
sensors

Article

A Deep Learning Approach for Maximum Activity
Links in D2D Communications

Bocheng Yu 1, Xingjun Zhang 1, Francesco Palmieri 2, Erwan Creignou 1 and Ilsun You 3,*
1 School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
2 Department of Computer Science, University of Salerno, 84084 Fisciano (SA), Italy
3 Department of Information Security Engineering, Soonchunhyang University, Asan-si 31538, Korea
* Correspondence: isyou@sch.ac.kr; Tel.: +82-(0)41-530-3099

Received: 14 May 2019; Accepted: 28 June 2019; Published: 3 July 2019
����������
�������

Abstract: Mobile cellular communications are experiencing an exponential growth in traffic load on
Long Term Evolution (LTE) eNode B (eNB) components. Such load can be significantly contained
by directly sharing content among nearby users through device-to-device (D2D) communications,
so that repeated downloads of the same data can be avoided as much as possible. Accordingly,
for the purpose of improving the efficiency of content sharing and decreasing the load on the eNB,
it is important to maximize the number of simultaneous D2D transmissions. Specially, maximizing
the number of D2D links can not only improve spectrum and energy efficiency but can also reduce
transmission delay. However, enabling maximum D2D links in a cellular network poses two major
challenges. First, the interference between the D2D and cellular communications could critically
affect their performance. Second, the minimum quality of service (QoS) requirement of cellular
and D2D communication must be guaranteed. Therefore, a selection of active links is critical to gain
the maximum number of D2D links. This can be formulated as a classical integer linear programming
problem (link scheduling) that is known to be NP-hard. This paper proposes to obtain a set of network
features via deep learning for solving this challenging problem. The idea is to optimize the D2D link
schedule problem with a deep neural network (DNN). This makes a significant time reduction for
delay-sensitive operations, since the computational overhead is mainly spent in the training process
of the model. The simulation performed on a randomly generated link schedule problem showed
that our algorithm is capable of finding satisfactory D2D link scheduling solutions by reducing
computation time up to 90% without significantly affecting their accuracy.

Keywords: D2D communications; deep learning; link activation; wireless networks; integer
programming

1. Introduction

In the last decade, the diffusion of smartphones, tablets, and other smart devices has led
to an astonishing demand for ubiquitous mobile network access, and the rise of online services,
such as video streaming, social network applications, and mobile gaming, has significantly increased
the traffic load characterizing wireless communications. Typically, the same popular data and content
may be requested multiple times at the same location by different users/devices, which results in
an unnecessary waste of backhaul capacity and spectrum resources. In fact, the main cause of these
problems is due to video on demand contents accessed in an asynchronous way (unlike live streaming
and digital TV), so that the demands concentrate on a small set of popular contents that are requested
by a significant number of devices, often located in the same cellular coverage area [1]. To solve these
problems, it is possible to reconsider the current network architecture and explore more advanced

Sensors 2019, 19, 2941; doi:10.3390/s19132941 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19132941
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/13/2941?type=check_update&version=2


Sensors 2019, 19, 2941 2 of 17

communication models and paradigms. D2D direct communication is considered one of the most
promising technological issues in next generation cellular networks [2].

It consists of establishing a direct communication channel between two nearby mobile users,
sharing a common short-range radio coverage space, without traversing a base station (BS) or core
network equipment [3]. It results in a very flexible communication model with unique advantages.
First, due to its underlying short-range direct communication technology, D2D user equipment (UE)
allows for higher transfer rates together with very limited end-to-end delays. Second, any direct
proximity-based transmission that does not traverse centralized channel collection points (and potential
bottlenecks) in the cellular infrastructure, such as the evolved Node B (eNB) in LTE networks, may be
more resource-efficient than conventional cellular communication by saving energy and channel
capacity, as well as improving spectrum utilization. Third, data are transferred locally, which is helpful
for offloading cellular traffic and alleviating backhaul crowding [4]. To enhance the efficiency of content
sharing and reduce the load on the eNB, it is important to maximize the number of simultaneous D2D
transmissions, each associated to an active communication channel or link, within a specific coverage
area. In particular, maximizing the potential number of D2D links within a cellular coverage area not
only improves the spectrum and energy efficiency but also reduces transmission delay. However, such
a maximization process poses three major challenges. First, interference between cellular and D2D users
could critically affect their performance. Second, the minimum quality of service (QoS) requirements
must be simultaneously guaranteed for both cellular and D2D communications. Therefore, the selection
of suitable active links in each time interval (or slot, in presence of a slotted time evolution model)
is fundamental to achieve the maximum number of simultaneous D2D links. Third, a highly flexible
and scalable network infrastructure needs to support a large number of heterogeneous users as well
as the deployment and interworking of a multiplicity of combined technologies, such as the ones
characterizing the Internet of Things (IoT) and vehicular ad-hoc communications [5–7], so that
the degree of complexity characterizing such infrastructure, both in terms of variables and degrees of
freedom in the associated model, makes the traditional approaches provided by optimization theory
more challenging than ever [3]. The research of scheduling for network resources also causes great
concern about computational efficiency [8,9].

The D2D links scheduling problem, aiming at maximizing the number of active D2D links,
consists of determining which D2D pairs can communicate simultaneously (by using direct channels)
while guaranteeing that the remaining communications between cellular users are not affected.
Since D2D users share spectrum resources with cellular users, interference is one of the major
challenges in D2D link scheduling. Interference may be not only experienced between D2D users
operating within the same area but, D2D transmission may cause cross-layer interference phenomena
also involving cellular users. The interference occurring in D2D communication can be modeled by
using both a graph-based model and a physics-based one. The maximum D2D links problem has been
proven to be NP-hard in both models [10]. Most research is based on the graph model (e.g., [11–15],
but such model is too simplistic to simulate how the signal strength attenuation is affected by distance
for D2D users which share the same cellular spectrum resources. On the contrary, the physics-based
model adopted in this paper reflects the physical reality in a more precise and realistic way.

In real production networks, scheduling decisions must be taken online and in real-time so that
the available optimization strategies aiming at solving offline the NP-hard linear programming-based
problem formulations are not acceptable at all. In order to satisfy the strict delay demands of
online operations, the complexity of a link scheduling algorithm must be significantly reduced,
eventually applying some heuristic strategy leading to sub-optimal but yet acceptable results.
However, this may affect network performance, depending on the achieved distance from the optimum
solution. Therefore, developing efficient and effective heuristic-based strategies to solve the link
scheduling problem becomes a really challenging task when implementing D2D communication in
cellular network scenarios. In recent years, machine learning has emerged as a successful approach for
coping with complex problems and has been widely applied to many fields, such as hyperspectral



Sensors 2019, 19, 2941 3 of 17

image classification, ship detection, and wireless communications [16–19]. With the success of
massive parallel computing environments, also empowered by the use of graphics processing unit
(GPU)-based acceleration frameworks, machine learning has emerged as a successful approach for
coping with complex problems in the wireless communications area. In particular, deep learning,
a promising subset of machine learning, has been applied to wireless networks optimization and big
data processing. The purpose of deep learning is to simulate complex functions through a predefined
model consisting of neuron units. In the deep learning training process, appropriate weight values are
determined through calculation and tuning between neurons, a process which has the goal of extracting
knowledge/information, in form of specific features from input data. Then the trained-model is able to
make accurate classification or prediction decisions based on such features [20]. Unlike traditional
machine learning methods that heavily rely on relevant domain experts to extract features from data,
the deep learning model automatically acquires a sample feature through multiple hidden layers
consisting of neuron units to achieve classification or prediction [21].

In this paper, we leverage the physical interference model and develop a novel machine
learning-based approach for achieving the maximum number of D2D links within a cellular coverage area.
We use deep neural network (DNN)-derived features from D2D link information to make time-efficient
and near-optimal decisions in the operation phase through a real-time optimization strategy driven by
the neural network itself. The DNN model is trained by pre-computed samples to find out the complex
relationship between link information and D2D link activation. In doing this, we consider a more
realistic and accurate signal-to-interference-plus-noise ratio (SINR) interference model that considers
both cellular users and D2D users. We also accomplish extensive simulations to assess the performance
of the DNN-based method and highlight its effectiveness. The trained-DNN approach can generate
approximate solutions quite near the optimum by immediately achieving a satisfactory quality of
the outputs. The numerical of simulation shows the superiority of the DNN-driven solution in terms of
the time-cost of the operations involved respect to iterative optimization algorithms.

Our main contribution can be summarized as follows:

(1) In this paper, we propose a cutting-edge learning-based method for solving the maximum D2D
links problem. Using the training samples generated by a conventional method, we train a deep
learning model to simulate the complex relationship between link information and link activity.
Due to computational burden transferred to the training phase, the algorithm significantly reduces
the computational overhead.

(2) We introduced a sizable D2D communication network under an SINR interference model.
Furthermore, we present the value of a two-layer interference—a D2D layer and cellular layer—and then
formulate a maximum active D2D links problem subject to SINR constraints.

(3) We adjust the parameters of the learning model depending on simulation results to get an optimal
output. The experiments show that our algorithm can reduce more than 90% the time-spent.

(4) Through simulation results, we analyze how some factors, such as SINR and the coverage of
the BS, affect the number of active D2D links. Based on such analysis, we can efficiently schedule
D2D links under different wireless network environments.

2. Related Work

Link scheduling plays a crucial role in meeting strict QoS requirement in wireless networks.
Maximum link scheduling is an important sub-problem of link scheduling. The authors of [10] proved
for the first time that link scheduling under a SINR model is NP-hard and proposed an algorithm
for the one-shot link scheduling problem. The algorithm first separates the problem instance into
disjoint link classes and then schedules each link class by using a greedy method. The work
in [22] firstly explored a one-slot algorithm for maximizing the number of links with a constant
approximation guarantee, and then an extended algorithm with O(logn) (n is total number of links)
computational complexity was introduced for a minimized-length schedule. However, none of
the above papers considered the ambient noise. A method based on partitioning was presented



Sensors 2019, 19, 2941 4 of 17

in [23] to find the independent link set with the maximum weight. In [24], a distributed greedy
algorithm for maximizing the number of links, subject to interference constraints was proposed.
In these approaches, the improvements achieved in terms of optimization quality could result in
a hugely higher computational complexity and, hence, an increment in overall runtime performance.
A low-complexity scheduling scheme named DistGreedy based on a link-conflict graph has been
proposed in [25]. The algorithm repeatedly removed the active links and blocked links in contention
slots until the graph was left empty. The authors of [26] attempted to find a maximum-weighted subset
of communications without spectral splitting at the individual time unit. In this model, A denotes
a set of communication tasks, and each request, a ∈ A , has a demand d(a ) ∈ (0, 1]. If d(a ) ∈ (1/2, 1],
it is a heavy request, otherwise it is a light request. The algorithm considered both heavy requests
and light requests of A for determining the link schedule. In [27], a maximum tolerance and minimum
(MTMA) model based on a greedy schedule was studied for maximum link scheduling in one-slot.
The experiments showed that the algorithm improved 28–64% of the current algorithm. The authors
in [28] developed a distributed greedy heuristic for a k-hop link schedule. Because of interference from
two layers, the algorithm for the D2D links schedule was much more complicated than above schemes.

With the development of the IoT, due the increased complexity of the network structure,
link scheduling experiences new difficulties in meeting QoS requirements when using a traditional
optimization method. In recent years, deep learning, has been promisingly applied to wireless networks
optimization and big data processing [21,29,30]. In [31], the authors considered solving a resource
allocation problem for D2D communication using a Q-learning-based method. In [32], the authors
applied deep learning to reduce the complexity of solving a wireless networks optimization problem.
The authors in [33] proposed a resource allocation strategy using cooperative reinforcement learning.
The target of their algorithm was to maximize the throughput of the system by selecting the proper
level of power for the resource blocks of the cellular user and D2D pairs. In [34], the authors adopted
deep learning to solve the objective function of maximizing the weighed sum rate over N D2D users
and demonstrated that link scheduling does not necessarily require the exact channel estimates. In [35],
the author adopted a method based on reinforcement learning to solve the resource scheduling for
vehicle-to-vehicle (V2V) communications based on D2D. In this article, each vehicle, regarded as
an agent, made decisions by itself. Since they do not require global information, decentralized
scheduling methods are characterized by a low overhead. Experiments have shown that the proposed
algorithm can effectively schedule limited links with minimized interference under delay constraints.
Solving the maximum active D2D links problem under interference constraints by deep learning
is promising.

3. System Model

We considered that D2D communications occur within a single cell of a cellular system and share
the system’s downlink resources. In this scenario, a cellular device may suffer interference phenomena
introduced by D2D communication activities. D2D transmitters can also interfere with the eNB. Due to
the strong interference management capability of the eNB, it is necessary to schedule links in order
to allow downlink connectivity for cellular device communications. In the proposed system model,
D2D devices are randomly distributed under the coverage of the same eNB. As shown in Figure 1,
the heterogeneous network consists of a single eNB for serving cellular devices and M D2D-capable
devices. Let V = {V1, V2, · · · , VM} denote the set of D2D users in the network. To make full use
of available spectrum resources, we allowed multiple D2D devices to simultaneously use the same
downlink channel of cellular devices. Two D2D devices (a D2D pair) can establish no more than a direct
communication. According to the SINR model, the SINR involving a single D2D sender–receiver pair
(i,j)(i, j ∈ V) in the presence of a cellular device C connected to an eNB operating in the same cell is:

SINRD =
Pigi j

PBgC + η
(1)



Sensors 2019, 19, 2941 5 of 17

where Pi is the transmit power characterizing the D2D sender i, gij denotes the propagation attenuation
(link gain) modeled as gij = dij

−α (dij denotes the distance between D2D pair and α ≥ 1 is a constant
path-loss exponent), PB is the transmission power of the eNB, gC is the gain of a cellular device C
connected to the eNB concurrent to i, and η is the ambient noise. Clearly, the signal power transmitted
by the eNB to C is perceived at i as interference. Let γC and γD denote the minimum SINR threshold
of the cellular device and D2D device, respectively. If the condition SINRD ≥ γD is held, the D2D
receiver j successfully receives a message from D2D sender i (the D2D pair of devices communicate
successfully). We denote the set of N pairs A that are able to successfully perform D2D communication
as A = {A1, A2, · · · , AN}. The notation used in this paper is shown in Table 1.

Table 1. Summary of notation.

Symbol Meaning

V Sets of D2Ds
A Sets of D2D pairs
C Cellular user
η Ambient noise
α Path-loss exponent
Pi Transmit power of D2D i
PB Transmit power of the eNB
PC Transmit power of cellular user
gi j Channel gain between two D2D (i and j)
gC Channel gain between the eNB to cellular user
di j Transmission distance of two D2D (i and j)
diC Transmission distance between D2D i to cellular user

Sensors 2019, 19, x 5 of 17 

 

where 𝑷𝒊  is the transmit power characterizing the D2D sender i, gij denotes the propagation 
attenuation (link gain) modeled as gij = dij−α (dij denotes the distance between D2D pair and α ≥ 1 is a 
constant path-loss exponent), 𝑷𝑩 is the transmission power of the eNB, 𝒈𝑪 is the gain of a cellular 
device C connected to the eNB concurrent to i, and 𝜼 is the ambient noise. Clearly, the signal power 
transmitted by the eNB to C is perceived at i as interference. Let 𝜸𝑪 and 𝜸𝑫 denote the minimum 
SINR threshold of the cellular device and D2D device, respectively. If the condition 𝑺𝑰𝑵𝑹𝑫 ≥ 𝜸𝑫 is 
held, the D2D receiver j successfully receives a message from D2D sender i (the D2D pair of devices 
communicate successfully). We denote the set of N pairs A that are able to successfully perform D2D 
communication as 𝑨 = {𝑨𝟏，𝑨𝟐，⋯，𝑨𝑵}. The notation used in this paper is shown in Table 1. 

Table 1. Summary of notation. 

Symbol Meaning 
V Sets of D2Ds 
A Sets of D2D pairs 
C Cellular user 𝜂 Ambient noise α Path-loss exponent 𝑃 Transmit power of D2D i 𝑃 Transmit power of the eNB 𝑃  Transmit power of cellular user 𝑔 Channel gain between two D2D (i and j) 𝑔 Channel gain between the eNB to cellular user 𝑑 Transmission distance of two D2D (i and j) 𝑑  Transmission distance between D2D i to cellular user 

There are four conditions in the model: (1) Any D2D terminal device can communicate with 
another within the same cell; (2) a node can be a sender or receiver, but a node can send to at most 
one receiver or receive from at most one sender; (3) the D2D receiving user can estimate the link state 
information (channel state information, CSI) according to the received signal; and (4) the eNB controls 
channel resource allocation in a centralized way. 

 
Figure 1. System model. 

4. Problem Formulation 

As mentioned above, multiple D2D communications are allowed within the same cell by sharing 
spectrum resources with cellular users. Therefore, the inter-layer interference between devices 

Figure 1. System model.

There are four conditions in the model: (1) Any D2D terminal device can communicate with
another within the same cell; (2) a node can be a sender or receiver, but a node can send to at most
one receiver or receive from at most one sender; (3) the D2D receiving user can estimate the link state
information (channel state information, CSI) according to the received signal; and (4) the eNB controls
channel resource allocation in a centralized way.



Sensors 2019, 19, 2941 6 of 17

4. Problem Formulation

As mentioned above, multiple D2D communications are allowed within the same cell by sharing
spectrum resources with cellular users. Therefore, the inter-layer interference between devices
involved in cellular communication through the eNB and devices performing D2D data transfers
as well as intra-layer interferences between the different D2D pairs can be experienced and must be
correctly managed. When the number of D2D communication links heavily increases, the interference
caused by the sharing of the same spectrum resources will affect the reliability of cellular device
communications and even reduce the number of potential D2D links. In general, a device requiring
spectrum resources for cellular communication has a higher priority than a device competing for
establishing a D2D communication channel. Therefore, the resource scheduling problem is related
to maximizing the amount of D2D links while ensuring the QoS of the cellular device, which selects
a subset of A with the biggest cardinality under SINRD ≥ γD. Based on the above analysis, we started
from a conventional link scheduling scheme which guaranteed the communication reliability of
the cellular users and maximized the active D2D links. Due to the NP-hard nature of the underlying
problem, we used a DNN to optimize the above scheduling algorithm and reduce its running-time.

In order to properly formulate the problem, at first, we need to analyze the interference in
the cellular system (i.e., within the cell of inters). Here, when the pair of devices involved in direct
D2D communication reuses the downlink spectrum, the signal received by a generic cellular device C
consists of the expected signal from the eNB, with the addition of the interference from the D2D layer
and the ambient noise. In detail, by using the physical model, the SINR of the generic cellular device C
is defined as follows:

SINRC =
PBgC∑

(i, j)∈A xi jPigiC + η
(2)

where PB is the transmission power of the eNB, Pi is the transmission power of the D2D device i,
giC denotes the link gain from D2D sender i to cellular device C, gC is the gain of the cellular device
connected to the eNB, and η is ambient noise. To ensure the performance of the cellular device,
SINRC ≥ γC should be satisfied. Analogously, in the D2D layer, the signal perceived at the D2D
receiver j side consists of the one transmitted by i affected by the interference from both the cellular
and D2D layers. As such, the SINR at the D2D device level is:

SINRD =
Pigi j∑

(k, j)∈A, k,i xkjPkgkj + PBgBj + η
(3)

where gi j is the channel gain from the D2D sender i to receiver j and gBj is the channel gain from
the eNB to D2D device j. When SINRD ≥ γD, the D2D links perform normally.

To maximize the total amount of admissible D2D pairs, we need to consider the following
maximization link utility problem, subject to interference constraints associated to the performance of
D2D devices and the cellular user:

[MaxL] L∗ = max
∑

(i, j∈A)

xi j (4)

s.t.
∑

j∈V:(i, j)∈A

xi j +
∑

j∈V:(i, j)∈A

x ji ≤ 1, i ∈ V (5)

∑
j∈V:(i, j)∈A

xi j = yi (6)

PBgc ≥ γC

∑
i∈V

Pigicyi + η

 (7)



Sensors 2019, 19, 2941 7 of 17

Pigi jxi j + Mi j
(
1− xi j

)
≥ γD

∑
k,i

Pkgkjyk + PBgBj + η

 (8)

xi j ∈ {0, 1}, (i, j) ∈ A (9)

yi ∈ {0, 1}, i ∈ V (10)

The objective (4) maximizes the number of active D2D links. The binary variables xij and yi
are respectively associated to the presence of an active D2D pair from the devices i to j and to
the capability of D2D sender i to perform D2D communication. The constraints (5) and (6) state that
a D2D device can send to at most one receiver or receive from at most one sender; they also state that
each device terminating a link must be D2D-capable, whereas the constraints (7) and (8) formulate,
respectively, the SINR requirement of the cellular device and D2D devices. The use of a binary variable
to control whether a linear constraint is active is a very well-known modeling trick in integer linear
programming [36]. The solution of the problem [MaxL] can be obtained by using an exact algorithm
or a heuristic one. The exact algorithm is typically based on the use of the branch and bound [37]
and dynamic programming methods [38]. Though such methods can obtain an optimal solution, their
computational complexity is large and only suitable for small scale problems. On the other hand,
the heuristic algorithm is not based on finding the optimal solution of the problem, but it expects
to obtain a near global optimal solution in an acceptable time. If xi j = 1, (8) constrains the SINR to
be at least γD for xi j = 0. When no D2D links are active for the pair (i, j), the constraint is always
satisfied for a sufficiently large Mi j. Large values for Mi j can easily lead to numerical problems
and to weak linear relaxations ([39,40]). The choice of such big numbers for Mi j, known as Big-M in
integer programming, is used to turn on or off some inequality constraints when necessary and can
potentially result in difficulties when trying to solve an integer linear programming problem like
MaxL that relies heavily on the bounds of continuous relaxation to be solved in a computationally
acceptable time. That is, an improper selection of the Mij values can potentially result in a very weak
continuous relaxation. Moreover, the gain values in (8) may vary significantly in magnitude and,
hence, may introduce other numerical difficulties in solving the problem.

5. Deep Learning-Based Link Scheduling

In real networks, users’ positions, channel conditions, and data requests vary frequently, so any
effective scheduling algorithm must be able to make decisions in real time. In addition, the potential
number of D2D links increases exponentially with the number of D2D devices M operating within
the same cell. In scenarios characterized by large M values, selecting all the feasible D2D links in order
to offload cellular communications becomes extremely time consuming. To develop a time-efficient
algorithm, we designed a machine learning-based solution aimed at supporting and simplifying
the resolution of the aforementioned MaxL problem, based on properly training a DNN.

5.1. General Deep Learning

Figure 2 is the general architecture of the deep learning-based solution, in which the input layer
represents the features of the D2D pairs, and the output layer reports the D2D link activation result.
In the most general case, the parameters of hidden layers which consist of weights and the values
of neurons are used to connect the input layer and the output layer. The parameters of each hidden
layer are determined by the previous layer. In the process of training a typical learning model, we first
collected labeled input data to be used as a training set. Then the training set was fed to input layers
during the training phase by acquiring the results from the output layer, which may differ from
the expected values. The difference between the output value and the expected value can be calculated
by a loss function. Weights can be modified by a backpropagation (BP) method in order to minimize
the above difference or loss function. The training process of the learning network is meant to adjust
the weights through the training samples. When entering a test data set, the learning framework



Sensors 2019, 19, 2941 8 of 17

will generate a vector, which is an estimate of labeled value. The performance of a trained learning
model depends on the differences between the output vector and real value. Due to the fact that
the performance of a deep learning model is greatly influenced by the model parameters, it is difficult
to train a deep learning network [41]. For instance, in presence of a limited data set, if the training
model is designed in a way that is too complicated and tries to approximate a complex data relationship
by using a noise sample, it results into overfitting [42]. Conversely, if the design of the model is too
simple to fully simulate data correlation, the model can lead to underfitting. Both of these issues affect
the generalization ability of the learning model. When the deep learning model faces large-scale data,
both a high computational complexity and a long time-spending are introduced by the sum of the loss
functions using all the data as the training objects, so it is important to select an appropriate batch size
for training. In this paper, a series of parameters were compared through experiments to optimize
the performance of the learning model.

Sensors 2019, 19, x 8 of 17 

 

to select an appropriate batch size for training. In this paper, a series of parameters were compared 
through experiments to optimize the performance of the learning model. 

 
Figure 2. Learning structure. 

5.2. Deep Belief Network 

A deep learning framework is applied in the lower-levels of unsupervised learning networks 
[43]. We adopted the deep belief network (DBN) method to solve our link scheduling problem [44]. 
A DBN is a neural network composed of multiple layers of restricted Boltzmann stack machines 
(RBMs). An RBM consists of two kinds of layers. One is the visible layer for inputting samples. The 
other one, named the hidden layer, is used for extracting features. In an RBM, there is no connection 
in the same layer, and each visible layer is connected to a hidden layer via symmetric weights. Since 
the weights are all symmetric, an RBM can not only infer the state of neurons using hidden layers, it 
can also use them to reconstruct the input values. Since an RBM is not sufficient to extract complex 
information from the input, a DBN was adopted in the paper. A DBN consists of a visible layer as a 
bottom layer and other hidden layers, and the training process is mainly divided into two steps, as 
shown in Figure 3. Firstly, the layer-wise training strategy is adopted for an RBM. The input vector 
is used to train the hidden layer, and the output of the hidden layer is regarded as the input data 
vector for the higher layer. Secondly, the output layer of the DBN sets up the BP network, which 
receives the output vector from an RBM as its input vector and trains the classifier under supervised 
learning. Each layer can only guarantee the optimal output feature vector by adjusting weights, but 
it cannot make sure that the final output of a DBN is the optimal value. The DBN can use the 
difference between the output value and labeled value from the backpropagation network for the 
fine-tuning of the whole network. The training process of a DBN network can be used as the 
initialization of the weight parameter of a deep BP network, which makes the DBN overcome the 
shortcomings of the random initialization weight parameters that makes the BP network easily fall 
into the low optimum values and spend a long time training. 

Figure 2. Learning structure.

5.2. Deep Belief Network

A deep learning framework is applied in the lower-levels of unsupervised learning networks [43].
We adopted the deep belief network (DBN) method to solve our link scheduling problem [44]. A DBN
is a neural network composed of multiple layers of restricted Boltzmann stack machines (RBMs).
An RBM consists of two kinds of layers. One is the visible layer for inputting samples. The other one,
named the hidden layer, is used for extracting features. In an RBM, there is no connection in the same
layer, and each visible layer is connected to a hidden layer via symmetric weights. Since the weights
are all symmetric, an RBM can not only infer the state of neurons using hidden layers, it can also use
them to reconstruct the input values. Since an RBM is not sufficient to extract complex information
from the input, a DBN was adopted in the paper. A DBN consists of a visible layer as a bottom
layer and other hidden layers, and the training process is mainly divided into two steps, as shown in
Figure 3. Firstly, the layer-wise training strategy is adopted for an RBM. The input vector is used to train
the hidden layer, and the output of the hidden layer is regarded as the input data vector for the higher
layer. Secondly, the output layer of the DBN sets up the BP network, which receives the output vector
from an RBM as its input vector and trains the classifier under supervised learning. Each layer can
only guarantee the optimal output feature vector by adjusting weights, but it cannot make sure that
the final output of a DBN is the optimal value. The DBN can use the difference between the output
value and labeled value from the backpropagation network for the fine-tuning of the whole network.
The training process of a DBN network can be used as the initialization of the weight parameter of
a deep BP network, which makes the DBN overcome the shortcomings of the random initialization
weight parameters that makes the BP network easily fall into the low optimum values and spend
a long time training.



Sensors 2019, 19, 2941 9 of 17

Sensors 2019, 19, x 9 of 17 

 

 
Figure 3. Training process of deep belief network. 

5.3. DNN-Based Approach 

5.3.1. Design of Input layer 

The general model creates D2D link activation with information from the input layer. 
Information from the input layer should be able to indicate a variety of valuable information, 
including the location of D2D pairs and cellular devices. To this end, we define a |(M + 1 )| × |( M + 
1 )| matrix N for D2D users and cellular users, whose entries are specified as: 𝑁 = ൜𝑑   𝑖𝑓(𝑖, 𝑗) 𝑎𝑟𝑒 𝑎𝑛 𝑎𝑐𝑡𝑖𝑣𝑒 𝐷2𝐷 𝑝𝑎𝑖𝑟0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         (11) 

The input matrix first needs to be transformed into a |(𝑀 + 1)|ଶ vector to be used as an input to 
the learning framework. Because the DBN needs to be consistent with the sigmoid function, the node 
can only accept values in the range [0,1]. We need to normalize the input vector by dividing the 
largest element among the input vectors. We chose a maximum communicable distance of D2D pair 
as 𝑑௫  to normalize the vector in order to avoid the influence of normalization on the learning 
result. 

In fact, 𝑑௫ is calculated by the SINR model in network optimization problems in order to get 
feasible solutions due to limitation of the capabilities of the network. Summarily, the standardized 
D2D information vector can be fed to the learning model, which is: 𝑑ሙ = 𝑑𝑑௫ (12) 

5.3.2. Design of Output layer 

The learning model is designed to predict whether each D2D link is active in order to maximize 
the amount of D2D communication links. In a classification model, the output vector consists of 
categories of labeled input values. If N data need to be classified, the corresponding output should 
be an N-dimensional vector. Therefore, the length of the output vector should be the same as the total 
number of D2D pairs. In our model, the number of elementselement in the output vector is M. The 
value of the output is transposed in the rangetransformed between 0 and 1 by softmax to represent 
the probability of D2D link activation. The maximum probability value is set to 1, where element 1 
indicates that the D2D pair is active. The evaluation of the output vector is used to tune the learning 
model weights by using the BP method. 

Figure 3. Training process of deep belief network.

5.3. DNN-Based Approach

5.3.1. Design of Input layer

The general model creates D2D link activation with information from the input layer. Information
from the input layer should be able to indicate a variety of valuable information, including the location
of D2D pairs and cellular devices. To this end, we define a |(M + 1 )| × |( M + 1 )| matrix N for D2D
users and cellular users, whose entries are specified as:

Ni j =

{
di j i f (i, j) are an active D2D pair

0 otherwise
(11)

The input matrix first needs to be transformed into a
∣∣∣(M + 1)

∣∣∣2 vector to be used as an input to

the learning framework. Because the DBN needs to be consistent with the sigmoid function, the node
can only accept values in the range [0,1]. We need to normalize the input vector by dividing the largest
element among the input vectors. We chose a maximum communicable distance of D2D pair as dmax to
normalize the vector in order to avoid the influence of normalization on the learning result.

In fact, dmax is calculated by the SINR model in network optimization problems in order to get
feasible solutions due to limitation of the capabilities of the network. Summarily, the standardized
D2D information vector can be fed to the learning model, which is:

ď =
d

dmax
(12)

5.3.2. Design of Output layer

The learning model is designed to predict whether each D2D link is active in order to maximize
the amount of D2D communication links. In a classification model, the output vector consists of
categories of labeled input values. If N data need to be classified, the corresponding output should be
an N-dimensional vector. Therefore, the length of the output vector should be the same as the total
number of D2D pairs. In our model, the number of elementselement in the output vector is M.
The value of the output is transposed in the rangetransformed between 0 and 1 by softmax to represent
the probability of D2D link activation. The maximum probability value is set to 1, where element 1



Sensors 2019, 19, 2941 10 of 17

indicates that the D2D pair is active. The evaluation of the output vector is used to tune the learning
model weights by using the BP method.

5.3.3. Training Set

Once the input and output layers are settled, the training set consisting of pairs of D2D location
information and a D2D links activation state must be constructed. The training set is usually obtained
from historical data or an off-line solution to sample problems. In this paper, we randomly generated
D2D user location information and simulated the transmission state of the channel. A conventional
optimization algorithm was exploited to solve the D2D link schedule problem and produce labeled
training samples containing link information and a binary link state value. We present the training
process in Algorithm 1.

Algorithm 1: Procession of Training Set Generation

1. Generate a random location set of D2D nodes and cellular node;
2. Formulate the D2D link schedule problem;
3. initialization: n = 0;
4. while not at end of this document do
5. Solve the optimization problem by conventional method;
6. Add labeled solution to the training set;
7. i = i + 1;
8. end

5.3.4. Training Process

Algorithm 2 summarizes the training process of the learning framework. First, Algorithm 1
generates the training set. Then, the DBN is unsupervised and trained by a multi-layer RBM.
In the pre-training phase, real network data with initial random weights are used to train the DBN.
The BP method is applied to the supervised training. After multiple rounds of training, the weights in
the DBN are fixed. Finally, the BP method is performed on all layers of fine-tuning.

Algorithm 2: Training Process of a DBN

1. Input: Training Set; The number of layers: L, weight of lth layer: w(l);
2. for l = 1 · · · L do

3. initialization: w(l)
→ 0 ;

4. extract feature h(l− 1);

5. train w(l) of RBM of lth layer using h(l− 1);
6. end
7. use BP method to adjust the weight;
8. fine-tuning the parameters of the whole layer
9. output: the state of D2D links

6. Performance Evaluation

In our proof-of-concept evaluation scenario the nodes are randomly placed on an area of 250 m2.
The channel gain is gi j = d−3

i j , where di j is the distance between D2D users i and j. The detailed
simulation parameters are given in Table 2:



Sensors 2019, 19, 2941 11 of 17

Table 2. Parameters setting of simulation.

Parameter Value

Cell Radius/m 250
Number of Cellular Users 1
Transmit Power of D2D 0.01
γC 10
γD 10
η/mw 10− 10

In Figure 4, we compare the time required (seconds) for reaching optimality with the DNN-based
algorithm against the ones experienced by using respectively the conventional integer linear programming
optimization scheme solved with CPLEX (C-Solver) and the maximum weighted links scheduling (MWLS)
algorithm, a greedy approach for D2D link scheduling under the SINR constraints based on [27,28].
The TensorFlow framework has been used to train the DNN-based algorithm. We determined the average
calculation time for each case. From Figure 4, we can see that the computation time based on the DNN
algorithm was considerably reduced when compared to the ones characterizing the other optimization
approaches. In addition, as the scale of the instance increases, the computational time of the other
algorithms increases as well according to a huge growth trend. Instead, for the DNN-based approach
the computational time growth with the problem scale is not so obvious.

Sensors 2019, 19, x 11 of 17 

 

In Figure 4, we compare the time required (seconds) for reaching optimality with the DNN-
based algorithm against the ones experienced by using respectively the conventional integer linear 
programming optimization scheme solved with CPLEX (C-Solver) and the maximum weighted links 
scheduling (MWLS) algorithm, a greedy approach for D2D link scheduling under the SINR 
constraints based on [27,28]. The TensorFlow framework has been used to train the DNN-based 
algorithm. We determined the average calculation time for each case. From Figure 4, we can see that 
the computation time based on the DNN algorithm was considerably reduced when compared to the 
ones characterizing the other optimization approaches. In addition, as the scale of the instance 
increases, the computational time of the other algorithms increases as well according to a huge 
growth trend. Instead, for the DNN-based approach the computational time growth with the problem 
scale is not so obvious. 

 
Figure 4. Comparison of computation time. 

In Table 3, we compare the effect of the number of hidden layers in our solution. To keep the 
comparison fairer, both of the models shared the same number of hidden units in total. The two-
layer-deep model had 60 units per layer, while the model with three layers had 40 units per layer. 
We focused on time and accuracy as comparison metrics. In terms of time, we observed the training 
time and testing/validation time of the learning model with two and three hidden layers. To estimate 
accuracy, we relied on a binary variable denoting the link status: 1 meant that the D2D link was 
activated and the other link was asleep. The binary accuracy of the output link status has been used 
to show the performance of the model in training and testing. Table 3 shows that the three-layer 
structure spent more time in the training and testing than the two-layer model. Since the total number 
of neurons was the same, the accuracy only experiences little differences. 

Table 3. Results of the comparison between different number of layers. 

Metrics 2 Hidden Layers  3 Hidden Layers 
Training Time 1h 24min 1h36min 

Testing time (on 10k) 0.247032s 0.233568s 
Binary accuracy on training 0.99458 0.99356 
Binary accuracy on testing 0.99320 0.99261 

In Figure 5, we set 60 units per layers for both models. According to Figure 4, it is reasonable to 
keep the depth of the DNN limited to three hidden layers. Training accuracy is better for a three-
layer network while keeping the testing time within acceptability bounds. The difference in terms of 
accuracy between the two models can be explained by the number of weights that need to be trained. 
Weights are several times more numerous in the three-layer than in the two-layer model. Due to the 
vanishing gradient, we can observe the training loss declined gradually as the number of training 
steps increase. 

Figure 4. Comparison of computation time.

In Table 3, we compare the effect of the number of hidden layers in our solution. To keep
the comparison fairer, both of the models shared the same number of hidden units in total.
The two-layer-deep model had 60 units per layer, while the model with three layers had 40 units
per layer. We focused on time and accuracy as comparison metrics. In terms of time, we observed
the training time and testing/validation time of the learning model with two and three hidden layers.
To estimate accuracy, we relied on a binary variable denoting the link status: 1 meant that the D2D link
was activated and the other link was asleep. The binary accuracy of the output link status has been
used to show the performance of the model in training and testing. Table 3 shows that the three-layer
structure spent more time in the training and testing than the two-layer model. Since the total number
of neurons was the same, the accuracy only experiences little differences.

Table 3. Results of the comparison between different number of layers.

Metrics 2 Hidden Layers 3 Hidden Layers

Training Time 1h 24min 1h36min
Testing time (on 10k) 0.247032s 0.233568s

Binary accuracy on training 0.99458 0.99356
Binary accuracy on testing 0.99320 0.99261



Sensors 2019, 19, 2941 12 of 17

In Figure 5, we set 60 units per layers for both models. According to Figure 4, it is reasonable to
keep the depth of the DNN limited to three hidden layers. Training accuracy is better for a three-layer
network while keeping the testing time within acceptability bounds. The difference in terms of accuracy
between the two models can be explained by the number of weights that need to be trained. Weights are
several times more numerous in the three-layer than in the two-layer model. Due to the vanishing
gradient, we can observe the training loss declined gradually as the number of training steps increase.
Sensors 2019, 19, x 12 of 17 

 

 
Figure 5. Loss over time on the training set for different depths of the deep neural network (DNN). 

It is critical to choose a proper batch size to effectively prevent the model from underfitting and 
overfitting. We compared the validation loss and training time with different batch sizes and learning 
rates, and the results are shown in Figure 6. The values of learning rate and batch size were decided 
by an experimental comparison with a constant value of epoch. From Figure 6a, we can see that the 
validation loss became smaller as the batch size increased. This is because the learning model 
approximated better with the characteristics of the training set with a bigger data size. Meanwhile, 
validation loss was impacted limitedly under different learning rates. As it can be seen from Figure 
6b, the training time decreased with an increase of the batch size. Moreover, when the learning rate 
increased, the training time first dropped and then rose. This is because the rate of gradient descent 
increased with the learning rate. However, an excessive learning rate can lead to an excessive 
parameter update and to an increase of training time.  

  
(a) (b) 

Figure 6. Effect of the learning rate and batch size on the training phase. (a) Effect of the learning rate 
and batch size on training loss. (b) Effect of the learning rate and batch size on training time. 

As a result, the learning rate was equal to about 0.12 with the least training time. Then, we 
investigated the details of how variations of batch size affect training time, as shown in Table 4. Table 
4 indicates the trade-off between validation loss and training time at the batch size of 64. 

Table 4. Results of the comparison between different batch size. 

Batch Size Training Time Training Loss 
16 1 h 41 min 0.0226 
32 2 h 01 min 0.02053 
64 2 h 10 min 0.0194 

Figure 5. Loss over time on the training set for different depths of the deep neural network (DNN).

It is critical to choose a proper batch size to effectively prevent the model from underfitting
and overfitting. We compared the validation loss and training time with different batch sizes
and learning rates, and the results are shown in Figure 6. The values of learning rate and batch
size were decided by an experimental comparison with a constant value of epoch. From Figure 6a,
we can see that the validation loss became smaller as the batch size increased. This is because
the learning model approximated better with the characteristics of the training set with a bigger data
size. Meanwhile, validation loss was impacted limitedly under different learning rates. As it can be
seen from Figure 6b, the training time decreased with an increase of the batch size. Moreover, when
the learning rate increased, the training time first dropped and then rose. This is because the rate of
gradient descent increased with the learning rate. However, an excessive learning rate can lead to
an excessive parameter update and to an increase of training time.

Sensors 2019, 19, x 12 of 17 

 

 
Figure 5. Loss over time on the training set for different depths of the deep neural network (DNN). 

It is critical to choose a proper batch size to effectively prevent the model from underfitting and 
overfitting. We compared the validation loss and training time with different batch sizes and learning 
rates, and the results are shown in Figure 6. The values of learning rate and batch size were decided 
by an experimental comparison with a constant value of epoch. From Figure 6a, we can see that the 
validation loss became smaller as the batch size increased. This is because the learning model 
approximated better with the characteristics of the training set with a bigger data size. Meanwhile, 
validation loss was impacted limitedly under different learning rates. As it can be seen from Figure 
6b, the training time decreased with an increase of the batch size. Moreover, when the learning rate 
increased, the training time first dropped and then rose. This is because the rate of gradient descent 
increased with the learning rate. However, an excessive learning rate can lead to an excessive 
parameter update and to an increase of training time.  

  
(a) (b) 

Figure 6. Effect of the learning rate and batch size on the training phase. (a) Effect of the learning rate 
and batch size on training loss. (b) Effect of the learning rate and batch size on training time. 

As a result, the learning rate was equal to about 0.12 with the least training time. Then, we 
investigated the details of how variations of batch size affect training time, as shown in Table 4. Table 
4 indicates the trade-off between validation loss and training time at the batch size of 64. 

Table 4. Results of the comparison between different batch size. 

Batch Size Training Time Training Loss 
16 1 h 41 min 0.0226 
32 2 h 01 min 0.02053 
64 2 h 10 min 0.0194 

Figure 6. Effect of the learning rate and batch size on the training phase. (a) Effect of the learning rate
and batch size on training loss. (b) Effect of the learning rate and batch size on training time.



Sensors 2019, 19, 2941 13 of 17

As a result, the learning rate was equal to about 0.12 with the least training time. Then, we investigated
the details of how variations of batch size affect training time, as shown in Table 4. Table 4 indicates
the trade-off between validation loss and training time at the batch size of 64.

Table 4. Results of the comparison between different batch size.

Batch Size Training Time Training Loss

16 1 h 41 min 0.0226
32 2 h 01 min 0.02053
64 2 h 10 min 0.0194

Figure 7 shows the accuracy of the results of the DNN-based approach varying with different
dataset sizes. We used the optimality rate as a metric to check the probability that the result was the label
value. For example, when the optimality rate was equal to 0.8, the output generated by the DNN
had an 80% probability of being the label value. We tested the accuracy of the DNN algorithm by
using only the training set and the entire data set. According to Figure 7, the optimality rate increased
with the size of the training set. When the test set was approximately 3000 instances, the output got
the best optimization result of 95% or more. At the same time, the average accuracy of the output value
based on the DNN algorithm can reach more than 90% of the results of a conventional optimization
algorithm. We can observe that the optimality rate did not change much as the training set increased,
but it gradually decreased when the total data set has been used. This is because the noise present
within data got larger as the data set size increased, and during the training process, the model can
learn some relationships by such noisy data. The learned model can perform well for a training set,
but it cannot achieve the same accurate outputs when using all the data. In our simulation, the training
set size of 3000 was the optimal choice.

Sensors 2019, 19, x 13 of 17 

 

Figure 7 shows the accuracy of the results of the DNN-based approach varying with different 
dataset sizes. We used the optimality rate as a metric to check the probability that the result was the 
label value. For example, when the optimality rate was equal to 0.8, the output generated by the DNN 
had an 80% probability of being the label value. We tested the accuracy of the DNN algorithm by 
using only the training set and the entire data set. According to Figure 7, the optimality rate increased 
with the size of the training set. When the test set was approximately 3000 instances, the output got 
the best optimization result of 95% or more. At the same time, the average accuracy of the output 
value based on the DNN algorithm can reach more than 90% of the results of a conventional 
optimization algorithm. We can observe that the optimality rate did not change much as the training 
set increased, but it gradually decreased when the total data set has been used. This is because the 
noise present within data got larger as the data set size increased, and during the training process, 
the model can learn some relationships by such noisy data. The learned model can perform well for 
a training set, but it cannot achieve the same accurate outputs when using all the data. In our 
simulation, the training set size of 3000 was the optimal choice. 

 
Figure 7. Optimality rate of different training set sizes. 

Figure 8 compares the impact of the SINR threshold of the D2D receiving user on the number of 
D2D links that the system can activate at different base station transmit powers. As seen in Figure 8, 
the more D2D pairs that can be activated by the system, the smaller is the transmit power of the base 
station. Conversely, the increase in transmit power of the base station resulted in a reduction of the 
number of active D2D links. This is because a greater transmit power of the base station implied more 
interference for the D2D users, resulting in fewer admissible D2D pairs and more D2D links that 
could be allowed to simultaneously communicate with a smaller SINR threshold. Otherwise, the 
amount of active D2D pairs decreased in the cell with a larger SINR. Since more D2D devices can 
receive data from others with lower SINR thresholds, the amount of D2D activity decreased with the 
strength of the interference with the base station and the peer D2D users. 

Figure 7. Optimality rate of different training set sizes.

Figure 8 compares the impact of the SINR threshold of the D2D receiving user on the number of
D2D links that the system can activate at different base station transmit powers. As seen in Figure 8,
the more D2D pairs that can be activated by the system, the smaller is the transmit power of the base
station. Conversely, the increase in transmit power of the base station resulted in a reduction of
the number of active D2D links. This is because a greater transmit power of the base station implied
more interference for the D2D users, resulting in fewer admissible D2D pairs and more D2D links
that could be allowed to simultaneously communicate with a smaller SINR threshold. Otherwise,
the amount of active D2D pairs decreased in the cell with a larger SINR. Since more D2D devices



Sensors 2019, 19, 2941 14 of 17

can receive data from others with lower SINR thresholds, the amount of D2D activity decreased with
the strength of the interference with the base station and the peer D2D users.
Sensors 2019, 19, x 14 of 17 

 

 
Figure 8. The impact of activity on device-to-device (D2D) links under different SINRs and different 
base station powers. 

In Figure 9, we show the change in the number of D2D links with respect to the change of D2D 
distribution radiuses and base station transmit powers. It can be seen from Figure 9 that when the 
base station transmit powers are 0.5w and 1w, the D2Ds device distribution range increases and the 
number of D2D links decreases slowly because the number of potential devices involved in D2D 
communication increases with the growth of the distribution radius, thus causing severe interference. 
In this case, the transmission distance of D2D links increased, and the receiving signals became easily 
affected by other D2D devices and the eNB activity. When the transmit power of the eNB was 1.5w, 
the amount of D2D links declined slightly and then turned to grow slowly. The overall change was 
not significant because the distance between the D2D devices became larger as the distribution radius 
increased. During signal transmission, the amount of potential D2D links grows as the distribution 
radius increases. That is because D2D equipment can potentially be located farther from the eNB, and 
the interference from the eNB can be reduced.  

 
Figure 9. The number of active D2D links under different radii and different base station powers. 

7. Conclusions 

Creating maximum simultaneous D2D link schedules for dealing with increasing traffic loads is 
a challenging problem in modern cellular scenarios due to the need for reducing the load on base 
stations and because of their high computational complexity. To date, many link scheduling 
optimization algorithms have been developed, but most of them are not well suited for working 
online and hence cannot meet the real-time requirements of modern network infrastructures. In this 

Figure 8. The impact of activity on device-to-device (D2D) links under different SINRs and different
base station powers.

In Figure 9, we show the change in the number of D2D links with respect to the change of D2D
distribution radiuses and base station transmit powers. It can be seen from Figure 9 that when the base
station transmit powers are 0.5w and 1w, the D2Ds device distribution range increases and the number
of D2D links decreases slowly because the number of potential devices involved in D2D communication
increases with the growth of the distribution radius, thus causing severe interference. In this case,
the transmission distance of D2D links increased, and the receiving signals became easily affected by
other D2D devices and the eNB activity. When the transmit power of the eNB was 1.5w, the amount of
D2D links declined slightly and then turned to grow slowly. The overall change was not significant
because the distance between the D2D devices became larger as the distribution radius increased.
During signal transmission, the amount of potential D2D links grows as the distribution radius increases.
That is because D2D equipment can potentially be located farther from the eNB, and the interference
from the eNB can be reduced.

Sensors 2019, 19, x 14 of 17 

 

 
Figure 8. The impact of activity on device-to-device (D2D) links under different SINRs and different 
base station powers. 

In Figure 9, we show the change in the number of D2D links with respect to the change of D2D 
distribution radiuses and base station transmit powers. It can be seen from Figure 9 that when the 
base station transmit powers are 0.5w and 1w, the D2Ds device distribution range increases and the 
number of D2D links decreases slowly because the number of potential devices involved in D2D 
communication increases with the growth of the distribution radius, thus causing severe interference. 
In this case, the transmission distance of D2D links increased, and the receiving signals became easily 
affected by other D2D devices and the eNB activity. When the transmit power of the eNB was 1.5w, 
the amount of D2D links declined slightly and then turned to grow slowly. The overall change was 
not significant because the distance between the D2D devices became larger as the distribution radius 
increased. During signal transmission, the amount of potential D2D links grows as the distribution 
radius increases. That is because D2D equipment can potentially be located farther from the eNB, and 
the interference from the eNB can be reduced.  

 
Figure 9. The number of active D2D links under different radii and different base station powers. 

7. Conclusions 

Creating maximum simultaneous D2D link schedules for dealing with increasing traffic loads is 
a challenging problem in modern cellular scenarios due to the need for reducing the load on base 
stations and because of their high computational complexity. To date, many link scheduling 
optimization algorithms have been developed, but most of them are not well suited for working 
online and hence cannot meet the real-time requirements of modern network infrastructures. In this 

Figure 9. The number of active D2D links under different radii and different base station powers.



Sensors 2019, 19, 2941 15 of 17

7. Conclusions

Creating maximum simultaneous D2D link schedules for dealing with increasing traffic loads
is a challenging problem in modern cellular scenarios due to the need for reducing the load on
base stations and because of their high computational complexity. To date, many link scheduling
optimization algorithms have been developed, but most of them are not well suited for working online
and hence cannot meet the real-time requirements of modern network infrastructures. In this paper,
we used a machine learning-based strategy to maximize the number of simultaneously active D2D
links without interfering with cellular communications. Based on the physical interference model,
we designed a link scheduling algorithm based on a DNN to predict device activity in forming D2D links
in order to reduce computation times-costs. Since the application of deep learning is still an emerging
research topic in network scheduling, we empirically determined the proper operating parameters
via specifically crafted experiments aiming at optimizing the model performance. The parameters
chosen in this way were the number of hidden layers, the size of the training set, the batch size,
and the learning rate. Simulation experiments showed that the proposed approach can reach more
than 90% of the optimum results quality. At the same time, we learned that the influence of base station
power is greater than the threshold of an SINR on the number of D2D links. Through the experiments,
we also learned that the influence of the number of D2D links changes in presence of different base
stations’ coverage areas. Furthermore, we also analyzed the reasons for these factors. For future work,
we are going to consider more solutions, like transfer learning and reinforcement learning for the more
general case that D2D links may be scheduled in a multi-cell.

Author Contributions: Conceptualization: B.Y., X.Z., E.C., and I.Y. Formal analysis: B.Y. and E.C. Funding
acquisition: X.Z. and I.Y. Investigation: B.Y., X.Z., and E.C. Methodology: X.Z. and E.C. Performance evaluation:
B.Y. and E.C. Writing, original draft: B.Y. and X.Z. Writing, review and editing: F.P. and I.Y.

Funding: This work was supported by the National Key Research and Development Program of China
(2016YFB0200902) as well as the Soonchunhyang University Research Fund.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. GSMA. The Mobile Economy 2018 (white paper). Available online: https://www.gsma.com/mobileeconomy/

(accessed on 12 April 2018).
2. Asadi, A.; Wang, Q.; Mancuso, V. A survey on device-to-device communication in cellular networks.

IEEE Commun. Surv. Tutorials 2014, 16, 1801–1819. [CrossRef]
3. Lin, X.; Andrews, J.; Ghosh, A.; Ratasuk, R. An overview of 3GPP device-to-device proximity services.

IEEE Commun. Mag. 2014, 52, 40–48. [CrossRef]
4. Choudhary, G.; Kim, J.; Sharma, V. Security of 5G-Mobile Backhaul Networks: A Survey. J. Wirel. Mob. Netw.

Ubiquitous Comput. Dependable Appl. 2018, 9, 41–70.
5. Gritti, C.; Önen, M.; Molva, R.; Susilo, W.; Plantard, T. Device Identification and Personal Data Attestation in

Networks. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2018, 9, 1–25.
6. Arena, F.; Pau, G.; Collotta, M. A survey on driverless vehicles: from their diffusion to security features.

J. Internet Serv. Inf. Secur. 2018, 8, 1–19.
7. Lei, M.; Zhang, X.; Ding, H.; Yu, B. Fairness-Aware Resource Allocation in Multi-Hop Wireless Powered

Communication Networks with User Cooperation. Sensors 2018, 6, 1890. [CrossRef] [PubMed]
8. Liu, L.; Cao, X.; Shen, W.; Cheng, Y.; Cai, L. Dafee: A decomposed approach for energy efficient networking

in multi-radio multi-channel wireless networks. In Proceedings of the 35th Annual IEEE International
Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016.

9. Mensah, K.K.; Chai, R.; Bilibashi, D.; Gao, F. Energy efficiency based joint cell selection and power allocation
scheme for HetNets. Digital Commun. Networks 2016, 2, 184–190. [CrossRef]

10. Goussevskaia, O.; Oswald, Y.A.; Wattenhofer, R. Complexity in geometric SINR. In Proceedings of the 8th
ACM International Symposium on Mobile Ad Hoc Networking and Computing, Montréal, QC, Canada,
9–14 September 2007.

https://www.gsma.com/mobileeconomy/
http://dx.doi.org/10.1109/COMST.2014.2319555
http://dx.doi.org/10.1109/MCOM.2014.6807945
http://dx.doi.org/10.3390/s18061890
http://www.ncbi.nlm.nih.gov/pubmed/29890714
http://dx.doi.org/10.1016/j.dcan.2016.11.004


Sensors 2019, 19, 2941 16 of 17

11. Moscibroda,T.; Wattenhofer,R.; Weber,Y.ProtocolDesignBeyondGraph-BasedModels. Availableonline: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.87.4443&rep=rep1&type=pdf#page=43 (accessed on 6 January 2019).

12. Maheshwari, R.; Jain, S.; Das, S.R. A measurement study of interference modeling and scheduling in
low-power wireless networks. In Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems, Raleigh, NC, USA, 5–7 November 2008.

13. Li, Q.; Negi, R. Maximal scheduling in wireless ad hoc networks with hypergraph interference models.
IEEE Trans. Veh. Technol. 2012, 61, 297–310. [CrossRef]

14. Wang, W.; Wang, Y.; Li, X.Y.; Song, W.Z.; Frieder, O. Efficient interference-aware TDMA link scheduling for
static wireless networks. In Proceedings of the 12th Annual International Conference on Mobile Computing
and Networking, Los Angeles, CA, USA, 23–29 September 2006.

15. Wang, C.; Yu, J.; Yu, D.; Huang, B.; Yu, S. An improved approximation algorithm for the shortest link
scheduling in wireless networks under SINR and hypergraph models. J. Comb. Optim. 2016, 32, 1052–1067.
[CrossRef]

16. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey.
Proc. IEEE 2017, 105, 2295–2329. [CrossRef]

17. Peng, J.; Sun, W.; Ma, L.; Du, Q. Discriminative Transfer Joint Matching for Domain Adaptation in
Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2019, 16, 972–976. [CrossRef]

18. Peng, J.; Sun, W.; Du, Q. Self-Paced Joint Sparse Representation for the Classification of Hyperspectral
Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1183–1194. [CrossRef]

19. Zhang, S.; Wu, R.; Xu, K.; Wang, J.; Sun, W. R-CNN-Based Ship Detection from High Resolution Remote
Sensing Imagery. Remote Sens. 2019, 11, 631. [CrossRef]

20. Mao, Q.; Hu, F.; Hao, Q. Deep learning for intelligent wireless networks: A comprehensive survey.
IEEE Commun. Surv. Tutorials 2018, 20, 2595–2621. [CrossRef]

21. Zhang, C.; Patras, P.; Haddadi, H. Deep Learning in Mobile and Wireless Networking: A Survey.
Available online: https://ieeexplore.ieee.org/abstract/document/8666641 (accessed on 3 July 2019).

22. Goussevskaia, O.; Halldórsson, M.M.; Wattenhofer, R.; Welzl, E. Capacity of arbitrary wireless networks.
In Proceedings of the IEEE International Conference on Computer, Rio de Janeiro, Brazil, 19–25 April 2009.

23. Xu, X.; Tang, S.; Wan, P. Maximum weighted independent set of links under physical interference model.
In Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications,
Tianjin, China, 20–22 June 2018.

24. Pei, G.; Vullikanti, A. Low-complexity scheduling for wireless networks. In Proceedings of the ACM
International Symposium on Mobile Ad Hoc Networking and Computing, Hilton Head, SC, USA,
11–14 June 2012.

25. Joo, C.; Lin, X.; Ryu, J.; Shroff, N.B. Distributed Greedy Approximation to Maximum Weighted Independent
Set for Scheduling with Fading Channels. IEEE/ACM Trans. Netw. 2016, 24, 1476–1488. [CrossRef]

26. Wan, P.J.; Yuan, H.; Jia, X.; Wang, J.; Wang, Z. Maximum-weighted subset of communication requests
schedulable without spectral splitting. In Proceedings of the IEEE Conference on Computer Communications,
Atlanta, GA, USA, 1–4 May 2017.

27. Deng, H.; Yu, J.; Yu, D.; Li, G.; Huang, B. Heuristic Algorithms for One-Slot Link Scheduling in Wireless
Sensor Networks under SINR. Int. J. Distrib. Sens. Netw. 2015, 11, 806520. [CrossRef]

28. Chackochan, R.; Dhanasekaran, S.; Sunny, A. Asynchronous Distributed Greedy Link Scheduling in Multihop
Wireless Networks. IEEE Trans. Veh. Technol. 2018, 67, 10166–10170. [CrossRef]

29. Chen, X.-W.; Lin, X. Big data deep learning: challenges and perspectives. IEEE Access 2014, 2, 514–525.
[CrossRef]

30. Kotenko, I.; Saenko, I.; Branitskiy, A. Applying Big Data Processing and Machine Learning Methods for
Mobile Internet of Things Security Monitoring. J. Internet Serv. Inf. Secur. 2018, 8, 54–63.

31. Kumar, N.; Swain, S.N.; Murthy, C.S.R. A Novel Distributed Q-Learning Based Resource Reservation
Framework for Facilitating D2D Content Access Requests in LTE-A Networks. IEEE Trans. Netw. Sci. Eng
2018, 15, 718–731. [CrossRef]

32. Liu, L.; Yin, B.; Zhang, S.; Cao, X.; Cheng, Y. Deep Learning Meets Wireless Network Optimization: Identify
Critical Links. IEEE Trans. Netw. Sci. Eng. 2018. [CrossRef]

33. Khan, M.; Alam, M.; Moullec, Y.; Yaacoub, E. Throughput-Aware Cooperative Reinforcement Learning for
Adaptive Resource Allocation in Device-to-Device Communication. Future Internet 2017, 9, 72. [CrossRef]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.4443&rep=rep1&type=pdf#page=43
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.4443&rep=rep1&type=pdf#page=43
http://dx.doi.org/10.1109/TVT.2011.2176520
http://dx.doi.org/10.1007/s10878-015-9908-4
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/LGRS.2018.2889789
http://dx.doi.org/10.1109/TGRS.2018.2865102
http://dx.doi.org/10.3390/rs11060631
http://dx.doi.org/10.1109/COMST.2018.2846401
https://ieeexplore.ieee.org/abstract/document/8666641
http://dx.doi.org/10.1109/TNET.2015.2417861
http://dx.doi.org/10.1155/2015/806520
http://dx.doi.org/10.1109/TVT.2018.2864091
http://dx.doi.org/10.1109/ACCESS.2014.2325029
http://dx.doi.org/10.1109/TNSM.2018.2807594
http://dx.doi.org/10.1109/TNSE.2018.2827997
http://dx.doi.org/10.3390/fi9040072


Sensors 2019, 19, 2941 17 of 17

34. Cui, W.; Shen, K.; Yu, W. Spatial Deep Learning for Wireless Scheduling. IEEE J. Sel. Areas Commun. 2019,
37, 1248–1261. [CrossRef]

35. Ye, H.; Li, G.Y. Deep Reinforcement Learning for Resource Allocation in V2V Communications. In Proceedings
of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018.

36. Belotti, P.; Bonami, P.; Fischetti, M.; Lodi, A.; Monaci, M.; Nogales-Gómez, A.; Salvagnin, D. On handling
indicator constraints in mixed integer programming. Comput. Optim. Appl. 2016, 65, 545–566. [CrossRef]

37. Shih, W. A branch and bound method for the multiconstraint zero-one knapsack problem. J. Oper. Res. Soc.
1979, 30, 369–378. [CrossRef]

38. Toth, P. Dynamic programming algorithms for the zero-one knapsack problem. Computing 1980, 25, 29–45.
[CrossRef]

39. Camm, J.D.; Raturi, A.S.; Tsubakitani, S. Cutting big M down to size. Interfaces 1990, 20, 61–66. [CrossRef]
40. Klotz, E.; Newman, A.M. Practical guidelines for solving difficult mixed integer linear programs. Surv. Oper.

Res. Manag. Sci. 2013, 18, 18–32. [CrossRef]
41. Date, P.; Hendler, J.A.; Carothers, C.D. Design index for deep neural networks. Procedia Comput. Sci. 2016,

88, 131–138. [CrossRef]
42. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent

neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
43. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
44. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006,

18, 1527–1554. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSAC.2019.2904352
http://dx.doi.org/10.1007/s10589-016-9847-8
http://dx.doi.org/10.1057/jors.1979.78
http://dx.doi.org/10.1007/BF02243880
http://dx.doi.org/10.1287/inte.20.5.61
http://dx.doi.org/10.1016/j.sorms.2012.12.001
http://dx.doi.org/10.1016/j.procs.2016.07.416
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	System Model 
	Problem Formulation 
	Deep Learning-Based Link Scheduling 
	General Deep Learning 
	Deep Belief Network 
	DNN-Based Approach 
	Design of Input layer 
	Design of Output layer 
	Training Set 
	Training Process 


	Performance Evaluation 
	Conclusions 
	References

