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Abstract: Smartphone MEMS (Micro Electrical Mechanical System) accelerometers have relatively
low sensitivity and high output noise density. Therefore, it cannot be directly used to track feeble
vibrations such as structural vibrations. This article proposes an effective increase in the sensitivity of
the smartphone accelerometer utilizing the stochastic resonance (SR) phenomenon. SR is an approach
where, counter-intuitively, feeble signals are amplified rather than overwhelmed by the addition
of noise. This study introduces the 2D-frequency independent underdamped pinning stochastic
resonance (2D-FI-UPSR) technique, which is a customized SR filter that enables identifying the
frequencies of weak signals. To validate the feasibility of the proposed SR filter, an iPhone device is
used to collect bridge acceleration data during normal traffic operation and the proposed 2D-FI-UPSR
filter is used to process these data. The first four fundamental bridge frequencies are successfully
identified from the iPhone data. In parallel to the iPhone, a highly sensitive wireless sensing network
consists of 15 accelerometers (Silicon Designs accelerometers SDI-2012) is installed to validate the
accuracy of the extracted frequencies. The measurement fidelity of the iPhone device is shown to
be consistent with the wireless sensing network data with approximately 1% error in the first three
bridge frequencies and 3% error in the fourth frequency.

Keywords: stochastic resonance; bridge inspection; structural health monitoring, SHM; bridge health
monitoring; frequency independent stochastic resonance; SHM using smartphones

1. Introduction

Smartphone technology has advanced rapidly over the last decade. These ubiquitous devices are
equipped with various sensors, ranging from accelerometers to magnetic field detectors. As a result,
some researchers have investigated the viability of using smartphones data for various crowdsourcing
remote sensing applications. One of the preliminary studies in this field is that done by Clayton et al. [1]
and Kohler et al. [2]. They propose the “Community Seismic Network”, which is a community-based
sense and response system for seismic activities using a distributed network of sensors in volunteers’
desktop computers, laptops and smartphones. The project aims to develop an early warning system
for seismic events utilizing inexpensive sensors in volunteers’ devices, rather than using a small
number of high-quality sensors. By processing the feedback from a huge number of “Seismic Network”
sensors, they successfully characterize earthquake-induced vibrations and generate a ShakeMap (a map
highlighting earthquake intensities across a city). In another application, Yu et al. [3,4] introduce
the idea of structural health monitoring using smartphones. They use a smartphone as a mini-SHM
system to collect information about the structure using iPhone sensors (accelerometers, inclinometers,
temperature sensors, etc.) as well as using external sensors connected wirelessly to the iPhone. The
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authors use the iPhone data as an input to an algorithm embedded in the smartphone to perform
“small-scale structure monitoring.” If smartphone readings cannot meet the monitoring criteria (e.g.,
the signal is corrupted by severe noise), the external sensor is used to collect high quality data from the
structure. In a similar vein, Feng et al. [5] introduce the “Citizen Sensor” network, which is basically
the use of smartphones as deployable accelerometers to collect structural vibrations. The authors use
three commercial smartphones in versatile vibration tests. Their work proves the feasibility of using
smartphones for the detection of moderate to large intensity vibrations. They succeed in identifying
the first fundamental frequency for a full-scale bridge.

While Yu et al. [3,4] and Feng et al. [5] put forward the concept of using smartphone accelerometers
for SHM applications in their seminal papers, these research groups could only extract information
about the first fundamental bridge frequency. For SHM applications information about other modes of
vibration (second, third, fourth, etc.) is extremely useful in identifying structural damage. Lee et al. [6]
show that by utilizing the first four frequencies for a cantilever beam, the location and the size of a
crack can be precisely identified. Similarly, Nikolakopoulos et al. [7] identify structural damage in a
single story frame from the shift in the first three fundamental frequencies. Furthermore, Yao et al. [8]
proposed a power-free, passive wireless sensor that can be activated utilizing a radio frequency
interrogator to track incipient damages in the structures. In addition, there are many other research
works which conclude that using more than one mode of vibration can lead to great success in damage
identification [9–17].

There are two related issues with smartphone accelerometers that hinder their ability to detect
several modes of vibration: a) low sensitivity and b) high output noise level. Figure 1 presents the
power spectral density (PSD) plots for two acceleration signals for a highway bridge; the PSD of
Figure 1a is for a signal recorded using an iPhone 6s, while that of Figure 1b is for a signal recorded
using a Silicon Designs accelerometer (SDI Model 2012, manufactured by Silicon Designs Inc., Kirkland,
WA, USA). The PSD for the iPhone signal has one clear peak at 7.45 Hz corresponding to the first
fundamental bridge frequency, and no other peaks are evident at higher frequencies. In contrast, the
SDI accelerometer shows three clear peaks corresponding to the first three fundamental frequencies of
the bridge. This significant difference is due to the accelerometer sensitivity and the level of the output
noise density.
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monitoring applications. Stochastic resonance (SR) is a counter-intuitive phenomenon as it uses 
background noise to effectively amplify signals that would otherwise be too weak for some sensors 
to be detected. In other words, SR utilizes noise to enhance the performance of the sensor. The 
phenomenon has been introduced in a study to interpret the periodicity of the ice age Benzi et al. [18]. 
Later on, researchers found that this phenomenon exists in the sensory system of many living 
organisms, such as crayfish [19] and crickets [20]. They found that these arthropods can amplify the 
feeble vibrations produced by the predators when the predator swim/fly to attack. These arthropods 

Figure 1. Power spectral density (PSD) of mid-span acceleration on a highway bridge recorded using
(a) iPhone MPU-6500 and (b) SDI-2012.

Accelerometer sensitivity is the ratio of change in sensor electrical output (signal) to mechanical
input (e.g., acceleration), and it is measured differently in analog and digital accelerometers. An analog
accelerometer produces a variable voltage related to the amount of acceleration applied to it. Digital
accelerometers, on the other hand, perform an internal transformation to convert the voltage changes
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due to the applied acceleration directly into a digital format. Accordingly, an analog accelerometer’s
sensitivity is measured in mV/g (milli-Volt per unit of acceleration), while a digital accelerometer’s
sensitivity is measured in LSB/g (Least Significant Bit per unit of acceleration). The MPU-6500 in
iPhones has a maximum sensitivity of 16,384 LSB/g. This is equivalent to 450 mV/g in an analog scale.
The relation between the two measures is a function of the operating voltage and the scale of the analog
to digital converter (ADC) where:

LSB =
Reference Voltage

2N(number o f bits)
(1)

The MPU-6500 has an operating voltage of 1.8 V and the ADC scale is 16 bits. Thus, each unit of
LSB is equivalent to 0.0275 mV and 16,384 LSB/g is equivalent to 450 mV/g. This is less than 25% of
the sensitivity of the SDI-2012 which is 2000 mV/g. The difference in sensitivity is also evident in the
acceleration plot (Figure 2). The amplitude of the acceleration measured using the SDI-2012 is as low
as 10−4 g.
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SDI-2012. Strait lines show theoretical noise root mean square (RMS) value. Dashed lines show actual
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The iPhone accelerometer also has a high output noise density, as is evident in Figure 2.
Output noise density equals the ratio of noise root mean square (RMS) to the square root of the
scanning frequency:

Noise Density =
Noise RMS√

Scanning Frequncy Hz
µg/
√

Hz (2)

The MPU-6500 output noise density is 300 µg/
√

Hz so, for a scanning frequency of 100 Hz, the
noise RMS equals 3 × 10−3 g. This level is shown in the iPhone acceleration record of Figure 2a (the red
straight lines). However, the actual noise RMS was measured by the authors and it is higher than that
provided by the manufacturer, namely, 10−2 g (the dashed green lines in the figure). On the other hand,
the SDI-2012 output noise density is 10 µg/

√
Hz. Therefore, for the same scanning frequency, the noise

RMS is 10−4 g, as presented in Figure 2b (red straight lines). These two issues of sensitivity and noise
limit the iPhone accelerometer’s capacity to extract frequencies for the bridge modes of vibration.

This article proposes the exploitation of stochastic resonance to enhance the sensitivity of a
smartphone’s accelerometer, which is seen as the first step in their potential use for structural health
monitoring applications. Stochastic resonance (SR) is a counter-intuitive phenomenon as it uses



Sensors 2019, 19, 3143 4 of 20

background noise to effectively amplify signals that would otherwise be too weak for some sensors
to be detected. In other words, SR utilizes noise to enhance the performance of the sensor. The
phenomenon has been introduced in a study to interpret the periodicity of the ice age Benzi et al. [18].
Later on, researchers found that this phenomenon exists in the sensory system of many living
organisms, such as crayfish [19] and crickets [20]. They found that these arthropods can amplify the
feeble vibrations produced by the predators when the predator swim/fly to attack. These arthropods
utilize SR to monitor vibrations at specific frequencies (associated with the attack swimming/flying
motions of the predator). By monitoring the amplitude of the signal at that particular frequency, the
arthropod can predict whether the predator is approaching or departing. If the amplitude increases,
it indicates an approach and vice versa [20,21]. This intriguing phenomenon is currently attracting
a great deal of interest in several research fields. However, there are two issues with traditional SR
approach: 1) SR was originally developed for bi-stable, overdamped systems [22–29]. Civil Engineering
structures tend to be mono-stable (one mode of vibration dominates the signal) and underdamped. 2)
The frequency of the weak signal must be known in advance to extract the signal from the noise. To
enable using SR in civil structural health monitoring applications, the authors introduce in a previous
publication the frequency-independent underdamped pinning stochastic resonance (FI-UPSR) method,
which is suitable for mono-stable, underdamped systems [30] and it is a frequency independent SR
filter. In that study, FI-UPSR is successfully used to identify the fundamental bridge frequency using
indirect measurements collected from an accelerometer mounted on an inspection vehicle passing over
the bridge.

In this article, a new version of the FI-UPSR is introduced to extract higher modes of vibrations
from a signal recorded by an iPhone device. The new FI-UPSR, namely 2D-FI-UPSR, method does not
require high computational power comparing to the original FI-UPSR method, and; therefore, it can
be embedded to a smartphone application. This advantage will make SHM activities popular, since
smartphones are more convenient to operate by the public.

The manuscript commences by introducing the 2D-FI-UPSR concept. The 2D-FI-UPSR is then
used to identify the frequencies of three weak signals. Finally, the 2D-FI-UPSR filter is used to
process the iPhone acceleration where the first four frequencies for a full-scale concrete bridge are
successfully identified.

2. Frequency Independent Underdamped Pinning Stochastic Resonance (FI-UPSR)

Stochastic resonance (SR) is a single degree of freedom filter that amplifies weak signals by
resonating the noise with the signal. The general formula for stochastic resonance filter is:

d2x
dt2 = −V′(x) − γ

dx
dt

+
{
s(t) + n(t)

}
(3)

where x(t) is the extracted signal, γ is a damping term, s(t) is the original weak signal, and n(t) is the
noise. Therefore

{
s(t) + n(t)

}
is the input (signal mixed with noise) to the stochastic resonance filter.

The weak signal x(t) is extracted when it resonates with the input signal,
{
s(t) + n(t)

}
. This can be

achieved either by tuning the input noise, or by changing the potential shape V(x), which can be done
by tuning the force of the potential field (which is represented in Equation (3) by V′(x)). Since the input
noise cannot be controlled, the weak signal is extracted by changing the force of the potential field
(V′(x)). The force of the potential field is changed by adjusting the potential parameters, Vd, L, and x0

that characterize the potential field [30,31]:

V(x) = V0 −Vd

exp

− (x + x0)
2

L2

+ exp

− (x− x0)
2

L2

 (4)

Figure 3 illustrates the terms of Equation (3). The position of the red particle represents the
extracted signal, x(t), L is the length of one potential trough, x0 is the center of each pinning. The
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potential depth, Vd, is an essential parameter for the filtering process. Higher Vd values provide higher
potential depths, in which the particle will not be able to surmount the barrier unless resonance is
approached in Equation (3). The particle position is affected by two input forces; a) the input signal{
s(t) + n(t)

}
, b) the force of the potential field V′(x). Figure 4 illustrates schematically the effect of

these two forces on the particle. In Figure 4a the input signal
{
s(t) + n(t)

}
moves the particle along

the potential shape. If the input signal is weak, the particle moves smoothly along the potential field.
On the other hand, if the input signal is strong the particle will strongly hop from one position to
another. Alternatively, the force of the potential field (V′(x)) changes the shape of the field by moving
the pinning points of the potential shape up and down. Figure 4b presents two shapes for the potential
field at two-time steps.
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As previously noted, we cannot control the input signal
{
s(t) + n(t)

}
; therefore, the weak signal is

extracted by changing the potential field (V(x)). Figure 5 presents three scenarios for three different
potential fields, where the potential fields are generated by changing the potential parameters, Vd, L,
and x0. If the potential shape has a deep and wide trough, the particle will not be able to surmount
the barrier and move from one potential minimum to another (Figure 5a), thus, resonance will not be
approached. If the potential shape has a shallow and narrow trough, the particle will strongly hop on
the potential shape as presented in Figure 5b. If the potential shape is properly adjusted, the input
signal (or the input force) will synchronize with the particle’s hopping motion on the pinning pints of
the potential shape. At this point, resonance is approached between the input signal and the extracted
signal, as shown in Figure 5c. The following reference provides a graphical demonstration in real time
for Figure 5c [32]. More information about the method can be found in the following references [30,31].Sensors 2019, 19, x FOR PEER REVIEW 6 of 19 
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Figure 5. Extraction of the weak signal by adjusting the potential shape: (a) The potential shape has
deep-wide troughs that prevents the particle from surmounting the potential barrier; (b) the potential
shape has shallow-narrow troughs that allows the particle to hope on the potential wall; (c) the potential
shape is adjusted where the particle motion is synchronized with the input force (particle motion is the
extracted signal x(t), input force is the input signal s(t) + n(t)).

The weak signal is extracted by generating a set of potential shapes using different potential
parameters (Vd, L, and x0). Then, for each shape, the signal is extracted by applying Equation (3). Based
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on the previous publication [30], the authors recommend a range for the parameters of Equation (3) as
presented in Table 1. These values will provide a proper potential shape that enables extracting the
structure modes of vibrations. If the values are not properly selected, resonance will not be achieved
in Equation (3) and thus the extracted signal will identically match the input signal as presented in
Figure 5. The quality of the extracted signal is measured using the signal to noise ratio (SNR). The
signal that has the highest SNR value, correspondingly has the smallest background noise. Therefore,
the optimal potential parameters are those that maximize the SNR. In traditional SR methods, the SNR
is calculated assuming that the target frequency of the weak signal is known. With FI-UPSR, feeble
signals can be processed without knowing the target frequencies in advance. This is done using three
dimensional surface plots of SNR. The SNR surface plot is created by a) generating a large population
of the potential parameters (Vd has a constant value, while L and x0 are varying), b) extracting the
corresponding signal using Equation (3), and c) calculating the SNR values for the extracted signals.
Having calculated the SNR for each point in the population (i.e., for point i with coordinates, (x0(i),
L(i))), a three-dimensional surface plot is generated, and maximum values identified—see Figure 6.
Any potential parameters on this peak can be utilized to extract the feeble signal. More information
about the FI-UPSR method is available in reference [30]. Figure 6 presents an example for applying of
FI-UPSR to extract a feeble signal.

Table 1. Recommended initial values for Vd, and γ.

Vd γ

≥100 0.1–0.7
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3. 2D-FI-UPSR Method

The FI-USPR framework needs high computational capabilities and it requires long processing
time. For example, the time required to generate the SNR plot in Figure 6 is 491 s using a desktop
computer. In order to embed this filter into a smartphone application that can be run directly by a
smartphone processor, the FI-UPSR framework needs to be simplified. This section introduces the
2D-FI-UPSR method which is a two-dimensional SNR plot that can extract feeble signals and identify
their frequencies. As illustrated in Figure 6, the SNR surface plot is radially symmetric about the origin.
Thus, the 3D SNR plot can be simplified into a 2D SNR plot by eliminating the x0 coordinate. Further,
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it is possible to derive a direct relationship between the potential parameter, L and the frequency of the
extracted signal.

The derivative of the potential function in Equation (3) is:

V′(x) =
dV(x)

dx
= Vd

2(x + x0)

L2 exp

− (x + x0)
2

L2

+ 2(x− x0)

L2 exp
(
−
(x− x0)

L2

) (5)

Since the shape is symmetric around x0 = 0, it is possible to substitute, x0 = 0 in Equation (5),
which yields:

V′(x) =
4Vd

L2 x exp
(
−

x2

L2

)
(6)

For a relatively large L, the exponential term approaches zero and Equation (6) can be
approximated as:

V′(x) =
4Vd

L2 x (7)

Substituting Equation (7) into Equation (3), and rearranging gives:

d2x
dt2 + γ

dx
dt

+
4Vd

L2 x =
{
s(t) + n(t)

}
(8)

Equation (8) is in the form of forced damped vibration for a single degree of freedom system,
where the system will resonate when the system frequency equals that of the applied force (in this case,
s(t) + n(t)). Therefore, the frequency of the extracted signal, x(t) equals the natural frequency for a
single degree of freedom system:

ω = 2π f =

√
4Vd

L2 (9)

Therefore:

f =

√
Vd

π2L2 (10)

Equation (10) provides a direct relationship between the potential parameter L and the frequency
of the extracted signal. By eliminating x0 from the graph and introducing this relationship, the SNR
surface plot of Figure 6 can be simplified to that of Figure 7. Along with the simplicity of Figure 7, the
processing time drops from 490 to 1.1 s.
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In summary, a simpler 2D SNR plot is derived by setting x0 = 0 and by directly calculating the
resonant frequency of the extracted signals. The following points summarize the steps of reproducing
the 2D SNR plots:

(1) Select values for γ, and Vd (recommended ranges are 0.1 > γ > 0.7, Vd > 100)
(2) Identify the limits for the scanning window (fmin and fmax)
(3) Using Equation (10), find the corresponding values for the potential parameter, L (Lmin and Lmax)
(4) Generate a population for L between the two boundaries
(5) Solve Equation (3) for each point in L(i) in the population (a numerical discretization for Equation

(3) is available in [30,31])
(6) Calculate the SNR function for the extracted signal x(t)
(7) Plot SNR versus L and the frequency to generate Figure 7

As shown in this figure, the SNR peaks correspond directly to the frequency of the feeble
signal. This approach will be followed in this paper to extract the bridge frequencies from the
iPhone accelerations.

4. Applying the 2D-FI-UPSR to Identify the Frequencies of Multiple Feeble Signals

Previous research in the stochastic resonance field focuses on the detection of a single frequency
in one weak signal. This section investigates the utilization of 2D-FI-UPSR for the detection of multiple
frequencies of feeble signals. Three sinusoidal functions represent the feeble signals. The frequencies
and amplitudes are listed in Table 2. The signals are combined and then corrupted with a −10 dB
Gaussian white noise. Figure 8a presents the pure combined signal and the corrupted signal. The
power spectral density (PSD) in Figure 8b is raucous and the frequencies of the weak signals cannot
be identified.

Table 2. Test signal frequencies and amplitudes.

Signal Amplitude Frequency

First 0.25 10 Hz

Second 0.25 20 Hz

Third 0.25 30 Hz
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To extract the frequencies from the feeble signal utilizing the 2D-FI-UPSR method, the following
parameters are used as an input to the algorithm: γ = 0.5, Vd = 100, and the frequency window is
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varied from 5 to 30 Hz. As previously mentioned, a population for the L parameter is generated,
then Equation (3) is solved repeatedly for each point in the population to extract the corresponding
signal. Afterwards, the SNR value for each extracted signal is calculated to plot the 2D SNR plot.
Feeble signals can provide a clear peak in the 2D SNR plot, as can be seen in Figure 9. Three peaks are
evident at the feeble signal frequencies (i.e., 10, 20, and 30 Hz). It can be seen that the approach has
succeeded in identifying all three frequencies. In the following section the 2D-FI-UPSR approach will
be utilized to extract the fundamental bridge frequencies from acceleration data recorded directly by
an iPhone device.Sensors 2019, 19, x FOR PEER REVIEW 10 of 19 
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5. Investigating the Feasibility of Using the 2D-FI-UPSR in Identifying the Fundamental Bridge
Frequencies Using Acceleration Data Recorded by an iPhone Device

A field test was carried out on a skewed prestressed concrete bridge consisting of three simply
supported spans. The bridge is located on HWY 113 in Bartow County, Atlanta, Georgia between
Covered Bridge Rd and Dry Creek Rd. Each span of the bridge is 21.3 m, center to center of the supports.
An in-situ reinforced concrete slab connects the five prestressed concrete girders in each case. Each
carriageway consists of two lanes of one-way traffic and one hard shoulder. The instrumentation was
installed on the first span from the traffic direction, as shown in Figure 10. Each girder was equipped
with three Silicon Designs accelerometers (Model: SDI-2012), spaced equally along the length of the
girder. The accelerometers were connected to a wireless sensor board to transmit the data to the data
acquisition station which lies underneath the bridge [33,34].



Sensors 2019, 19, 3143 11 of 20

Sensors 2019, 19, x FOR PEER REVIEW 10 of 19 

 

 
Figure 9. 2D-FI-UPSR plot for signal mixed with extreme noise, Signal to Noise Ratio (SNR) in the y 
axis, L potential parameter and the associated signal frequencies in the x axis. 

5. Investigating the Feasibility of Using the 2D-FI-UPSR in Identifying the Fundamental Bridge 
Frequencies Using Acceleration Data Recorded by an iPhone Device 

 

 
(a) (b) 

 

(c) (d) 

Figure 10. Field instrumentation: (a) Bridge overview, (b) instrumentation, (c) plan view of 
instrumentation on the girders, (d) iPhone location. 
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Figure 10. Field instrumentation: (a) Bridge overview, (b) instrumentation, (c) plan view of
instrumentation on the girders, (d) iPhone location.

The bridge frequencies were identified using a vibration test. An ELECTRO-SEIS Long Stroke
Exciter vibration shaker was utilized to excite the bridge, while the bridge accelerations were recorded.
The scanning frequency for the SDI-2012 accelerometers was set to 100 Hz; the frequency resolution
was 6.25 × 10−3 Hz. The traffic was blocked during the test as recommended by Yang et al. [35] and the
entire process repeated twice. The PSD’s of the SDI-2012 raw signals are illustrated in Figure 11. The
2D-FI-UPSR is not applied to this signal since the SDI-2012 accelerometer has very high sensitivity
and low output noise density. The bridge frequencies are listed in Table 3 and the mode shapes are
presented in Figure 12. There are four modes of vibration for the bridge; two longitudinal modes (at
7.56 and 11.93 Hz), and two transverse modes (at 8.4 and 19.04 Hz). At Test 1, the shaker was close to
the bridge shoulder; therefore, the longitudinal and the frequencies corresponding to the transverse
modes of vibration are observed in the PSD. On the other hand, in Test 2, the shaker was placed above
G3 girder (see Figure 13). At this location the shaker induces more energy for the longitudinal modes;
therefore, the peak at 8.4 Hz is dramatically reduced while no peak is observed at 19.04 Hz. Since the
smartphone is placed on the bridge barrier, it is expected that traffic configuration will have the same
effect on the iPhone data. This point will be revisited in this article after presenting the frequencies
obtained by the iPhone device.
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Table 3. Average bridge frequency (Hz).

First Second Third Fourth

7.56 8.4 11.93 19.04
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Figure 13. Shaker location in the two tests.

To investigate the fidelity of the proposed 2D-FI-UPSR method, an iPhone 6s was used to record
the accelerations while normal traffic was travelling over the bridge. As previously mentioned, the
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iPhones 6s is equipped with the MPU-6500 MEMS digital accelerometer. The iPhone acceleration
was recorded using the VibSensor®program which was downloaded from the App Store®. Other
software, Seismometer®was used to extract comparable data. The iPhone was attached to the bridge
rail using a double-sided adhesive sheet. In order to assess the quality of the iPhone data, the SDI-2012
(SG6 in Figure 10c) was used to record the bridge vibration under the traffic load, simultaneously with
the iPhone device. This accelerometer (SG6) is chosen because it is the closest accelerometer to the
iPhone location (except that the accelerometer was placed on the bottom of girder No. G5, while the
iPhone was on top of the bridge rail). Figures 14 and 15 present a sample of data for the recorded
vertical accelerations by the SG6 and the iPhone, respectively. The PSD for the SG6 accelerometer
shows clear peaks at the fundamental bridge frequencies. However, the PSD for the iPhone signal
(Figure 15) is noisy and shows several peaks, making it difficult to identify the bridge frequencies.Sensors 2019, 19, x FOR PEER REVIEW 13 of 19 
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To measure the quality of the iPhone acceleration, we use the SDI-2012 signal as a reference to
calculate the SNR for the iPhone signal using the following equation:

SNR = 10 log10

∑N/2
0 Ax∑N/2

0 As+n
(11)
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where
∑N/2

0 Ax is the sum of signal power, while
∑N/2

0 As+n is the sum of the noise power. Using
Equation (11), the SNR for the iPhone signal is approximately –80 dB. Furthermore, the SDI-2012
has much higher sensitivity as can be seen in the figures—the magnitude of the bridge acceleration
is varying in the range ±0.003 g for the SDI-2012, while the iPhone acceleration record fluctuates in
the range ±0.03 g. This proves that a pure iPhone signal cannot be used directly in identifying the
bridge frequencies.

In order to extract the bridge frequencies using the iPhone, the signal of Figure 15 is processed
using the proposed 2D-FI-UPSR method. The 2D SNR plot is produced using the steps described
in Section 3 and is presented in Figure 16. As can be seen, there are four peaks in the SNR plot,
corresponding to the first four fundamental bridge frequencies. By comparing Figure 16 with the
PSD in Figure 15b, the 2D-FI-UPSR method shows great success in extracting the fundamental bridge
frequencies from the iPhone acceleration. The iPhone was used to record the bridge acceleration for
twelve crossings of different vehicles over the bridge. The iPhone location was not changed during the
test. The collected accelerations were processed using the proposed 2D-FI-UPSR method to extract the
fundamental bridge frequencies. Figure 17 presents the 2D SNR plots for the twelve crossings and
Table 4 presents the corresponding traffic configurations. As Figure 17 presents, the four fundamental
frequencies are not identified in all tests. The first four fundamental frequencies are identified in Tests
1, 2, 8, 9, and 11. This is due to the presence of heavy multiple vehicles that vibrate all four modes
of vibrations. However, in Tests 2 and 8 it is quite challenging to identify the peaks of the two first
frequencies (the 7.54 Hz and the 8.4 Hz). On the frequency scale, these two frequencies are too close to
each other; therefore, it is challenging to distinguish between them in the 2D SNR plots. This is evident
in the SNR plots, where the trough between the first two frequencies is not as clear as the troughs
between the remaining frequencies. Furthermore, in Tests 4, 6, 7, and 10 the second frequencies are not
identified in the 2D SNR plot. This can be ascribed to the traffic configuration, the iPhone location and
the orientation of these particular modes of vibration. The first frequency (at 7.54 Hz), as presented
in Figure 12a, is associated with the first longitudinal mode of vibration, while the second frequency
(at 8.4 Hz) is associated with the first transverse mode of vibration. Additionally, as presented in
Figure 10, the iPhone is located laterally in the center and to the right side of the traffic. When the
traffic passes through “lane 1” (see Figure 10d), the iPhone is influenced more by longitudinal modes
of vibration. On the other hand, when the traffic passes through “lane 2”, the iPhone is influenced
more by transverse modes of vibration. This effect was also observed during the free vibration test as
previously discussed in this paper. By viewing the traffic configuration in Table 4 for Tests 4, 6, 7, and
10, it can be seen that the traffic is passing through “lane 1.” Therefore, the first bridge frequency is
identified in the 2D SNR plot, while the second bridge frequency is not identified. The opposite is true
for Tests 5 and 12. To overcome this issue, it is recommended to take readings from multiple locations
on the bridge (e.g., from the right and the left rails, also from the mid-point and the quarter points
along the span).
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To measure the accuracy of the iPhone device after applying the 2D-FI-UPSR method, the extracted
frequencies for each mode of vibration are grouped into four clusters. The accuracy in identifying the
frequency is measured separately for each cluster. The error percentage is calculated with respect to the
frequencies obtained by the free vibration test using the SDI-2012 accelerometers. The error percentage
in the calculated frequencies was evaluated after eliminating the outliers and is presented in Figure 18.
The shaded areas present the 67% confidence interval for the error in the extracted frequencies. The
third mode has the lowest error percentage (the 67% confidence interval boundaries are ±1.89%), while
the fourth mode has the highest error percentage (the 67% confidence interval boundary is +3.36%).
The mean frequency for each cluster is compared to the mean bridge frequencies that were extracted
by the SDI accelerometer and presented in Figure 19. The error percentage between the two devices for
the first frequency is only 0.4%. For the second and the third frequencies, the error percentage between
the two devices is around 1%. However, the fourth frequency has a relatively high error compared to
the first three fundamental frequencies (i.e., 3.15%). Regardless of the latter point, the results show that
utilizing the 2D-FI-UPSR method in processing the iPhone signal significantly improves the device
sensitivity and enables the extraction of more than one fundamental frequency for the bridge with
acceptable accuracy. It is worth mentioning that the smartphone can provide environmental data
during the test. Monitoring the environmental condition could enhance the detection of structural
degradation by providing data with which to filter out these effects. Previous research shows that,
following this approach, structural degradation can be precisely detected by monitoring the bridge
frequencies [36].
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Table 4. Extracted bridge frequencies (Hz).

Test Vehicle Type Vehicle on the Bridge Extracted Bridge Frequency

1st 2nd 3rd 4th

1 2 P *
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smartphone application that can directly infer the bridge frequencies by attaching the smartphone to 
the bridge rails. The goal of this article is to pave the way for integrating smartphone technology into 
SHM applications. 
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smartphone application that can directly infer the bridge frequencies by attaching the smartphone to 
the bridge rails. The goal of this article is to pave the way for integrating smartphone technology into 
SHM applications. 
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UPSR framework for the extraction of feeble signals using accelerations recorded directly by a 
smartphone device. The proposed framework is then used to identify the first four fundamental 
frequencies for a full-scale bridge using accelerations recorded by an iPhone device. The 2D-FI-UPSR 
framework was applied for twelve iPhone accelerations and succeeds in identifying the first four 
bridge frequencies. To evaluate the accuracy of the extracted frequencies, the authors used a wireless 
sensing network consisting of 15 high quality accelerometers to measure the exact frequencies of the 
bridge. The accelerometer (Model SDI-2012) has a much higher sensitivity (four times higher than the 
iPhone MPU-6500 accelerometer) and a much lower output noise density (1/30 times less than the 
iPhone MPU-6500 accelerometer). The difference between the bridge frequencies obtained by 
processing the iPhone accelerations using the 2D-FI-UPSR method, and those obtained using the SDI 
accelerometers is within the 1% margin. This small difference proves the potential of the proposed 
2D-FI-UPSR framework to increase smartphone sensitivity. Furthermore, the proposed method is 
suitable for the smartphone’s limited processing capabilities. This feature promises to develop a 
smartphone application that can directly infer the bridge frequencies by attaching the smartphone to 
the bridge rails. The goal of this article is to pave the way for integrating smartphone technology into 
SHM applications. 
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frequencies for a full-scale bridge using accelerations recorded by an iPhone device. The 2D-FI-UPSR 
framework was applied for twelve iPhone accelerations and succeeds in identifying the first four 
bridge frequencies. To evaluate the accuracy of the extracted frequencies, the authors used a wireless 
sensing network consisting of 15 high quality accelerometers to measure the exact frequencies of the 
bridge. The accelerometer (Model SDI-2012) has a much higher sensitivity (four times higher than the 
iPhone MPU-6500 accelerometer) and a much lower output noise density (1/30 times less than the 
iPhone MPU-6500 accelerometer). The difference between the bridge frequencies obtained by 
processing the iPhone accelerations using the 2D-FI-UPSR method, and those obtained using the SDI 
accelerometers is within the 1% margin. This small difference proves the potential of the proposed 
2D-FI-UPSR framework to increase smartphone sensitivity. Furthermore, the proposed method is 
suitable for the smartphone’s limited processing capabilities. This feature promises to develop a 
smartphone application that can directly infer the bridge frequencies by attaching the smartphone to 
the bridge rails. The goal of this article is to pave the way for integrating smartphone technology into 
SHM applications. 
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2D-FI-UPSR framework to increase smartphone sensitivity. Furthermore, the proposed method is 
suitable for the smartphone’s limited processing capabilities. This feature promises to develop a 
smartphone application that can directly infer the bridge frequencies by attaching the smartphone to 
the bridge rails. The goal of this article is to pave the way for integrating smartphone technology into 
SHM applications. 

– 8.57 – 19.85

* P indicates a passenger vehicle; ** SUV indicates a sport utility vehicle
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6. Conclusions

This article investigates the feasibility of utilizing smartphones for SHM applications. More
specifically, it investigates the potential for a low-grade iPhone accelerometer to extract the first four
fundamental frequencies of a highway bridge. Since the iPhone MEMS accelerometer has a very
low sensitivity as well as a relatively high output noise level, the raw acceleration could not be used
directly to extract the bridge frequencies. In this paper, stochastic resonance is used to enhance
the sensitivity of the iPhone signal by suppressing the associated noise. The authors introduce the
2D-FI-UPSR framework for the extraction of feeble signals using accelerations recorded directly by
a smartphone device. The proposed framework is then used to identify the first four fundamental
frequencies for a full-scale bridge using accelerations recorded by an iPhone device. The 2D-FI-UPSR
framework was applied for twelve iPhone accelerations and succeeds in identifying the first four
bridge frequencies. To evaluate the accuracy of the extracted frequencies, the authors used a wireless
sensing network consisting of 15 high quality accelerometers to measure the exact frequencies of the
bridge. The accelerometer (Model SDI-2012) has a much higher sensitivity (four times higher than
the iPhone MPU-6500 accelerometer) and a much lower output noise density (1/30 times less than
the iPhone MPU-6500 accelerometer). The difference between the bridge frequencies obtained by
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processing the iPhone accelerations using the 2D-FI-UPSR method, and those obtained using the SDI
accelerometers is within the 1% margin. This small difference proves the potential of the proposed
2D-FI-UPSR framework to increase smartphone sensitivity. Furthermore, the proposed method is
suitable for the smartphone’s limited processing capabilities. This feature promises to develop a
smartphone application that can directly infer the bridge frequencies by attaching the smartphone to
the bridge rails. The goal of this article is to pave the way for integrating smartphone technology into
SHM applications.
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