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Abstract: Phase correlation is one of the widely used image registration method in medical image
processing and remote sensing. One of the main limitations of the phase correlation-based registration
method is that it can only cope with Euclidean transformations, such as translation, rotation and scale,
which constrain its application in wider fields, such as multi-view image matching, image-based
navigation, etc. In this paper, we extended the phase correlation to perspective transformation by the
combination of particle swarm optimization. Inspired by optic lens alignment based on interference,
we propose to use the quality of PC fringes as the similarity, and then the aim of registration is to
search for the optimized geometric transformation operator, which obtain the maximize value of
PC-based similarity function through particle swarm optimization approach. The proposed method
is validated by image registration experiments using simulated terrain shading, texture and natural
landscape images containing different challenges, including illumination variation, lack of texture,
motion blur, occlusion and geometric distortions. Further, image-based navigation experiments are
carried out to demonstrate that the proposed method is able to correctly recover the trajectory of
camera using multimodal target and reference image. Even under great radiometric and geometric
distortions, the proposed method is able to achieve 0.1 sub-pixel matching accuracy on average while
other methods fail to find the correspondence.

Keywords: phase correlation; perspective; optimization

1. Introduction

Image matching is one of the fundamental problems in the fields of computer vision and
photogrammetry. The applications of image matching are various, including camera calibration [1],
3D reconstruction [2], visual navigation [3], super-resolution [4], etc. Many image matching algorithms
have been proposed to accomplish the above tasks. Among them, feature-based methods, which
focus on low-level features, such as edges, corners, are the most widely applied. Although many
feature-based matching algorithms have been proved to achieve robust image matching between image
pairs, they largely rely on the abundance of image texture, and may fail in the cases of lack of texture
or repetitive texture. The problem is that by dividing an image into several small matching windows,
or image patches, the overall structural similarity has been neglected. Most feature-based methods
basically rely on low-level features, ignoring higher level features.

Instead of attempting to match local image features, correlation-based methods match the total
or an area of image texture [5]. Compared to feature-based methods, correlation-based methods
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are able to take the overall structural similarity into consideration, so that they are proved to be
more robust to a lack of texture images when limited features can be extracted in local areas. Phase
correlation [6], as one of the widely used correlation-based image matching algorithms, has proved to
be able to cope with repetitive texture and appearance differences between multimodal image pairs [7].
However, correlation-based methods can hardly cope with large image distortion, which prevents
them from further application in image registration under complex geometric transformation, such as
perspective, affine, polynomial, etc. They are mainly used in dense matching using small matching
windows that can be considered as a simple image translation.

In this paper, we extend phase correlation to complex geometric distortions by taking the advantage
of its sensitivity to geometric distortion as the indicator for optimization. This work is particularly
motivated by optic lens alignment based on interference. In interferometric optical testing, interference
fringes are indicators to determine whether two lens are perfectly aligned or not. In this paper, we mimic
the processor of interference-based lens alignment using novel optimization-based technique. If two
images are perfectly aligned, the PC cross-power spectrum of the images taken by the two cameras
appear to have clear fringe pattern, and the Dirac delta function which is the IFT of the cross-power
spectrum will have a distinctive peak, as shown in Figure 1. Otherwise, the fringe patterns will become
vague, and the peak value are not distinctive. The best alignment is achieved by iteratively altering the
geometric parameters of the camera until the interference fringes are strongest and clear.
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Figure 1. Interference-based lens alignment based on phase correlation.

This paper is organized as follows: the related work is reviewed in Section 2. In Section 3, we present
our extension of the phase correlation to perspective geometric distortion. Experiment results are then
given in Section 4 from image registration to image-based navigation using DEM simulated terrain
shading images as well as true landscape images with comparison to state-of-the art image matching
methods. The paper is concluded in Section 5.

2. Related Work

Image registration methods proposed thus far are generally either feature-based or correlation-based.
The foundation of feature-based image matching is under the assumption that distinctive features
maintain their positions and shape geometry under different imaging conditions. Most corner and edge
detection algorithms are based on the spatial domain, which detect the sharply changed patterns based
on image brightness. Some commonly used edge detection algorithms include the Canny operator [8],
zero-crossing operator [9] and Mar operator [10], and more recently, Scale-invariant Feature Transform
(SIFT) [11], proposed by Lowe. SIFT is invariant to scale, rotation and illumination intensity change,
which enables robust image matching. Several improvements have been made to the SIFT operator to
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enhance its robustness for matching. One of the most widely accepted improved algorithms is Speed
Up Robust Features (SURF) [12], which claims to be faster and more robust than SIFT. These hand-craft
features have achieved a dominant position in computer vision for years for their flexibility to different
geometric distortions.

Recently, Convolution Neural Network (CNN)-based methods have been widely used in computer
vision, including object detection, image retrieval, etc. Some of the studies applied learning-based
approach for feature-based image matching. Temporally Invariant Learned Detector (TILDE) [13] uses
piecewise linear convolution filters to train data to robustly detect feature points which are robust to
illumination and seasonal variations. Yi, et al. [14] proposed a Learned Invariant Feature Transform
(LIFT) algorithm which is an end-end deep network including feature detection, orientation estimation
and feature description. To narrowing the gap between training data and testing data, a self-supervised
interest point detector has been proposed [15] which pre-trained the feature extractor on MS-COCO
generic images. By using homographic adaptation approach, this fully-convolutional model achieves
superior matching performance compared to state-of-the-art feature matching algorithms. The main
limitation of deep learning-based approach is the requirement of large-scale annotated training data.
To generate such large-scale training data which contain most cases in real-world is non-trivial.

The majority of feature-based matching methods solve perspective image distortion problems
based on the following assumption: although the transformations between image pairs are rather
complex, the transformations between small matching windows can be simplified as image translation
or Euclidean transformations, which include translation, scale and rotation. Then, a complex geometric
transformation matrix, such as affine and projective, can be estimated by fitting all the feature points
that do not contain outliers. Thus, as shown in Table 1, for the image pairs lacking abundant texture or
from multimodal data, few features could be extracted which may lead to incorrect transformation
matrix estimations.

Table 1. The robustness of matching approaches towards radiometric and geometric distortions.

Radiometric Distortion Geometric Distortions

Lack-of Texture Multimodal Euclidean Perspective

Feature No Limited Yes Yes
Correlation Yes Yes Yes No

Ideal Yes Yes Yes Yes

Correlation-based image matching approaches, known as area-based matching, are another branch
of image matching approach. Area correlation based algorithms, such as Normalised Cross Correlation
(NCC), Mutual Information (MI) [16] and Phase Correlation (PC) [6], directly match two areas in
the reference and target images without feature extraction. Phase Correlation is an image matching
algorithm based on Fourier shift property, which states that a translation shift between two similar
images generates a linear phase difference in the Fourier frequency domain [6]. The image shift can be
resolved directly in the frequency domain with sub-pixel accuracy by unwarping and rank one fitting
of the fringe patterns in the cross power spectrum [17–20]. The rotation and scale differences between
matched images for matching can also be estimated by transferring the Fourier spectra to a log-polar
plane after applying a high pass filter [21]. Our previous work [22] demonstrated that the robustness
of PC to illumination change via theoretical proof and experiment results.

Compared to feature-based algorithms, area based matching algorithms are usually dependens
on the global grey value distribution and thus are more robust to lack-of texture and multimodal.
One disadvantage of correlation-based approaches is that they cannot tolerate complex geometric
distortions, because the similarity measurement is based on windows [23]. Thus, correlation-based
approaches are not applicable to direct registration between two images which have large view angle
difference, as shown in Table 1.
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For robust image matching, an algorithm needs to be robust to radiometric distortions, such as
lack-of texture and multimodal, and robust to large geometric distortions as denoted in the last row of
Table 1. Studies thus far have shown that phase correlation matching can achieve sub-pixel accuracy in
estimation of translation, rotation, scale and illumination changes between matched images and it is
robust to random noise [21]. However, how to enhance the robustness of PC to perspective distortions
remains unsolved. Effendi and Jarvis [24] estimated camera ego-motion using phase correlation, however,
this method requires a plane, such as table plane, to be discovered in images. Other studies [25,26]
apply phase correlation using small matching window and then estimated the geometric transformation
based on corresponding result from phase correlation matching. These approaches have the similar
limitation to most feature-based methods as they are based on local grey value distribution while
regardless of overall structural similarity. Moreover, the approach cannot cope with large view angle
difference, because if phase correlation is not robust to perspective distortions, the correspondence
within small matching window cannot be found by phase correlation. In this paper, we propose a Phase
Correlation-based iterative matching approach to solve large geometric distortion problem and achieve
sub-pixel matching accuracy in some challenging image matching cases, such as lack of texture, occlusion,
motion blur and multi-modal. Particularly, the contributions of this work are summarized as follows:

• We extend the phase correlation, which only cope with translation, scale and rotation, to perspective
variation by the combination of particle swarm optimization (PSO).

• The Dirac delta function in Phase Correlation has been proposed as measure similarity degree for
optimization to determine the rotation parameter.

• The proposed method can solve different geometric distortions includes affine, perspective, etc.

3. Optimization-Based Phase Correlation

The aim of optimization based registration is to search for the optimized transformation
operator Gopt, which obtain the maximum value of similarity function S through certain optimization
approach [27]:

Gopt : I1 → I2 = maximize(S(I1 −G(I2))) (1)

where G represents the transformation operators.
Optimization algorithms can be divided into two categories: analytical methods and heuristic

methods. The analytical optimization approach solves the differential in an objective function. One of
the commonly used methods in optimization based on continuous variable is gradient descent (GD),
that has been used in solving several image registration problems [28,29]. Compared to analytical
optimization, heuristic optimization methods are based on Markov random field, and have the
advantage of high calculation efficiency [27]. Thus, it has been used to solve the complex large-scale
optimization problems [28,29].

This paper proposes a discrete variable optimization approach based on a phase correlation matching
algorithm, which is shown in Figure 2. We firstly decompose geometric transformations into rotations
and translations. The rotation parameters are determined by optimization using phase correlation as
similarity measure and translation parameters are determined by directly by phase correlation. There are
four main steps in the proposed matching algorithm:

(1) Determine the transformation type between the target and reference images
(2) Calculate the similarity between images in frequency domain using the Dirac delta function in

Phase Correlation
(3) Find the rotation transformation parameters to reach the optimal similarity value based on Particle

Swarm optimization.
(4) Calculate the translation parameters using phase correlation

The geometric transformation function will be detailed described in Section 3.1. The similarity
function S is based on the frequency similarity presenting by phase correlation, which will be described
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in Section 3.2, and the optimization approach is based on particle swarm which will be described in
Section 3.3. Translation parameter estimation is describe in details in Section 3.4.
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3.1. Geometric Transformation

3.1.1. Affine Transformation

In an affine transformation, the x and y dimensions can be scaled or sheared independently and
there may be a translation, a reflection, and/or a rotation. Parallel lines remain parallel after affine
transformation. The affine transformation can be expressed as:(

u
v

)
=

[
a b
c d

](
x
y

)
+

(
e
f

)
(2)

Here, we simplified the affine transformation as an affine rotation matrix A and a translation
matrix T, as: (

u
v

)
= A

(
x
y

)
+ T (3)

In the work of [30], the affine rotation matrix is determined by four affine parameters:

A = λ

[
cosψ − sinψ
sinψ cosψ

][
t 0
0 1

][
cosϕ − sinϕ
sinϕ cosϕ

]
(4)

where λ is the zoom parameter, ψ is the rotation angle of camera around optical axis, t links to the tilt
angle θ between optical axis and normal to the image plane by t = 1

cosθ and ϕ is the longitude angle
between optical axis and a fixed vertical plane.

Thus, the aim of image registration containing affine transformation is to search for the best
A(λ,ψ, t,ϕ) which obtain the largest value of similarity through iterative optimization:

Aopt : I1 → I2 = maximize(S(I1 −A(I2))) (5)

For two images taken from approximately same distance, the zooming factor λ can be set as 1 for
quick optimization process.

3.1.2. Projective Transformation

Projective transformation enables the plane of the image to tilt, and thus parallel lines are not
necessarily parallel and can converge towards a vanishing point. Affine transformation is a subset
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of perspective transformation. Projective transformation is a more general cases when match two
images taken from different view angle, because the vanishing point creates the appearance of depth.
The projective transformation can be expressed as a projective rotation matrix P and a translation
matrix T, as: 

up
vp
wp

 = P


x
y
w

+ T (6)

Ideally, the projective matrix P is 3-by-3 matrix where all nine elements can be different, however,
optimization for nine parameters will be time-consuming. A simplified projective matrix P is thus use
in this paper by setting two free elements in the last column [31]:

P =


1 0 E
0 1 F
0 0 1

 (7)

where E and F demotes the location of vanishing point in x and y direction. If E and F are large,
the parallel lines appear to converge more quickly which means large perspective distortions.

The aim of optimization can be set as to search for the best P(E, F) which obtain the largest value
of similarity:

Popt : I1 → I2 = maximize(S(I1 − P(I2))) (8)

3.2. Phase Correlation Based Simiarity Measure

Phase Correlation is an image matching algorithm based on the Fourier shift property, which
states that a translation shift between two similar images generates a linear phase difference in the
Fourier frequency domain [6]. In this paper, Phase Correlation has been used in two parts: (i) the
similarity measure based on Dirac delta function; (ii) translation matrix estimation, which will be
detailed described in Section 3.4.

Suppose that there is a translation shift (e, f ) between two identical images I1(x, y) and I2(x, y):

I1(x, y) = I2(x− e, y− f ) (9)

then, according to the shift properties shift property of the Fourier transform:

F1(u, v) = F2(u, v)e−i(eu+ f v) (10)

where F1(u, v) and F2(u, v) are Fourier transforms of the two images I1(x, y) and I2(x, y) Phase
correlation, defined as the phase difference between F1(u, v) and F2(u, v), can be presented by a cross
power spectrum Q(u, v):

Q(u, v) =
F1(u, v)F2

∗(u, v)∣∣∣F1(u, v)F2∗(u, v)
∣∣∣ = e−i(eu+ f v) (11)

where * stands for complex conjugate.
Q(u, v) is a complex 2D matrix which can be presented by fringe, which density and orientation

are √
(
e2 + f 2

)
and e/ f respectively. The inverse Fourier transform (IFT) of Q(u, v) is a Dirac delta

function which its peak value pδ ranges from 0 to 1:

pδ = Max(FT−1(Q(u, v))) (12)

Obviously, if the two images are perfectly aligned, which means that the signals from two images
are strongly correlated, there will be clear interference fringe pattern shown in Q(u, v) as shown in
Figure 1, and the peak value pδ will have a high value (close to 1). However, if two images contain
large geometric distortions, the quality of interference fringes are deteriorated, so the peak value pδ
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will have a relatively small value (close to 0). Thus, in this paper, the peak value of Dirac Delta function
pδ is use as similarity measure for the energy function in optimization.

3.3. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [32], proposed by Kennedy and Eberhart, solves optimization
problems by iteratively sampling candidate positions till an optimal measure of quality is achieved.
It was intended for simulating social behavior, for example, foraging in a bird flock or fish school.
PSO is initialized with a population of candidate solutions, called particles, Xi = (xi1, xi2, . . . , xiN).
The particles are moved in the search space according to the rate of position change velocity vid:

xid = xid + vid (13)

At each time step, the position change velocity is determined towards its local best position pbest
and global best position gbest according to the equation:

vid = wvid + r1c1(pbest − xid) + r2c2(gbest − xid) (14)

where w is inertial weight, c1 is the self confidence factor adjust the weight of each particle’s best position
when adjusting velocity, c2 is the swarm confidence factor which adjust weight of the neighborhood’s
best position when adjusting velocity, r1 and r2 are random numbers between [0,1].

In this paper, the fitness value is set as the Dirac delta peak value pδ, according to the Equation (2).
The fitness value is with regards to geometric transformation parameters are energy function needs to be
maximized. In affine transformation, the fitness value is f (λ,ψ, t,ϕ, pδ), where λ,ψ, t,ϕ are parameters
from affine transformation and pδ are Dirac delta peak values. Similarity, for projective transformation,
the fitness value is f (E, F, pδ), where E, F are parameters from projective transformation. As a heuristic
optimization method, particle swarm can avoid the derivation of Dirac delta function, and thus has
been applied to solve the geometric parameter optimization problems in this paper. The process of
PSO is carried out as follows:

(1) Choose a population of particles with random initial positions and velocities
(2) The fitness value of each particle is calculated based on given geometric parameters
(3) Compare particle’s fitness value to its local best position. If current fitness value f (xi) is better

than local best position pbesti, then set local best position equal to current value
(4) Compare the fitness value with the neighborhood’s overall previous best. If the current value is

larger than global best position gbest, then set global best position equal to current value
(5) Update the particle position Xi and velocity Vid according to Equations (13) and (14)
(6) Loop to step (2) until the one of the criterions to stop the iteration is met.

3.4. Phase Correlation Based Translation Estimation

After the rotation transformation parameters Aopt has been calculated from the PSO, the rotation
between two images can be rectified. In this step, the translation matrix T will be estimated using
Phase Correlation function PC by the target image I1 and the warped image Aopt(I2):

T =

(
e
f

)
= PC

(
I1, Aopt(I2)

)
(15)

As a non-iterative method, Phase Correlation can directly calculate the image shifts without
roaming search. Moreover, phase correlation is able to achieve very high sub-pixel (1/100 sub-pixel)
matching accuracies [33].
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The shifts (e, f ) can be estimated directly in the frequency domain or resolved in the spatial
domain via IFT. The integer translation shift between two images can be estimated by the peak location
of Dirac delta function δ0 that is the IFT of the cross power spectrum:

FT−1(Q(u, v)) = δ0(x− e, y− f ) (16)

Sub-pixel location can be determined by fitting a Gaussian function to the points which close to
the peak of Dirac delta function δ0 [33]. The shift can also be resolved directly in the frequency domain
with sub-pixel accuracy [17–20]. The cross power spectrum Q(u, v), which is a rank one matrix, and can
be decomposed as the product of two dominant singular vectors Qx(e) and Qy( f ):

Q2 = e−i(ue+v f ) = e−iuee−iv f = Qx(e)Qy( f ) (17)

The sub-pixel displacement can then be estimated directly in the frequency domain using either
Singular Value Decomposition (SVD) and then Least Square Fitting (LSF) [17], or 2D fitting technique
with Quick Maximum Density Power Estimator (QMDPE) [19,34]. The frequency-based PC sub-pixel
estimation method is able to achieve higher matching accuracy than spatial-domain based PC method,
and thus, in this paper, SVD-PC is used to estimate the translation matrix T.

4. Experiments and Discussion

4.1. Dataset

Image registration tasks are carried out using image pairs which contain challenges including
illumination variation, lack of texture, motion blur, occlusion and different geometric distortions,
as shown in Figure 3. For the illumination image pairs, 10 images from the same position are taken
from 9:30 to 15:30 on a terrain model under daily sunlight variation, and then the image taken in 10:30
is used as target image, and the remaining nine images are warped by perspective transformation
and use as reference image, as shown in the first row in Figure 3. The lack-of texture dataset is
downloaded from the webpage of TextureLab at Heriot-Watt University. This dataset includes images
from different texture surfaces. The light source in this dataset is a fixed desk-lamp (+12 V, max 0.45 A)
and a Vosskuhler CCD 1300LN digital camera is used to take images. Here we selected 10 pairs of
textureless image pairs, and performed perspective transformation on the reference image, which are
shown in the second row of Figure 4.



Sensors 2019, 19, 3117 9 of 16

Sensors 2019, 19, x FOR PEER REVIEW 8 of 16 

 

The sub-pixel displacement can then be estimated directly in the frequency domain using either 
Singular Value Decomposition (SVD) and then Least Square Fitting (LSF) [17], or 2D fitting technique 
with Quick Maximum Density Power Estimator (QMDPE) [19,34]. The frequency-based PC sub-pixel 
estimation method is able to achieve higher matching accuracy than spatial-domain based PC 
method, and thus, in this paper, SVD-PC is used to estimate the translation matrix 𝑇. 

4. Experiments and Discussion 

4.1. Dataset 

Image registration tasks are carried out using image pairs which contain challenges including 
illumination variation, lack of texture, motion blur, occlusion and different geometric distortions, as 
shown in Figure 3. For the illumination image pairs, 10 images from the same position are taken from 
9:30 to 15:30 on a terrain model under daily sunlight variation, and then the image taken in 10:30 is 
used as target image, and the remaining nine images are warped by perspective transformation and 
use as reference image, as shown in the first row in Figure 3. The lack-of texture dataset is 
downloaded from the webpage of TextureLab at Heriot-Watt University. This dataset includes 
images from different texture surfaces. The light source in this dataset is a fixed desk-lamp (+12 V, 
max 0.45 A) and a Vosskuhler CCD 1300LN digital camera is used to take images. Here we selected 
10 pairs of textureless image pairs, and performed perspective transformation on the reference image, 
which are shown in the second row of Figure 4.  

 
Figure 3. Image dataset which containing illumination variation, lack-of-texture, motion blur and 
occlusion. 

4.2. Opmization Approach Comparison 

Firstly, we compare our optimization method, particle swarm, with two state-of-the-art 
optimization methods, simulated annealing and Genetic Algorithm (GA). Both simulated annealing 
and GA are non-derivative-based optimization methods which all start with initial candidate 
positions and generate a population of points at each iteration.  

Figure 3. Image dataset which containing illumination variation, lack-of-texture, motion blur and occlusion.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 16 

 

In the comparison experiment, we use the dataset described in Section 4.1 and apply affine 
transformations to the tested dataset and calculate the accuracies of the parameters estimated by 
different optimization methods. As the rotation matrix is determined from optimization, we focused 
on two rotation angles, latitude angles 𝜃 and longitude angles 𝜑, in this experiment. For each image 
pair, we apply 30 latitude angles 𝜃 and 30 longitude angles 𝜑 ranges from 0° to 30° to the reference 
image, and the optimization accuracy is evaluated by the difference between the calculated angles 
and the ground truth. 

The empirical optimization settings are shown in Table 2, where several parameters in common 
are the same for the three optimization methods for fair comparison. The maximum iteration and 
function tolerance are parameters to stop the iteration. A large maximum iteration and small function 
tolerance indicate strict constraint for optimization, which means more accurate result with more 
iterations. To balance the precision and speed of optimization, in this paper, maximum iteration and 
function tolerance are set as 10,000 and 1 × 10ିଽ. The low and upper bounds are minimum and 
maximum values of the estimated angles. In this paper, as the ground truth values of latitude and 
longitude angles range from 0° to 30°, the low and upper bounds are set as 0 and 50. The number of 
swarm/chromosomes in PSO and GA is set as 15. A large swarm size value can avoid the optimization 
from falling into as local optimum, but will certainly increase the time required for optimization. For 
Simulated Annealing, the initial temperature is set as 5000 and a slow cooling factor 0.95 is set to 
allow the temperature to go down slowly at first but ultimately get cooler faster until converge to the 
optimal solution. For PSO, the inertial weighting factor 𝑤 is set as 0.729 under Clerc’s constriction 
factor [35], while both self confidence factor and swarm confidence factor are set to 1.49, also 
according to Clerc’s constriction factor. Setting 𝑐ଵ and 𝑐ଶ equal can avoid the optimization stuck in 
current optima. The rotation transformation errors calculated from three optimization approaches 
are shown in Figure 4. 

 
Figure 4. Transformation rotation errors by three optimization algorithms: simulated annealing, GA 
and particle swarm. 

Table 2. Parameter setting for optimization. 

Simulated Annealing 
Initial temperature: 5000 Cooling factor: 0.95 

PSO 𝑤 = 0.729 𝑐ଵ = 1.49 𝑐ଶ = 1.49 
Maximum iteration: 1 × 10ସ 
Function tolerance: 1 ×  10ିଽ  

Number of chromosomes/particles: 15 
Low bound: 0 upper bound: 50 

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Simulated Anealing GA Particle swarm

Ro
ta

tio
n 

er
ro

r (
°)

latitude angle θ longitude angle φ

Figure 4. Transformation rotation errors by three optimization algorithms: simulated annealing,
GA and particle swarm.

4.2. Opmization Approach Comparison

Firstly, we compare our optimization method, particle swarm, with two state-of-the-art optimization
methods, simulated annealing and Genetic Algorithm (GA). Both simulated annealing and GA are
non-derivative-based optimization methods which all start with initial candidate positions and generate
a population of points at each iteration.

In the comparison experiment, we use the dataset described in Section 4.1 and apply affine
transformations to the tested dataset and calculate the accuracies of the parameters estimated by different
optimization methods. As the rotation matrix is determined from optimization, we focused on two
rotation angles, latitude angles θ and longitude angles ϕ, in this experiment. For each image pair,
we apply 30 latitude angles θ and 30 longitude angles ϕ ranges from 0◦ to 30◦ to the reference image,
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and the optimization accuracy is evaluated by the difference between the calculated angles and the
ground truth.

The empirical optimization settings are shown in Table 2, where several parameters in common are
the same for the three optimization methods for fair comparison. The maximum iteration and function
tolerance are parameters to stop the iteration. A large maximum iteration and small function tolerance
indicate strict constraint for optimization, which means more accurate result with more iterations.
To balance the precision and speed of optimization, in this paper, maximum iteration and function
tolerance are set as 10,000 and 1× 10−9. The low and upper bounds are minimum and maximum values
of the estimated angles. In this paper, as the ground truth values of latitude and longitude angles range
from 0◦ to 30◦, the low and upper bounds are set as 0 and 50. The number of swarm/chromosomes in
PSO and GA is set as 15. A large swarm size value can avoid the optimization from falling into as local
optimum, but will certainly increase the time required for optimization. For Simulated Annealing,
the initial temperature is set as 5000 and a slow cooling factor 0.95 is set to allow the temperature to go
down slowly at first but ultimately get cooler faster until converge to the optimal solution. For PSO,
the inertial weighting factor w is set as 0.729 under Clerc’s constriction factor [35], while both self
confidence factor and swarm confidence factor are set to 1.49, also according to Clerc’s constriction
factor. Setting c1 and c2 equal can avoid the optimization stuck in current optima. The rotation
transformation errors calculated from three optimization approaches are shown in Figure 4.

Table 2. Parameter setting for optimization.

Simulated Annealing

Initial temperature: 5000 Cooling factor: 0.95

PSO

w = 0.729 c1 = 1.49 c2 = 1.49

Maximum iteration: 1 × 104

Function tolerance: 1 × 10−9

Number of chromosomes/particles: 15
Low bound: 0 upper bound: 50

As shown in Figure 4, the rotation angle errors estimated by simulated annealing and GA
are approximately 0.3◦, which are acceptable for general image registration cases where a precise
rotation angle is not required. Particle swarm-based optimization, in comparison, achieves higher
accuracy (0.02◦) compared to the two state-of-the-art methods. Compared to simulated annealing
and GA, the velocity of particles in PSO are randomly initialized and optimized, which enables the
optimization to quickly converge to a global optimum. Moreover, in each iteration, the particles can
‘learn’ from previous positions and other particles via fitness functions, and thus higher accuracies can
be determined based on this self-learning strategy. The experimental results demonstrate that particle
swarm optimization-based registration can achieve accurate estimations of rotation angles between
two images and thus can be used for registration cases which require high rotation angle accuracy.

4.3. Robustness with Respect to Different Geometric Distortions

In this section, we tested the robustness of the proposed method towards affine and perspective
distortions in mutiple runs. For affine distortions, the tilt angle θi and longitude angle ϕi are varying
from 0◦ to 89◦ with interval of 5◦, so a number of affine transformations with different distorted
parameters are generated A(θi,ϕi). Then, image registration is carried out using the initial image I1

and the distorted image A(I1) which results in the calculated tilt angle θi
∗ and longitude angle ϕi

∗.
The registration accuracies are evaluated by the error between calculated and groundtruth tilt angle
and longitude angle:

tilt error = |θi
∗
− θi|

longitude error =
∣∣∣ϕi
∗
−ϕi

∣∣∣ (18)
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For each input pair of longitude and tilt angle, 20 runs were used to test the repeatability of the
proposed method. One example of multiple runs for affine angle estimation is shown in Figure 5a.
As the initial positions of particles are randomly determined, the particle swarm optimization may
show sligntly different result from the same image input, and thus the image matching accuracy may
have some variations, as shown in Figure 5a. For example, during the 8th run, the tilt error is as
large as 0.8◦, which is larger than in the other runs. This image matching failure case is likely due to
the the situation that particles fall into local minimum rather than global minumum in optimization.
The final affine angle error is evaluated by mean and standard deviation errors as shown in Table 3.
Although the results have fluctuations, according to Table 3, the average tilt error is 0.05◦ and the
average longitude error is 0.008◦.
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Table 3. Mean and standard deviation of the proposed methods under affine and perspective transformation.

Error
Affine Transformation Perspective Transformation

Longitude Tilt E F

Mean 0.0084 0.0596 6.46 ×10−6 9.35 ×10−5

Standard deviation 0.0079 0.0245 1.04 ×10−5 1.07 ×10−5

Similarly, for perspective distortion, a series of Ei and Fi are given to simulate different perspective
transformations P(Ei, Fi). The registration accuracies are evaluated by the error between calculated
and groundtruth E and F, and one multiple run result is shown in Figure 5b. The mean and standard
deviation of perspective transformation estimation error are listed in Table 3. Similar to the case in
affine angle variation, the image matching error did show randomness, but the mean and standard
deviation demonstrate the high average accuracies of the proposed method. In the latter section,
to reduce the randomness of the PSO, the image matching results are based on 20 runs.

4.4. Similarity Measure Comparison

In this section, we compare phase correlation as similarity measure with respect to two
state-of-the-art similarity measures: NCC and MI. The registration accuracies is evaluated as follows:
12 control points are selected to uniformly distributed on the target images, so their groundtruth
positions (û, v̂) after performed geometric transformation can be determined (û, v̂) = Ĝ(x, y), where
(x, y) are the original position of the control points, and Ĝ denoted as the geometric transformation.
After registration, the calculated positions of the control points can be determined as (u, v) = G(x, y),
where the transformation matric G is calculated from image registration. The image registration
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accuracies is assessed by the absolute difference between groundtruth and calculated positions of 12
control points:

σ = (|û− u|+ |v̂− v|)/2 (19)

Some of the image registration results using NCC, MI and phase correlation, which used in this
paper, are shown in Figure 6. The average registration accuracies using the three similarity measures
are shown in Table 4.
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Table 4. Image registration accuracies using different similarity measures (pixel).

Algorithms Illumination +
Perspective

Lack of Texture +
Perspective Blur + Affine Occlusion +

Affine

NCC 32.272 26.913 0.168 1.804
MI 35.821 45.034 0.884 0.588

Our method 0.570 0.065 0.655 0.012

Bold shows the best performance.

The experiment results in Figure 6 demonstrate that, compared to NCC and MI phase correlation
is more robust in the cases of illumination variation and lack of texture, with sub-pixel registration
accuracy of 0.57 pixel and 0.065 pixel, respectively, while NCC and MI all fail in the two cases. All three
measures are able to cope with motion blur and occlusion, but NCC and phase correlation reach higher
registration accuracy (0.168 pixel and 0.012 pixel) compared to others. As a frequency-based image
matching method, Phase Correlation is able to identify the topography and texture similarity between
image pairs regardless of illumination variation. As the image translation is calculated by phase
difference, which is estimated in the frequency domain, high registration accuracies can be achieved by
transforming the phase difference into the spatial domain. According to Table 4, the overall average
registration accuracy of phase correlation is approximately 0.3 pixel considering four challenges.
The experiment results demonstrate that frequency-based similarity measures are more robust to
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illumination variation and lack of texture cases, and achieve higher registration accuracies when all
similarity measures succeed.

4.5. Multimodal Image-Based Navigation

In this section, we demonstrate one of the possible applications using the proposed registration
method: image-based navigation. According to the definition of cross power spectrum, phase
correlation is able to align two multimodal images as long as they are highly similar in the frequency
domain. In this experiment, the robustness of the proposed method with respect to multimodal image
registration will be demonstrated by locating the optical images using a DEM as reference data.

Here, a birdview sequence is generated from a reference DEM given certain lighting conditions
and perspective viewing angle. The goal is to recover the trajectory of camera by the image alignment
between the birdview image and the reference image. The challenge in this experiment is that the
birdview image and reference image (DEM) are from different modalities, so the image texture can be
very different, as shown in Figure 7a.
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To balance the matching accuracy and processing time, five optimization runs are used in this
experiment. The trajectories estimated by state-of-the-art methods and our method are shown in
Figure 7b. Some of the feature-based image matching results are shown in Figure 7c–f. The navigation
accuracies are assessed by the difference between ground truth and calculated positions in the x and y
directions, respectively, and shown in Table 5.

Table 5. Image-based navigation accuracies using different similarity measures (pixel).

Algorithms NCC MI SURF Super Point BRISK Our Method

x 48.111 31.666 46 70 100.86 0.981
y 33.722 40.277 139 93 102.82 0.648

Bold number demonstrate the best performance.

As shown in Figure 7 and Table 5, feature based methods, such as SURF, BRISK and Super Point
fail to perform the DEM-based navigation owing to the large appearance difference between DEM and
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the optic image. As correlation-based methods, NCC and MI perform slightly better than feature-based
methods, but they also fail to recover the correct trajectory with large deviations from the ground truth.
In comparison, the proposed PC-based registration is able to correctly estimate the camera trajectory
with registration errors within 1 pixel. This experiment demonstrates that frequency-based similarity
measures are more robust to multimodal images than spatial-based measures, such as NCC and MI.
Although the reference and target images in this experiment contain large appearance differences,
they are intrinsically derived from the same terrain model and share enough information which could
be correlated in the frequency domain.

5. Conclusions

In this paper, we extended phase correlation image matching from Euclidean transformation to
perspective and affine geometric transformation by combining with the particle swarm optimization
method. The qualities of fringes in the phase correlation cross power spectrum are used as similarity
measures, and the aim of optimization can be set as to search for the best transformation parameters
which obtain the largest value of similarity. Image registration experiments demonstrated that compared
to state-of-the-art image registration methods, only the proposed method can cope with all challenges,
including illumination, lack-of texture, motion blur and occlusion and different geometric distortions
and reach the image registration accuracies within 1 pixel. Further, image-based navigation experiments
are carried out demonstrated that the proposed method is able to correctly recover the trajectory of
camera using multimodal target and reference images.

In this paper, the transformation matrix is set as affine and perspective, but it could be easily
further applied to other distortions, such as polynomial transformations, which are widely used
in satellite image registration. Future work will be focused on the combination of reference-based
navigation and visual odometry to ensure the speed and accuracy of the navigation.
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