Detailed Urban Land Use Land Cover Classification at the Metropolitan Scale Using a Three-Layer Classification Scheme
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data and Data Processing
2.2.1. Satellite Data
2.2.2. In Situ Data Collection
2.2.3. Data Processing
2.3. Classification Scheme
2.4. Image Segmentation and Classification
2.5. Urban LULC Type Extraction
2.5.1. Water Body
2.5.2. Vegetation
2.5.3. Bare Lands
2.5.4. Farm Lands, Roads and Squares, and Buildings
2.6. Accuracy Assessment
3. Results
3.1. Urban LULC Mapping
3.2. Quantitative Accuracy Assessment
3.2.1. Estimating Accuracy
3.2.2. Estimating Area and Uncertainty
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
S | Cw | Tw | Ts | Gs | Fl | Bl1 | Bl2 | Rd | Sq | Ib1 | Ib2 | Ib3 | Ib4 | Ib5 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Pg | Sd | Tt | TA (km2) | Wi | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cw | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 20 | 13.11 | 0.03 | |
Tw | 2 | 9 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0.98 | 0.00 | |
Ts | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 29.56 | 0.06 | |
Gs | 0 | 0 | 0 | 20 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 23 | 79.73 | 0.15 | |
Fl | 0 | 0 | 0 | 0 | 16 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 53.07 | 0.10 | |
Bl1 | 0 | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 25 | 16.59 | 0.03 | |
Bl2 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 1.51 | 0.00 | |
Rd | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 25 | 17.16 | 0.03 | |
Sq | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 2.88 | 0.01 | |
Ib1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 6.85 | 0.01 | |
Ib2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 2.37 | 0.00 | |
Ib3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 2.05 | 0.00 | |
Ib4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 15 | 2.01 | 0.00 | |
Ib5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 15 | 0.29 | 0.00 | |
Rb1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 0 | 0 | 0 | 2 | 0 | 0 | 40 | 33.49 | 0.06 | |
Rb2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 1 | 0 | 0 | 15 | 5.54 | 0.01 | |
Rb3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 19 | 0 | 2 | 0 | 0 | 27 | 19.77 | 0.04 | |
Rb4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 15 | 8.94 | 0.02 | |
Rb5 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 34 | 0 | 1 | 44 | 219.32 | 0.42 | |
Pg | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 12 | 0 | 15 | 1.14 | 0.00 | |
Sd | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 12 | 15 | 6.81 | 0.01 | |
Tt | 21 | 9 | 15 | 24 | 19 | 26 | 23 | 28 | 15 | 17 | 17 | 15 | 12 | 15 | 41 | 13 | 20 | 13 | 45 | 13 | 15 | 416 | 523.16 | ||
P | 0.86 | 1.00 | 1.00 | 0.83 | 0.84 | 0.92 | 0.65 | 0.82 | 0.93 | 0.88 | 0.88 | 0.93 | 1.00 | 0.87 | 0.93 | 0.85 | 0.95 | 0.85 | 0.76 | 0.92 | 0.80 | 0.86 | |||
U | 0.90 | 0.60 | 1.00 | 0.87 | 0.94 | 0.96 | 1.00 | 0.92 | 0.93 | 1.00 | 1.00 | 0.93 | 0.80 | 0.87 | 0.95 | 0.73 | 0.70 | 0.73 | 0.77 | 0.80 | 0.80 | 0.90 | |||
T | Overall Accuracy 0.87 |
S | Cw | Tw | Ts | Gs | Fl | Bl1 | Bl2 | Rd | Sq | Ib1 | Ib2 | Ib3 | Ib4 | Ib5 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Pg | Sd | Wi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cw | 0.02 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.03 |
Tw | 0.00 | 0.00 | - | - | 0.00 | - | 0.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.00 |
Ts | - | - | 0.06 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.06 |
Gs | - | - | - | 0.13 | 0.01 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.01 | - | - | 0.15 |
Fl | - | - | - | - | 0.10 | - | 0.01 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.10 |
Bl1 | - | - | - | - | - | 0.03 | - | - | - | - | - | - | - | - | - | - | - | - | 0.00 | - | - | 0.03 |
Bl2 | - | - | - | - | - | - | 0.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.00 |
Rd | - | - | - | - | - | - | - | 0.03 | 0.00 | - | - | - | - | - | - | - | 0.00 | - | - | - | - | 0.03 |
Sq | - | - | - | - | - | - | - | - | 0.01 | - | - | 0.00 | - | - | - | - | - | - | - | - | - | 0.01 |
Ib1 | - | - | - | - | - | - | - | - | - | 0.01 | - | - | - | - | - | - | - | - | - | - | - | 0.01 |
Ib2 | - | - | - | - | - | - | - | - | - | - | 0.00 | - | - | - | - | - | - | - | - | - | - | 0.00 |
Ib3 | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | - | - | - | - | - | - | - | - | - | 0.00 |
Ib4 | - | - | - | - | - | - | 0.00 | 0.00 | - | - | - | - | 0.00 | - | - | - | - | - | 0.00 | - | - | 0.00 |
Ib5 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.00 | - | - | - | 0.00 | - | - | - | 0.00 |
Rb1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.06 | - | - | - | 0.00 | - | - | 0.06 |
Rb2 | - | - | - | - | - | - | 0.00 | - | - | - | 0.00 | - | - | - | - | 0.01 | - | - | 0.00 | - | - | 0.01 |
Rb3 | 0.00 | - | - | - | - | - | - | 0.00 | - | - | - | - | - | - | 0.00 | 0.00 | 0.03 | - | 0.00 | - | - | 0.04 |
Rb4 | - | - | - | 0.00 | - | - | - | - | - | 0.00 | - | - | - | 0.00 | - | - | - | 0.01 | - | - | - | 0.02 |
Rb5 | - | - | - | 0.03 | 0.01 | 0.01 | - | 0.03 | - | - | - | - | - | 0.01 | - | - | - | - | 0.32 | - | 0.01 | 0.42 |
Pg | - | - | - | - | - | 0.00 | - | - | - | - | - | - | - | - | - | 0.00 | - | - | 0.00 | 0.00 | - | 0.00 |
Sd | - | - | - | - | - | - | 0.00 | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.01 | 0.01 |
Tt | 0.02 | 0.00 | 0.06 | 0.16 | 0.11 | 0.04 | 0.01 | 0.06 | 0.01 | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 | 0.07 | 0.01 | 0.03 | 0.01 | 0.35 | 0.00 | 0.02 |
References
- Cihlar, J. Land cover mapping of large areas from satellites: Status and research priorities. Int. J. Remote Sens. 2000, 21, 1093–1114. [Google Scholar] [CrossRef]
- National Research Council. Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Gong, P. Remote sensing of environmental change over China: A review. Chin. Sci. Bull. 2012, 57, 2793–2801. [Google Scholar] [CrossRef] [Green Version]
- Global Urban Footprint. Available online: http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-9628/16557_read-40454/ (accessed on 5 August 2018).
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Gass, L.; Dewitz, J.A.; Sorenson, D.G.; Granneman, B.J.; Poss, R.V.; Baer, L.A. Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD). Remote Sens. Environ. 2017, 191, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Giri, C.; Zhu, Z.; Reed, B. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens. Environ. 2005, 94, 123–132. [Google Scholar] [CrossRef]
- Huang, X.; Wen, D.W.; Li, J.Y.; Qin, R.J. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery. Remote Sens. Environ. 2017, 196, 56–75. [Google Scholar] [CrossRef]
- Zheng, Z.J.; Du, S.H.; Wang, Y.-C.; Wang, Q. Mining regularity of landscape-structure heterogeneity to improve urban land-cover mapping. Remote Sens. Environ. 2018, 214, 14–32. [Google Scholar] [CrossRef]
- Carleer, A.P.; Wolff, E. Urban land cover multi-level region-based classification of VHR data by selecting relevant features. Int. J. Remote Sens. 2006, 27, 1035–1051. [Google Scholar] [CrossRef]
- Im, J.; Lu, Z.; Rhee, J.; Quackenbush, L.J. Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sens. Environ. 2012, 117, 102–113. [Google Scholar] [CrossRef]
- de Pinho, C.M.D.; Fonseca, L.M.G.; Korting, T.S.; de Almeida, C.M.; Kux, H.J.H. Land-cover classification of an intra-urban environment using high-resolution images and object-based image analysis. Int. J. Remote Sens. 2012, 33, 5973–5995. [Google Scholar] [CrossRef]
- Pacifici, F.; Chini, M.; Emery, W.J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 2009, 113, 1276–1292. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Zhang, L. Spatiotemporal detection and analysis of urban villages in mega city regions of china using high-resolution remotely sensed imagery. IEEE Tran. Geosci. Remote Sens. 2015, 53, 3639–3657. [Google Scholar] [CrossRef]
- Leckie, D.G.; Walsworth, N.; Gougeon, F.A. Identifying tree crown delineation shapes and need for remediation on high resolution imagery using an evidence based approach. ISPRS J. Photogramm. Remote Sens. 2016, 114, 206–227. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L.; Strobl, J. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery. ISPRS J. Photogramm. Remote Sens. 2014, 87, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Du, S.H.; Wang, Q. Integrating bottom-up classification and top-down feedback for improving urban land-cover and functional-zone mapping. Remote Sens. Environ. 2018, 212, 231–248. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S. Learning selfhood scales for urban land cover mapping with very-high-resolution satellite images. Remote Sens. Environ. 2016, 178, 172–190. [Google Scholar] [CrossRef]
- Du, S.H.; Shu, M.; Wang, Q. Modelling relational contexts in GEOBIA framework for improving urban land-cover mapping. GIsci Remote Sens. 2019, 56, 184–209. [Google Scholar] [CrossRef]
- Chen, J.; Du, P.J.; WU, C.S.; Xia, J.S.; Chanussot, J. Mapping urban land cover of a large area using multiple sensors multiple features. Remote Sens. 2018, 10, 872. [Google Scholar] [CrossRef]
- Dorninger, P.; Pfeifer, N. A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 2008, 8, 7232–7343. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X. Fractional vegetation cover estimation algorithm for chinese gf-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Tian, L.; Huang, J.; Feng, L. Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: Radiometric and spatial considerations. ISPRS J. Photogramm. Remote Sens. 2015, 106, 145–156. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, C.X.; Wang, S.X.; Liu, W.L.; Tian, Y. Estimation of Building Density with the integrated use of GF-1 PMS and Radarsat-2 data. Remote Sens. 2016, 8, 969. [Google Scholar] [CrossRef]
- Shen, G.; Xu, B.; Jin, Y.; Chen, S.; Zhang, W.; Guo, J.; Liu, H.; Zhang, Y.; Yang, X. Monitoring wind farms occupying grasslands based on remote-sensing data from China’s GF-2 HD satellite—A case study of Jiuquan city, Gansu province, China. Resour. Conserv. Recycl. 2017, 121, 128–136. [Google Scholar] [CrossRef]
- Oh, J.; Lee, C. Automated bias-compensation of rational polynomial coefficients of high resolution satellite imagery based on topographic maps. ISPRS J. Photogramm. Remote Sens. 2015, 100, 14–22. [Google Scholar] [CrossRef]
- Taylor, S.; Kumar, L.; Reid, N. Mapping Lantana camara: Accuracy Comparison of Various Fusion Techniques. Photogramm. Eng. Remote Sens. 2010, 76, 691–700. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving Component Substitution PansharpeningThrough Multivariate Regression of MS +Pan Data. IEEE Tran. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Fiumi, L. Surveying the roofs of Rome. J. Cult. Herit. 2012, 13, 304–313. [Google Scholar] [CrossRef]
- Momeni, R.; Aplin, P.; Boyd, D.S. Mapping complex urban land cover from spaceborne imagery: The influence of spatial resolution, spectral band set and classification approach. Remote Sens. 2016, 8, 88. [Google Scholar] [CrossRef]
- Corcoran, P.; Winstanley, A.; Mooney, P. Segmentation performance evaluation for object-based remotely sensed image analysis. Int. J. Remote Sens. 2010, 31, 617–645. [Google Scholar] [CrossRef]
- Dey, V.; Zhang, Y.; Zhong, M. A review on image segmentation techniques with remote sensing perspective. In ISPRS TC VII Symposium—100 Years ISPRS; Wagner, W., Székely, B., Eds.; IAPRS: Vienna, Austria, 2010; pp. 31–42. [Google Scholar]
- André, S.; Norman, K. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Kim, M.; Warner, T.A.; Madden, M.; Atkinson, D.S. Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: Scale, texture and image objects. Int. J. Remote Sens. 2011, 32, 2825–2850. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Salehi, B.; Chen, Z.; Jefferies, W.; Adlakha, P.; Bobby, P.; Power, D. Well site extraction from Landsat-5 TM imagery using an object-and pixel-based image analysis method. Int. J. Remote Sens. 2014, 35, 7941–7958. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Motagh, M. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS J. Photogramm. Remote Sens. 2017, 310, 13–31. [Google Scholar] [CrossRef]
- Drăgut, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Poursanidis, D.; Chrysoulakis, N.; Mitraka, Z. Landsat 8 vs. Landsat 5: A comparison based on urban and peri-urban land cover mapping. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 259–269. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 2012, 33, 4502–4526. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Conley, J.F.; Sharp, A.L. Assessing machine-learning algorithms and image-and lidar-derived variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sens. 2015, 7, 153–168. [Google Scholar] [CrossRef]
- Kaszta, Z.; Kerchove, R.V.D.; Ramoelo, A.; Cho, M.A.; Madonsela, S.; Mathieu, R.; Wolff, E. Seasonal Separation of African Savanna Components Using Worldview-2 Imagery: A Comparison of Pixel- and Object-Based Approaches and Selected Classification Algorithms. Remote Sens. 2016, 8, 763. [Google Scholar] [CrossRef]
- Li, M.; Stein, A.; Bijker, W.; Zhan, Q. Urban land use extraction from Very High Resolution remote sensing imagery using a Bayesian network. ISPRS J. Photogramm. Remote Sens. 2016, 122, 192–205. [Google Scholar] [CrossRef]
- Random Forests. Available online: http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed on 5 August 2018).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Su, W.; Li, J.; Chen, Y.H.; Liu, Z.G.; Zhang, J.S.; Low, T.M.; Suppiah, I.; Hashim, S.A.M. Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery. Int. J. Remote Sens. 2008, 29, 3105–3117. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, H. A comprehensive evaluation of approaches for build-up area extraction from Landsat OLI images using massive samples. Remote Sens. 2019, 11, 2. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Patino, J.E.; Duque, J.C. A review of regional science applications of satellite remote sensing in urban settings. Comput. Environ. Urban Syst. 2013, 37, 1–17. [Google Scholar] [CrossRef]
- Martínez, S.; Ramil, P.; Chuvieco, E. Monitoring loss of biodiversity in cultural landscapes. New methodology based on satellite data. Landsc. Urban Plan. 2010, 94, 127–140. [Google Scholar] [CrossRef]
- Johnson, B.A.; Iizuka, K.; Bragais, M.A.; Endo, I.; Magcale-Macandog, D.B. Employing crowdsourced geographic data and multi-temporal/multi-sensor satellite imagery to monitor land cover change: A case study in an urbanizing region of the Philippines. Comput. Environ. Urban Syst. 2017, 64, 184–193. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Rogan, J.; Kellndorfer, J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 2012, 117, 72–82. [Google Scholar] [CrossRef]
- Qiu, F.; Sridharan, H.; Chun, Y. Spatial autoregressive model for population estimation at the census block level using LIDAR-derived building volume information. Cartogr. Geogr. Inf. Sci. 2010, 37, 239–257. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Li, W.; Han, L. Understanding the dynamic of greenspace in the urbanized area of Beijing based on high resolution satellite images. Urban For. Urban Green. 2015, 14, 39–47. [Google Scholar] [CrossRef]
Satellite | Spectral Bands | Spatial Resolution (m) | Spectral Range (μm) | Swath Width (km) |
---|---|---|---|---|
GF-1 | P | 2 | 0.45–0.90 | |
MS | 8 | 0.45–0.52 | ||
0.52–0.59 | 60 | |||
0.63–0.69 | ||||
0.77–0.89 | ||||
WFV-MS | 16 | 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89 | 800 | |
GF-2 | P | 0.8 | 0.45–0.90 | |
MS | 3.2 | 0.45–0.52 | ||
0.52–0.59 | 45.7 | |||
0.63–0.69 | ||||
0.77–0.89 |
Satellite | Image Number | Image Level | Acquiring Date | Spatial Resolution | Spectral Bands |
---|---|---|---|---|---|
GF-1 | 85656 | 1A | 20150622 | 8 m/16 m | MS |
85657 | 1A | 20150622 | 8 m/16 m | MS | |
875773 | 1A | 20150622 | 8 m/16 m | MS | |
875774 | 1A | 20150622 | 8 m/16 m | MS | |
GF-2 | 805806 | 1A | 20150515 | 0.8 m/3.2 m | P/MS |
805807 | 1A | 20150515 | 0.8 m/3.2 m | P/MS |
LULC Types | Images | Photos | ||
---|---|---|---|---|
Layer 1 | Layer 2/Code | Layer 3/Code | ||
Pervious surfaces | Water body/1 | Clear water/11 | Rivers or lakes with dark tone without bathymetry information | |
Turbid water/12 | Water bodies with bright and light blue color with sediment information | |||
Vegetation/2 | Trees and Shrubs/21 | Densely planted trees or shrubs with shiny red color | ||
Grass/22 | Densely planted grass with slightly dark red color | |||
Farm lands/3 | Croplands/31 | Exposed croplands with light brown color | ||
Impervious surfaces | Bare lands/4 | Construction sites without working on/41 | Exposed soil patches with light yellow color | |
Coal ash site/42 | Exposed powdered coal with grey color | |||
Roads and squares/5 | Roads/51 | Urban roads with grey color | ||
Squares and airport runway/52 | Aircraft runways with bright white color | |||
Industrial buildings/6 | Red roofs/61 | Industrial buildings with regular shape and bright red color | ||
Yellow roofs/62 | Industrial buildings with regular shape and bright yellow color | |||
White roofs/63 | Industrial buildings with regular shape and bright white color | |||
Grey roofs/64 | Industrial buildings with regular shape and grey color | |||
Purple roofs/65 | Industrial buildings with regular shape and purple color | |||
Residential buildings/7 | Bright roofs/71 | Residential low-rise buildings with relatively small sizes and bright white color | ||
Yellow roofs/72 | Residential low-rise buildings with relatively small sizes and yellow color | |||
Black roofs/73 | Residential low-rise buildings with relatively small sizes and dark color | |||
Red roofs/74 | Residential low-rise buildings with relatively small size and grey color | |||
High-density white roofs/75 | Intensive residential buildings with small size and grey color | |||
Playground/76 | Playground with running track and rectangle-shape soccer field | |||
Shadow | Shadow/8 | Shadow/81 | Shadow (adjacent to high-rise or low-rise buildings) with dark color |
LULC Types | Satellite Imagery | Segmentation Parameters Scale/Shape/Compactness | Minimum Mapping Unit (MMU,pixel) |
---|---|---|---|
Water body A | GF-1(16 m) | 100/0.4/0.5 | 3 × 3 |
Water body B | GF-1(8 m) | 100/0.4/0.5 | 3 × 3 |
Vegetation A | 10 × 10 | ||
Bare lands | 6 × 6 | ||
Farm lands | GF-2(3.2 m) | 50/0.4/0.5 | 6 × 6 |
Roads and squares | 8 × 8 | ||
Industrial buildings | 8 × 8 | ||
Vegetation B | GF-2(0.8 m) | 25/0.6/0.5 | 100 × 100 |
Shadow | 8 × 8 | ||
Residential buildings | 8 × 8 |
Sample | Wb | Vg | Fl | Bl | R&S | Ib | Rb | Sd | Tt | Ta (km2) | Wi | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
User Class | ||||||||||||
Wb | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 33 | 14.10 | 0.03 | |
Vg | 0 | 63 | 1 | 2 | 0 | 0 | 1 | 1 | 68 | 109.29 | 0.21 | |
Fl | 0 | 0 | 62 | 8 | 0 | 0 | 2 | 0 | 72 | 53.07 | 0.10 | |
Bl | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 0 | 42 | 18.09 | 0.03 | |
R&S | 0 | 0 | 0 | 1 | 41 | 3 | 1 | 0 | 46 | 20.04 | 0.04 | |
Ib | 0 | 0 | 0 | 0 | 0 | 31 | 0 | 0 | 31 | 13.57 | 0.03 | |
Rb | 0 | 4 | 1 | 6 | 3 | 4 | 55 | 2 | 75 | 288.19 | 0.55 | |
Sd | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 27 | 30 | 6.81 | 0.01 | |
Tt | 32 | 67 | 64 | 59 | 44 | 39 | 61 | 31 | 397 | 523.16 | 0.03 | |
Producer | 1.00 | 0.94 | 0.97 | 0.71 | 0.93 | 0.79 | 0.90 | 0.87 | 1.00 | |||
User | 0.97 | 0.93 | 0.86 | 1.00 | 0.89 | 1.00 | 0.73 | 0.90 | 0.97 | |||
Totals | Overall Accuracy 0.89 |
Sp | Wb | Vg | Fl | Bl | R&S | Ib | Rb | Sd | Wi | |
---|---|---|---|---|---|---|---|---|---|---|
Uc | ||||||||||
Wb | 0.03 | - | - | - | - | - | - | 0.00 | 0.03 | |
Vg | - | 0.19 | 0.00 | 0.01 | - | - | 0.00 | 0.00 | 0.21 | |
Fl | - | - | 0.09 | 0.01 | - | - | 0.00 | - | 0.10 | |
Bl | - | - | - | 0.03 | - | - | - | - | 0.03 | |
R&S | - | - | - | 0.00 | 0.03 | 0.00 | 0.00 | - | 0.04 | |
Ib | - | - | - | - | - | 0.03 | - | - | 0.03 | |
Rb | - | 0.03 | 0.01 | 0.04 | 0.02 | 0.03 | 0.40 | 0.01 | 0.55 | |
Sd | - | - | - | - | - | 0.00 | 0.00 | 0.01 | 0.01 | |
Tt | 0.03 | 0.22 | 0.10 | 0.10 | 0.06 | 0.06 | 0.41 | 0.03 |
Layer 2 | Layer 3 | ||
---|---|---|---|
Urban LULC | Estimated Users’/Producers’ Accuracy | Urban LULC | Estimated Users’/Producers’ Accuracy |
Water bodies | 0.97 ± 0.06/1.00 ± 0.00 | Clear water | 0.90 ± 0.13/0.86 ± 0.17 |
Turbid water | 0.60 ± 0.26/1.00 ± 0.00 | ||
Vegetation | 0.93 ± 0.06/0.94 ± 0.07 | Trees and shrubs | 1.00 ± 0.00/1.00 ± 0.00 |
Grass | 0.87 ± 0.14/0.83 ± 0.19 | ||
Farm land | 0.86 ± 0.08/0.97 ± 0.09 | Farm land | 0.94 ± 0.12/0.84 ± 0.16 |
Bare lands | 1.00 ± 0.00/0.71 ± 0.06 | Bare lands T1 | 0.96 ± 0.88/0.92 ± 0.15 |
Bare lands T2 | 1.00 ± 0.00/0.65 ± 0.11 | ||
Roads and squares | 0.89 ± 0.09/0.93 ± 0.12 | Roads | 0.92 ± 0.11/0.82 ± 0.18 |
Squares | 0.93 ± 0.13/0.93 ± 0.15 | ||
Industrial buildings | 1.00 ± 0.00/0.79 ± 0.06 | Industrial Bd1 | 1.00 ± 0.00/0.88 ± 0.14 |
Industrial Bd2 | 1.00 ± 0.00/0.88 ± 0.14 | ||
Industrial Bd3 | 0.93 ± 0.13/0.93 ± 0.15 | ||
Industrial Bd4 | 0.80 ± 0.21/1.00 ± 0.00 | ||
Industrial Bd5 | 0.87 ± 0.18/0.87 ± 0.16 | ||
Residential Buildings | 0.73 ± 0.10/0.90 ± 0.23 | Residential Bd1 | 0.95 ± 0.07/0.93 ± 0.16 |
Residential Bd2 | 0.73 ± 0.23/0.85 ± 0.17 | ||
Residential Bd3 | 0.70 ± 0.18/0.95 ± 0.16 | ||
Residential Bd4 | 0.73 ± 0.23/0.85 ± 0.17 | ||
Residential Bd5 | 0.77 ± 0.13/0.76 ± 0.35 | ||
Playground | 0.80 ± 0.21/0.92 ± 0.15 | ||
Shadow | 0.90 ± 0.11/0.87 ± 0.17 | Shadow | 0.80 ± 0.21/0.80 ± 0.19 |
Urban LULC | Area | Error | Lower Limit | Upper Limit | Urban LULC | Area | Error | Lower Limit | Upper Limit |
---|---|---|---|---|---|---|---|---|---|
Water bodies | 13.67 | 0.43 | 12.83 | 14.51 | Clear water | 12.67 | 1.17 | 10.38 | 14.95 |
Turbid water | 0.59 | 0.13 | 0.34 | 0.84 | |||||
Vegetation | 116.63 | 8.30 | 100.37 | 132.88 | Trees and shrubs | 29.56 | 0.00 | 29.56 | 29.56 |
Grass | 84.88 | 10.21 | 64.87 | 104.89 | |||||
Farm land | 51.15 | 4.70 | 41.94 | 60.36 | Farm land | 58.46 | 6.83 | 45.08 | 71.85 |
Bare lands | 50.69 | 9.58 | 31.92 | 69.47 | Bare lands T1 | 20.98 | 5.03 | 11.13 | 30.84 |
Bare lands T2 | 6.15 | 3.20 | -0.12 | 12.42 | |||||
Roads and Squares | 29.39 | 6.63 | 16.39 | 42.39 | Roads | 31.61 | 8.52 | 14.92 | 48.30 |
Squares | 3.37 | 0.71 | 1.97 | 4.77 | |||||
Industrial buildings | 30.47 | 7.57 | 15.64 | 45.30 | Industrial Bd1 | 8.04 | 0.81 | 6.45 | 9.64 |
Industrial Bd2 | 2.88 | 0.39 | 2.11 | 3.65 | |||||
Industrial Bd3 | 2.10 | 0.24 | 1.64 | 2.56 | |||||
Industrial Bd4 | 1.61 | 0.21 | 1.19 | 2.03 | |||||
Industrial Bd5 | 5.83 | 5.02 | −4.01 | 15.67 | |||||
Residential Buildings | 215.31 | 14.95 | 186.02 | 244.61 | Residential Bd1 | 34.01 | 1.69 | 30.70 | 37.32 |
Residential Bd2 | 4.87 | 0.99 | 2.94 | 6.80 | |||||
Residential Bd3 | 14.60 | 1.90 | 10.87 | 18.32 | |||||
Residential Bd4 | 6.60 | 1.06 | 4.52 | 8.67 | |||||
Residential Bd5 | 181.24 | 14.92 | 152.00 | 210.48 | |||||
Playground | 1.36 | 0.47 | 0.44 | 2.28 | |||||
Shadow | 15.85 | 5.66 | 4.76 | 26.95 | Shadow | 11.75 | 5.12 | 1.72 | 21.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, G.; Ren, H.; Yang, L.; Zhang, N.; Du, M.; Wu, C. Detailed Urban Land Use Land Cover Classification at the Metropolitan Scale Using a Three-Layer Classification Scheme. Sensors 2019, 19, 3120. https://doi.org/10.3390/s19143120
Cai G, Ren H, Yang L, Zhang N, Du M, Wu C. Detailed Urban Land Use Land Cover Classification at the Metropolitan Scale Using a Three-Layer Classification Scheme. Sensors. 2019; 19(14):3120. https://doi.org/10.3390/s19143120
Chicago/Turabian StyleCai, Guoyin, Huiqun Ren, Liuzhong Yang, Ning Zhang, Mingyi Du, and Changshan Wu. 2019. "Detailed Urban Land Use Land Cover Classification at the Metropolitan Scale Using a Three-Layer Classification Scheme" Sensors 19, no. 14: 3120. https://doi.org/10.3390/s19143120
APA StyleCai, G., Ren, H., Yang, L., Zhang, N., Du, M., & Wu, C. (2019). Detailed Urban Land Use Land Cover Classification at the Metropolitan Scale Using a Three-Layer Classification Scheme. Sensors, 19(14), 3120. https://doi.org/10.3390/s19143120