Scholar] [CrossRef]
- Abdelghani, L.; Nasr-Eddine, M.; Azouza, M.; Abdellah, B.; Moadh, K. Modeling of silicon MEMS capacitive pressure sensor for biomédical applications. In Proceedings of the 9th International Design and Test Symposium (IDT), Algiers, Algeria, 16–18 December 2014; pp. 263–266. [Google Scholar]
- Park, J.; Kim, J.-K.; Kim, D.-S.; Shanmugasundaram, A.; Park, S.A.; Kang, S.; Kim, S.-H.; Jeong, M.H.; Lee, D.-W. Wireless pressure sensor integrated with a 3D printed polymer stent for smart health monitoring. Sens. Actuators B Chem. 2019, 280, 201–209. [Google Scholar] [CrossRef]
- Tohyama, O.; Kohashi, M.; Sugihara, M.; Itoh, H. A fiber-optic pressure microsensor for biomedical applications. Sens. Actuators A Phys. 1998, 66, 150–154. [Google Scholar] [CrossRef]
- Reinhoudt, D. Durable chemical sensors based on field-effect transistors. Sens. Actuators B Chem. 1995, 24, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Chudy, M.; Wroblewski, W.; Dybko, A.; Brzozka, Z. Multi-ion analysis based on versatile sensor head. Sens. Actuators B Chem. 2001, 78, 320–325. [Google Scholar] [CrossRef]
- Sergeyeva, T.; Soldatkin, A.; Rachkov, A.; Tereschenko, M.; Piletsky, S.; Elskaya, A. β-Lactamase label-based potentiometric biosensor for α-2 interferon detection. Anal. Chim. Acta 1999, 390, 73–81. [Google Scholar] [CrossRef]
- Selvanayagam, Z.E.; Neuzil, P.; Gopalakrishnakone, P.; Sridhar, U.; Singh, M.; Ho, L. An ISFET-based immunosensor for the detection of β-Bungarotoxin. Biosens. Bioelectron. 2002, 17, 821–826. [Google Scholar] [CrossRef]
- Errachid, A.; Ivorra, A.; Aguilo, J.; Villa, R.; Zine, N.; Bausells, J. New technology for multi-sensor silicon needles for biomedical applications. Sens. Actuators B Chem. 2001, 78, 279–284. [Google Scholar] [CrossRef]
- Young, D.; Cong, P. Wireless Implantable Sensors: From Lab to Technology Breakthrough Ambitions. Sens. Actuators A Phys. 2019, 294, 81–90. [Google Scholar] [CrossRef]
- Kobayashi, T.; Makimoto, N.; Oikawa, T.; Wada, A.; Funakubo, H.; Maeda, R. Linear actuation piezoelectric microcantilever using tetragonal composition PZT thin films. In Proceedings of the IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 413–416. [Google Scholar]
- Kobayashi, T.; Oyama, S.; Okada, H.; Makimoto, N.; Tanaka, K.; Itoh, T.; Maeda, R. An electrostatic field sensor driven by self-excited vibration of sensor/actuator integrated piezoelectric micro cantilever. In Proceedings of the IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; pp. 527–530. [Google Scholar]
- Feng, W.; Hettiarachchi, R.; Sato, S.; Kakushima, K.; Niwa, M.; Iwai, H.; Yamada, K.; Ohmori, K. Advantages of Silicon Nanowire MOSFETs over Planar Ones Investigated from the Viewpoints of Static and Noise Properties. In Proceedings of the International Conference on Solid State Devices and Materials, Nagoya, Japan, 2–5 September 2011. [Google Scholar]
- Zhu, H. Semiconductor Nanowire MOSFETs and Applications. Nanowires New Insights 2017, 101. [Google Scholar] [CrossRef]
- Chen, K.-I.; Li, B.-R.; Chen, Y.-T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6, 131–154. [Google Scholar] [CrossRef]
- Abdolahad, M.; Taghinejad, H.; Saeidi, A.; Taghinejad, M.; Janmaleki, M.; Mohajerzadeh, S. Cell membrane electrical charge investigations by silicon nanowires incorporated field effect transistor (SiNWFET) suitable in cancer research. RSC Adv. 2014, 4, 7425–7431. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Zhang, G.; Chua, J.H.; Chee, R.-E.; Wong, E.H.; Agarwal, A.; Buddharaju, K.D.; Singh, N.; Gao, Z.; Balasubramanian, N. DNA sensing by silicon nanowire: Charge layer distance dependence. Nano Lett. 2008, 8, 1066–1070. [Google Scholar] [CrossRef]
- Jamaa, M.H.B.; Carrara, S.; Georgiou, J.; Archontas, N.; De Micheli, G. Fabrication of memristors with poly-crystalline silicon nanowires. In Proceedings of the 9th IEEE Conference on Nanotechnology (IEEE-NANO), Genoa, Italy, 26–30 July 2009; pp. 152–154. [Google Scholar]
- Tzouvadaki, I.; Parrozzani, C.; Gallotta, A.; De Micheli, G.; Carrara, S. Memristive biosensors for PSA-IgM detection. BioNanoScience 2015, 5, 189–195. [Google Scholar] [CrossRef]
- Tzouvadaki, I.; Puppo, F.; Doucey, M.-A.; De Micheli, G.; Carrara, S. Computational study on the electrical behavior of silicon nanowire memristive biosensors. IEEE Sens. J. 2015, 15, 6208–6217. [Google Scholar] [CrossRef]
- Beccai, L.; Roccella, S.; Arena, A.; Valvo, F.; Valdastri, P.; Menciassi, A.; Carrozza, M.C.; Dario, P. Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications. Sens. Actuators A Phys. 2005, 120, 370–382. [Google Scholar] [CrossRef]
- Manikandan, N.; Muruganand, S.; Divagar, M.; Viswanathan, C. Design and fabrication of MEMS based intracranial pressure sensor for neurons study. Vacuum 2019, 163, 204–209. [Google Scholar] [CrossRef]
- Pramanik, C.; Saha, H.; Gangopadhyay, U. Design optimization of a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications. J. Micromech. Microeng. 2006, 16, 2060. [Google Scholar] [CrossRef]
- Wu, N.; Tian, Y.; Zou, X.; Zhai, Y.; Barringhaus, K.; Wang, X. A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model. Sens. Actuators B Chem. 2013, 181, 172–178. [Google Scholar] [CrossRef]
- Satake, D.; Ebi, H.; Oku, N.; Matsuda, K.; Takao, H.; Ashiki, M.; Ishida, M. A sensor for blood cell counter using MEMS technology. Sens. Actuators B Chem. 2002, 83, 77–81. [Google Scholar] [CrossRef]
- Kang, S.-K.; Murphy, R.K.; Hwang, S.-W.; Lee, S.M.; Harburg, D.V.; Krueger, N.A.; Shin, J.; Gamble, P.; Cheng, H.; Yu, S. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Zhao, J.; Yu, K.J.; Song, E.; Farimani, A.B.; Chiang, C.-H.; Jin, X.; Xue, Y.; Xu, D.; Du, W. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl. Acad. Sci. USA 2016, 113, 11682–11687. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, G.; Erill, I.; Caro, J.; Gómez, R.; Riera, D.; Villa, R.; Godignon, P. Manufacturing and full characterization of silicon carbide-based multi-sensor micro-probes for biomedical applications. Microelectron. J. 2007, 38, 406–415. [Google Scholar] [CrossRef]
- Shin, J.; Yan, Y.; Bai, W.; Xue, Y.; Gamble, P.; Tian, L.; Kandela, I.; Haney, C.R.; Spees, W.; Lee, Y. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 2019, 3, 37. [Google Scholar] [CrossRef]
- Disadvantages of Silicon Sensors. Available online: https://www.printedelectronicsworld.com/articles/52/problems-with-silicon-chips (accessed on 27 June 2019).
- Advantages and Disadvantages of Silicon. Available online: http://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-Silicon.html (accessed on 27 June 2019).
- Han, T.; Kundu, S.; Nag, A.; Xu, Y. 3D Printed Sensors for Biomedical Applications: A Review. Sensors 2019, 19, 1706. [Google Scholar] [CrossRef]
- Gupta, S.; Navaraj, W.T.; Lorenzelli, L.; Dahiya, R. Ultra-thin chips for high-performance flexible electronics. NPJ Flex. Electron. 2018, 2, 8. [Google Scholar] [CrossRef]
- Herbert, R.; Kim, J.-H.; Kim, Y.; Lee, H.; Yeo, W.-H. Soft material-enabled, flexible hybrid electronics for medicine, healthcare, and human-machine interfaces. Materials 2018, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.M.; Gumus, A.; Nassar, J.M.; Hussain, M.M. CMOS enabled microfluidic systems for healthcare based applications. Adv. Mater. 2018, 30, 1705759. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-W. Application of Soft Lithography for Nano Functional Devices. Lithography 2010, 403. [Google Scholar]
- Chiappini, C.; Liu, X.; Fakhoury, J.R.; Ferrari, M. Biodegradable porous silicon barcode nanowires with defined geometry. Adv. Funct. Mater. 2010, 20, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- Rajan, N.K.; Routenberg, D.A.; Reed, M.A. Optimal signal-to-noise ratio for silicon nanowire biochemical sensors. Appl. Phys. Lett. 2011, 98, 264107. [Google Scholar] [CrossRef] [PubMed]
- Changing Wafer Size and the Move to 300 mm. Available online: http://smithsonianchips.si.edu/ice/cd/CEICM/SECTION7.pdf (accessed on 27 June 2019).
- Medical Flexible Packaging Market Analysis by Material. Available online: https://www.grandviewresearch.com/industry-analysis/medical-flexible-packaging-market (accessed on 27 June 2019).
- Global Silicon Carbide Market. Available online: https://flairinsights.com/report-details/global-silicon-carbide-market/14663 (accessed on 27 June 2019).
- Silicon Carbide Power Semiconductors Market Worth. Available online: https://www.prnewswire.com/news-releases/silicon-carbide-power-semiconductors-market-worth-1-109-mn-by-2025-cagr-18-1-allied-market-research-881380442.html (accessed on 27 June 2019).
Materials | Technique of Fabrication | Application | Strengths | Ref. |
---|---|---|---|---|
Silicon-based MEMS Electric Condenser Microphone | Semiconducting production processing | Human pulse detection | Smaller size, better quality than other ECMs | [21] |
Silicon Nanowire | Bottom-up approach | Detection of DNA molecules | Thermally and chemically stable, interconnects better with the components | [35] |
Silicon probe, PEDOT: PSS, polyimide | Monolithic microfabrication process | Detection of neural activity | Implants several probes in the brain within a short time | [36] |
Silicon-based CMOS and BiCMOS | Photolithography and chemical process | Heartbeat and respiration activity | Wireless communication, high data transfer rate | [37] |
Amorphous silicon-image sensor based on thin-film transistors | Thin-film semiconducting process | X-ray Diagnostic Medical Imaging | Low data lines capacitance, noise cancellation techniques and optimised timing | [38] |
Silicon-based CMOS and BiCMOS | Photolithography and chemical process | Detection of peripheral and cranial nerve activities | Enhanced biological and electrical performance of the implantable sensors | [39] |
Silicon-Silicon dioxide-Chromium | Conventional photolithography process | Detection of proteins and photo lipids | Reduced electrode impedance, higher sensitivity, reduced dependence on cell mobility | [40] |
Nitrogen-doped silicon | Thermal oxidation and deposition | Detection of protein (Avdin) | Low detection limit and high sensitivity | [41] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Hu, X.; Kundu, S.; Nag, A.; Afsarimanesh, N.; Sapra, S.; Mukhopadhyay, S.C.; Han, T. Silicon-Based Sensors for Biomedical Applications: A Review. Sensors 2019, 19, 2908. https://doi.org/10.3390/s19132908
Xu Y, Hu X, Kundu S, Nag A, Afsarimanesh N, Sapra S, Mukhopadhyay SC, Han T. Silicon-Based Sensors for Biomedical Applications: A Review. Sensors. 2019; 19(13):2908. https://doi.org/10.3390/s19132908
Chicago/Turabian StyleXu, Yongzhao, Xiduo Hu, Sudip Kundu, Anindya Nag, Nasrin Afsarimanesh, Samta Sapra, Subhas Chandra Mukhopadhyay, and Tao Han. 2019. "Silicon-Based Sensors for Biomedical Applications: A Review" Sensors 19, no. 13: 2908. https://doi.org/10.3390/s19132908
APA StyleXu, Y., Hu, X., Kundu, S., Nag, A., Afsarimanesh, N., Sapra, S., Mukhopadhyay, S. C., & Han, T. (2019). Silicon-Based Sensors for Biomedical Applications: A Review. Sensors, 19(13), 2908. https://doi.org/10.3390/s19132908