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Abstract: Light Detection and Ranging (LiDAR) produces 3D point clouds that describe ground
objects, and has been used to make object interpretation in many cases. However, traditional
LiDAR only records discrete echo signals and provides limited feature parameters of point clouds,
while full-waveform LiDAR (FWL) records the backscattered echo in the form of a waveform,
which provides more echo information. With the development of machine learning, support vector
machine (SVM) is one of the commonly used classifiers to deal with high dimensional data via small
amount of samples. Ensemble learning, which combines a set of base classifiers to determine the
output result, is presented and SVM ensemble is used to improve the discrimination ability, owing to
small differences in features between different types of data. In addition, previous kernel functions of
SVM usually cause under-fitting or over-fitting that decreases the generalization performance. Hence,
a series of kernel functions based on wavelet analysis are used to construct different wavelet SVMs
(WSVMs) that improve the heterogeneity of ensemble system. Meanwhile, the parameters of SVM
have a significant influence on the classification result. Therefore, in this paper, FWL point clouds are
classified by WSVM ensemble and particle swarm optimization is used to find the optimal parameters
of WSVM. Experimental results illustrate that the proposed method is robust and effective, and it is
applicable to some practical work.

Keywords: full-waveform LiDAR; point cloud classification; support vector machine; wavelet kernel
function; ensemble learning

1. Introduction

The remote sensing technique is based on the sensor recorded energy that is reflected or emitted
from the Earth’s surface [1]. Therefore, remote sensing can acquire information about ground objects
without physical contact and can be divided into two categories: passive and active. Passive remote
sensing data mostly exist in the form of spectral images, which makes it difficult for them to describe
3D space features and they usually require geometric correction.

Light Detection and Ranging (LiDAR) is a type of active remote sensing technique. Different from
the 2D information displayed by spectral images, the advantage of LiDAR is to directly generate point
clouds with large area coverage and high-precision coordinates [2]. In most cases, LiDAR point clouds
are used to produce elevation data, such as the Digital Elevation Model (DEM) and Digital Surface
Model (DSM), which is typically employed as ancillary information to assist passive remote sensed data
in classification [3–6]. With the hardware equipment of LiDAR, more and more features are extracted
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for point cloud classification. According to the necessity of training samples, classification methods
can be summarized as two types: unsupervised and supervised. Unsupervised methods are based on
a suitable definition of similarity between data without any prior knowledge, and have been employed
in the field of LiDAR point cloud classification [7], including K-means, iterative self-organizing data
analysis (ISODATA), fuzzy c-means (FCM) [8–10], etc. However, the classification results may not
correspond to the classes of ground objects and the classification accuracy of these methods has
difficulty meeting practical requirements in some situations. Supervised methods, such as decision
tree, random forest (RF), artificial neural network (ANN), and k-nearest neighbors (KNN) algorithm,
have also been applied in the field of LiDAR point cloud classification [11–14]. They define class labels
with prior knowledge deduced from training samples and the classification accuracy is improved by
repeatedly modifying the training samples. However, these methods may have difficulty solving the
classification problems with a small number of samples and are sensitive to feature correlation.

Different from traditional LiDAR, full-waveform LiDAR (FWL) is a new type, which records
the backscattered echo in very small intervals and obtains a continuous echo waveform [15]. It is
able to obtain more footprints, echoes and the actual situation of data collection. By decomposing
full-waveform data, point clouds are calculated and waveform features such as the amplitude, width,
peak location and intervals of peak location are extracted. The classification of LiDAR point clouds
determines their categories and the commonly used features are intensity, geometry, texture and
elevation. For FWL, except for the conventional features above, waveform features can be used in
the classification process of point clouds, and the methods mentioned above are also applicable for
FWL point cloud classification [16–18]. Moreover, the affiliation of waveform features in convention is
helpful to improve the classification accuracy [17,19].

As a supervised method in machine learning, support vector machine (SVM) shows potential
for effective and efficient classification of different types of data, and has a strong ability to solve a
series of problems [20–22]. Because of its optimal hyper-plane in feature space based on structural risk
minimization theory, SVM has become a widely used classification tool in need of a small amount
of training data and fewer computational efforts [23–25], and it has been utilized in the field of FWL
point cloud classification [26,27]. In SVM, the kernel function is an important factor affecting the
classification results, while the commonly used liner, polynomial and sigmoid kernel functions may
easily cause over-fitting or under-fitting in the lack of localization ability. Wavelet analysis is a powerful
estimation technique for the time–frequency analysis of a signal [28], representing a signal by different
resolutions. Therefore, wavelet functions, which have a good localization property, are used to build
kernel functions employed in the construction of wavelet SVM (WSVM). In addition, the penalty factor
and kernel function parameter play an important role in the classification result via SVM. To obtain
better classification accuracy, parameter optimization is necessary, whose essence is a combinatorial
optimization problem, and swarm intelligence algorithm can be used to solve this kind of problem
because of its ability to obtain a satisfactory solution.

Moreover, under some circumstances, a single classifier is difficult to solve the case when the
differences between feature values are very small and it may not label data correctly. In this case,
ensemble learning is a promising research direction, and it is composed of a set of individual component
classifiers (base classifiers) whose predictions are combined to determine the final results, improving
the overall classification accuracy [29,30]. When SVMs are used as base classifiers, the ensemble
system is called the SVM ensemble, which has been applied in many fields, such as hyperspectral data
classification, dynamic financial distress prediction, credit card evaluation [31–33], etc. An ensemble
learning system with different base classifiers highlights the heterogeneity, but ignores the homogeneity,
while a system with the same base classifiers only focuses on the homogeneity and neglects the
heterogeneity. In such a system based on WSVM, the base classifiers are composed of SVMs using
wavelet kernel functions, which are in different forms but all considered on the basis of wavelet
analysis and theoretically related. Therefore, the classification process for FWL point clouds are
completed by WSVM ensemble in this paper, employing five variable wavelet kernel functions, and
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each classifier constructed by them, respectively, is used twice. At the same time, particle swarm
optimization (PSO), which is a swarm intelligence algorithm with a good performance and stable
convergence to the optimal solution, is utilized to optimize the SVM parameters.

2. Feature Extraction for FWL

According to the type of device, LiDAR point cloud classification can be conducted on the basis
of many features, such as intensity, geometric, textural, and multispectral features. Compared with
traditional LiDAR, FWL is able to extract more points, showing more details on structure. Therefore,
geometric features are adopted to show the positional relationship between point clouds. However,
it reflects the characteristics of discrete point clouds and neglects the interaction of the entire laser
pulse with the ground objects. Hence, waveform features can be seen as a powerful complement to the
classification process. For FWL, waveform decomposition of original data, whose essence is to fit the
waveform with a function, is a useful technique to extract data information and should be performed
before the process of classification. In this paper, before waveform decomposition, filtration of noise in
the raw data [34] is conducted to reduce the noise interference for classification results, and then a set
of Gaussian functions [35] is employed to fit the waveform. The relevant parameters of the function
thus obtained are called waveform features of point clouds, reflecting the position and backscattering
property of the targets during laser transmission.

Geometric features chosen for classification include the elevation (h), elevation standard deviation
(σh), volume density (ρ), curve (c), vertical angle (NZ), and vertical angle variance (σNZ ). Before the
extraction of geometric features, a restricted 3D neighborhood ω is defined. A covariance matrix of 3D
coordinates and its eigenvalues λ1, λ2, and λ3 (λ1 < λ2 < λ3) are computed on the basis of 3D points
in ω. The corresponding eigenvector of λ1 is the normal vector (NX , NY, NZ). Geometric features take
advantage of the geometric shape intuitively and show geometric relationships between point clouds.
However, these features cannot give the radiometric information expressing the reflectance properties
of ground objects. While waveform features provide both geometric information and radiometric
information, which is used to distinguish different surface materials. Furthermore, compared with
the geometric features extracted from a specific neighborhood, the waveform features can reflect the
characteristics of the pulse emission direction directly.

Waveform features extracted in this paper are the echo amplitude (A), width (σ), peak location
(u) and intensity (I). Amplitude is the peak value of the echo signal, width is the standard deviation
of each Gaussian component, peak location is the maximum position of the Gaussian function and
intensity is the backscattered energy of a single Gaussian component, which is calculated by integrating
each Gaussian component. All used features and their explanations are shown in Table 1. [19].
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Table 1. Features for classification.

Feature

Type

Feature

Name

Formula Explanation

Geometric

h / In general, elevation can effectively distinguish between ground

and off-ground points, but, for trees, houses, and hillsides with

similar elevations, absolute elevation may not work.

σh σh =

√
n
∑

i=1
(Z−Zave)2

n−1 Z denotes the current point, Zave denotes the average elevation

of all points in ω, and n is the number of points in ω. High

vegetation and the edges of buildings often have a greater height

difference.

ρ ρ = n/vω vω is the volume of ω. Generally speaking, ρ of building walls

and trees is lower than others.

c c = λ1/(λ1 + λ2 +

λ3)

c reflects the shape of the surface of the object, and the canopy

usually has a high value.

NZ / Deviation angle of a normal vector from the vertical direction,

reflecting the flatness of the ground object.

σNZ σNZ =

√
N2

X+N2
Y

NZ
The variance of the vertical angles of 3D points in ω, reflecting

the shape of the ground object.

Waveform

A / The value of the natural surface and building is the highest, and

that of the asphalt surface and trees is low, thus it can distinguish

between vegetation and artificial objects.

σ / σ reflects the time that the laser pulse interacts with the ground

object. Due to the scattering effect of the canopy on the laser,

σ can distinguish between non-vegetation and vegetation.

u / u can be used to calculate the distance between the laser emission

location and the target.

I / I is the amount of energy returned by the laser pulse interacting

with the ground objects whose characteristic is similar to A.

3. Methodology of LiDAR Point Clouds Classification

3.1. Construction of WSVM Model

SVM is a machine learning method which classifies data by creating a hyper-plane. Assume
a set of training data X = {(x1, y1), (x2, y2), ..., (xn, yn)}, where Xi ∈ Rd, and yi ∈ {−1,+1} is a
class label. Then, the training process can be transformed into the optimization of the following
expressions [36,37]:

minφ(ω, ε) =
1
2
||ω||2 + C

n

∑
i=1

εi (1)

yi(ω
Txi + b) ≤ 1− εi (2)

where ω is the normal vector of the hyper-plane, and εi (εi ≤ 0) is a slack variable used for measuring
classification errors. C is the penalty parameter, b is the bias or threshold, and φ is a function that
maps the input data to a higher-dimensional space where data can be linearly separable. To avoid
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high-dimensional calculations, the mapping step can be skipped by kernel function, which is able to
calculate the mapping directly. Additionally, the kernel function is defined as follows:

K(xi, xj) = φ(xi)
T · φ(xj) (3)

The series of commonly used kernel functions are global functions rather than local functions,
however SVM is an approximation model where a local function basis is better than a global
basis [38,39]. The essence of wavelet analysis is to approximate signals using a set of functions
generated by dilations and translations of a mother wavelet function [40], which means that a good
localization property in the time and frequency domain is presented and the details of a signal are
extracted [41]. It also has the advantages of a low redundancy, high stability, and well adaptability to
high-dimensional data. The construction process of the wavelet kernel function is as follows [42,43]:

The one-dimensional wavelet function can be described as:

h(x) =
d

∏
i=1

h(xi) (4)

Then, the dot-product of the wavelet kernel is

K(x, x′) =
d

∏
i=1

h(
xi − ci

a
)h(

x′i − c′i
a

) (5)

where h(x) is a mother wavelet, x, x′ ∈ Rd, a is a dilation factor, and c is a translation factor. According
to the translation invariant kernel theorem K(x, x′) = K(x− x′), Equation (5) can be transformed as:

K(x, x′) =
d

∏
i=1

h(
xi − x′i

a
) (6)

Then, the Gaussian, Shannon, Mexican Hat, Morlet, and Harmonic wavelet functions are used as
mother wavelets to construct wavelet kernel functions and the wavelet kernel functions are defined as
follows [44–46]:

Gaussian:

K(x, x′) =
d

∏
i=1

exp[−
(xi − x′i)

2

2σ2 ] (7)

Shannon:

K(x, x′) =
d

∏
i=1

sin(π
2 ×

xi−x′i
σ )

π
2 ×

xi−x′i
σ

cos(
3π

2
×

xi − x′i
σ

) (8)

Mexican Hat:

K(x, x′) =
d

∏
i=1

[1−
(xi − x′i)

2

σ2 exp[−
(xi − x′i)

2

2σ2 ] (9)

Morlet:

K(x, x′) =
d

∏
i=1

cos(1.75×
xi − x′i

σ
)exp[−

(xi − x′i)
2

2σ2 ] (10)

Harmonic:

K(x, x′) =
d

∏
i=1

ei4π
xi−x′i

σ − ei2π
xi−x′i

σ

i2π
xi−x′i

σ

(11)

Wavelet kernel functions are able to approximate arbitrary functions with a good localization
property and have the ability of multi-scale analysis [47]. They amplify the difference between the
values of the samples’ features and improve the stability of classifier model. Moreover, unlike the
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commonly used kernel functions that are correlative and redundant, the wavelet kernel functions
are orthogonal [48]. These advantages mean that WSVM has a better generalization ability, higher
accuracy, and lower computational complexity.

3.2. Parameter Optimization

SVM parameters have a great influence on the classification results. SVMs constructed by the
above five wavelet kernel functions all have the penalty parameter C and kernel function parameter
σ. C controls the generalization capacity of the classifier, while σ determines the distribution of data
after mapping it into a new feature space. PSO is a population-based parallel search algorithm using a
group of particles. It has been noticed that members of a group seem to share information among them,
a fact that leads to increase the efficiency of the current group. A particle moves toward the optimum
according to its present velocity, its previous experience, and the experience of its neighbors. In a n-D
search space, the position and velocity of the ith particle are represented as vectors Xi = xi,1, ..., xi,n and
Vi = vi,1, ..., vi,n, where each element is coded by real values. Let Pbesti and Gbest be the best position
of the ith particle and the group’s best position thus far, respectively. The velocity and position of each
particle are updated as follows [49,50]:

Vk+1
i = ω ·Vk

i + r1 · c1 · (Pbestk
i − Xk

i ) + r2 · c2 · (Gbestk − Xk
i ) (12)

Xk+1
i = Xk

i + Vk+1
i (13)

where Vk
i is the velocity of the ith particle at iteration k, ω is the inertia weight factor, c1 and c2 are the

acceleration coefficients, r1 and r2 are random numbers between 0 and 1, and Xk
i is the position of the

ith particle at iteration k. In the velocity updating process, the parameters such as ω, c1 and c2 should
be determined in advance, which makes it cumbersome to solve large-scale optimization problems.

As PSO is used for SVM parameter optimization, whereby the particle whose vector value can
acquire the highest classification accuracy is the optimal solution. Each dataset is divided into two
parts for base classifiers: training and testing. Each iteration, the training samples are used for the
construction of a base classifier, then a set of parameters is generated, and the testing samples are
used to prove the validity of the parameters. After that, the classification accuracy of these parameters
can be achieved by comparing the predicted and original labels. The optimal classification accuracy
obtained in the current generation is recorded and compared with the highest classification accuracy
in the last iteration. If the former wins, the optimal solution is replaced with the current solution.
When the maximum number of iterations is reached, the final parameters are obtained.

3.3. WSVM Ensemble

Ensemble learning trains a series of base classifiers and combines their outputs by a fusion
strategy, improving the generalization performance [51]. As mentioned in Section 1, an ensemble
system that uses SVMs as base classifiers is called SVM ensemble [52]. Considering the heterogeneity
and homogeneity of the system [53], while reducing the running time, the bagging algorithm is
adopted to aggregate the base classifiers and five kernel functions mentioned in Section 3.1 are utilized
to construct SVMs. Furthermore, each kernel function is used twice and a total of 10 WSVMs are
utilized for the ensemble learning.

After each WSVM has output a predicted label, it is important to adopt a fusion strategy that
determines the final label of the ensemble system. In this paper, majority voting is employed as the
fusion strategy. Each classifier generates a predicted label, which is taken as a vote, and the final
result is determined by the vote of each classifier. For example, there is a classification problem with n
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classes (Y = 1, 2, ..., n), a training dataset, an instance x to be classified and T classifiers. Each classifier
outputs a label Li of x, where i = 1, 2, ..., T and Li ∈ Y. Let V be the final label of x, then

V = argmax
T

∑
i=1

p(Li = y) (14)

where y ∈ Y; if a is true, p(a) = 1, otherwise p(a) = 0 and a is the output of base classifier.
Majority voting treats the output of each classifier equally, determining the final result by counting

the number of occurrences for each class. When encountering the same number of occurrences, in cases
where it is difficult to decide, a random selection of these classes is adopted to determine the final
result.

Following the feature extraction in Section 2, bootstrap sampling is used to generate sub-datasets
from the original data, and the number of instances in each sub-dataset is not greater than that in
the original data. Then, on the basis of the corresponding sub-dataset, each SVM obtains the optimal
parameters by the continuous process of training and testing samples combined with PSO. After that,
each base classifier predicts the labels with these parameters. Finally, majority voting is utilized to
generate the final result. The schematic diagram of the proposed method is shown in Figure 1.

Figure 1. Schematic diagram of the proposed method.

3.4. Implementation of the Proposed Method

The classification process of FWL point clouds is completed in this paper, employing WSVM
ensemble. The detailed steps of the proposed method are as follows:

• Step 1: Acquire FWL data and filter noise in the data.
• Step 2: Decompose full-waveform LiDAR data and extract the features displayed in Table 1.
• Step 3: Use bootstrap sampling to generate sub-datasets and assign them to each base classifier.
• Step 4: Train base classifiers with the parameters of each particle in the population.
• Step 5: Obtain the classification accuracy of each particle and update the population using

Equations (12) and (13).
• Step 6: Update global optimal accuracy and corresponding parameters.

Step 6.1: Compare the classification accuracy of the particles in the current generation with
the global optimal accuracy.

Step 6.2: Determine whether to update the global optimal accuracy and the corresponding
parameters on the basis of comparison result.

Step 6.3: Return to Step 4 until the number of iterations has reached the maximum value.
• Step 7: Save the parameters achieved by the global optimal accuracy of each base classifier

according to Steps 4–6, and take them as the parameters of each classifier.
• Step 8: Each base classifier predicts the labels of data with their parameters.
• Step 9: Output the final results with majority voting.
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4. Experimental Results and Discussion

The experimental environment in this study was a computer with a 2.30GHz CPU and 8G of
RAM. The data-processing operation was realized using MATLAB 2016a and VS2017 software. The
manual classification process was accomplished using LiDAR software and visual interpretation by
researchers with relevant working experience.

4.1. Experimental Platform and Data Information

The data used in this paper were acquired by airborne LiDAR system ALS60, in 2009, and in the
form of Las 1.3. There were three study areas and the experimental data were colored according to
elevation values, as shown in Figure 2a–c. Study Area 1 is flat and open, with a low point cloud density;
Study Area 2 is a dense residential area; and Study Area 3 is mainly distributed with large buildings.
The number of points, training and testing samples of the study areas and some other information
about the study areas are shown in Table 2, and training and testing samples were generated by
manual classification. To quicken the process, the number of points in each training subset generated
by bootstrap sampling was one-tenth of the whole dataset. After the classification for all of the point
clouds was completed, testing samples of these three study areas were used to validate the classification
accuracy of the ensemble system.

(a) Study Area 1 (b) Study Area 2 (c) Study Area 3

Figure 2. Original data of the three study areas.

Table 2. Experimental data information.

Experimental Data Area Total Training Testing Point Cloud
Data (m2) Points Samples Samples Density

Study Area 1 203,833 227,078 6450 5683 1.11
Study Area 2 180,030 283,315 6489 5070 1.57
Study Area 3 131,767 226,123 6739 5399 1.72

4.2. Classification Results for Point Clouds

The classification results of the proposed classification method for FWL point clouds were
compared with those of basic SVM, optimal single WSVMs, RF, ISODATA, and WSVM ensemble
without parameter optimization. The classification results are shown in Figures 3–5, while the CPU
time of each method is shown in Table 3 (unit: s), and the classification accuracy of each method is
shown in Table 4. The ground objects were classified into low vegetations (blue color), trees (green
color), buildings (yellow color) and others (red color). Low vegetations includes grass and crops,
while others includes mainly artificial surfaces such as roads and concrete floors.
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Table 3. CPU time of different methods (s).

Experimental Basic Optimal RF ISODATA Non-Optimization Proposed
Data SVM WSVM Method

Study Area 1 78.6326 123.0621 139.9527 82.2098 69.6642 85.0167
Study Area 2 73.5228 111.6443 123.8943 76.3754 66.0029 78.4931
Study Area 3 88.9489 130.5389 152.0112 93.0824 77.4131 97.0145

Table 4. Classification accuracy of different methods (%).

Experimental Basic Optimal Single RF ISODATA Non-Optimization Proposed
Data SVM WSVMs Method

Study Area 1 66.0743 96.5720 94.8236 55.7943 93.4956 97.7477
Study Area 2 55.5702 94.5937 88.2017 77.6837 90.3324 95.0955
Study Area 3 66.8505 92.1143 93.1469 75.7884 84.4282 93.8322

(a) basic SVM (b) optimal single WSVM (c) RF

(d) ISODATA (e) WSVM ensemble without
parameter optimization

(f) proposed method

Figure 3. Classification results of Study Area 1.
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(a) basic SVM (b) optimal single WSVM (c) RF

(d) ISODATA (e) WSVM ensemble without
parameter optimization

(f) proposed method

Figure 4. Classification results of Study Area 2.

(a) basic SVM (b) optimal single WSVM (c) RF

(d) ISODATA (e) WSVM ensemble without
parameter optimization

(f) proposed method

Figure 5. Classification results of Study Area 3.
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As shown in Table 3, the CPU time of WSVM ensemble without parameter optimization was
lower than any other compared methods, and those of RF and optimal WSVMs were relatively high.
The CPU time of the proposed method was 85.0167, 78.4931 and 97.0145 s, respectively, which was
significantly reduced when compared to optimal single WSVM. As shown in Table 4, the proposed
method performed better than RF and ISODATA; it also obviously outperformed basic SVM and
WSVM ensemble without parameter optimization, which illustrates the importance of SVM kernel
function and parameter optimization. In addition, the classification accuracy of optimal single WSVMs
proved the applicability of WSVM in such classification problems. Finally, from the perspective of
the ensemble, the classification accuracy of WSVM ensemble was higher than optimal single WSVMs
used in the ensemble system. The classification accuracies via optimal single WSVMs of the three
study areas were 96.5720%, 94.5937% and 92.1143%, which were 1.1757%, 0.5018% and 1.7179% lower,
respectively, than those of the proposed method. Considering its CPU time, as presented in Table 3,
this method has good application prospect.

As shown in Figures 3–5, the results of ISODATA and basic SVM had obvious misclassifications,
which proved that unsupervised classification and improper kernel functions of SVM have difficulty
distinguishing the objects with approximate feature values. It was also found that the results of
WSVM ensemble without parameter optimization had some noise (see, for example, left center of
Figure 3e and the left half of Figure 5e), which illustrates that the random parameters may be not
suitable in such classification problems. Optimal single WSVMs and the proposed method had similar
results, but further comparison of these two methods’ results revealed that the latter method had better
classification ability for details. As shown in Figure 3, the road in the lower left corner extracted by
the proposed method is more complete than optimal single WSVM. As shown in Figure 5, the low
vegetations in the lower left corner are misclassified as others by optimal single WSVM, while these
errors do not exist in the result of the proposed method.

5. Conclusions

A FWL point cloud classification method employing WSVM ensemble is proposed in this paper,
which utilizes five different wavelet kernel functions and ensemble learning. In the process of
classification, geometric and waveform features are adopted, and bagging algorithm is used to integrate
the base classifiers. Further, in each base classifier, PSO is employed to optimize WSVM parameters to
obtain satisfactory classification results. The classification accuracy of all study areas was over 93%,
which proved the feasibility of the proposed method. In addition, it was higher than that of basic
SVM, optimal single WSVMs, RF, ISODATA and WSVM ensemble without parameter optimization.
Moreover, in the case of a similar classification accuracy, the CPU time of the WSVM ensemble was
less than single WSVMs. In conclusion, the proposed method can acquire accurate and effective results
of FWL point cloud classification and has strong application potential for large-scale classification
problems. On the basis of this work, future research such as the optimization of FWL feature extraction
will be conducted.
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