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Abstract: Pests and diseases can cause severe damage to citrus fruits. Farmers used to rely on
experienced experts to recognize them, which is a time consuming and costly process. With the
popularity of image sensors and the development of computer vision technology, using convolutional
neural network (CNN) models to identify pests and diseases has become a recent trend in the field of
agriculture. However, many researchers refer to pre-trained models of ImageNet to execute different
recognition tasks without considering their own dataset scale, resulting in a waste of computational
resources. In this paper, a simple but effective CNN model was developed based on our image
dataset. The proposed network was designed from the aspect of parameter efficiency. To achieve this
goal, the complexity of cross-channel operation was increased and the frequency of feature reuse
was adapted to network depth. Experiment results showed that Weakly DenseNet-16 got the highest
classification accuracy with fewer parameters. Because this network is lightweight, it can be used in
mobile devices.

Keywords: citrus; pests and diseases identification; convolutional neural network;
parameter efficiency

1. Introduction

Pests and diseases are the two most important factors affecting citrus yields. Types of citrus pests
and diseases are numerous in nature. Some of them are similar in appearance, making it difficult for
farmers to precisely recognize them in time. In recent years, developments of convolutional neural
networks (CNNs) have dramatically improved the state-of-the-art in computer vision. These new
structures of network have enabled researchers to obtain high accuracy for image classification, object
detection, and semantic segmentation [1]. Therefore, some studies have adopted the CNN model
to identify the category of pests or diseases based on image. Liang et al. [2] have proposed a novel
network consisted of residual structure and shuffle units for plant diseases diagnosis and severity
estimation. Cheng et al. [3] have compared the classification performance of different depths of CNN
models for 10 classes of crop pests with complex shooting background. The highest classification
accuracy in both studies was obtained with the deepest network. For detection tasks, people are also
more willing to select a very deep network architecture instead of a shallow one. Shen et al. [4] have
applied a faster R-CNN [5] framework with improved Inception-V3 [6] to detect stored-grain insects
under field condition with impurities. The same feature extractor network and SSD [7] model have
been utilized by Zhuang et al. [8] to evaluate the health status of farm broilers.

In theory, the complexity of the CNN model depends on the scale of dataset. However, deep
convolutional networks mentioned above were all over-fitted because they were proposed based
on ImageNet [9] initially. Although a fine-tuned method [10] can be used to reduce the divergence

Sensors 2019, 19, 3195; doi:10.3390/s19143195 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8732-1111
http://www.mdpi.com/1424-8220/19/14/3195?type=check_update&version=1
http://dx.doi.org/10.3390/s19143195
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 3195 2 of 18

between training and testing, the space required for model storage is so large that they cannot be
deployed on mobile devices with little memory.

In this paper, a simple but effective network architecture was developed to classify pictures of
citrus pests and diseases. Our network design principles focused on improving the utilization of model
parameters. There has been evidence suggesting that some feature maps generated by convolutions
are not useful [11,12]. To decrease the impact of redundant features on classification, Hu et al. [13]
and Woo et al. [14] have introduced an attention mechanism to suppress unnecessary channels. Their
approaches are more adaptable than the Dropout [15] and stochastic depth [16]. However, the extra
branch in each building block increases the overhead of a network. Unlike these approaches, the
channel selection of this paper was implemented through the method of cross-channel feature fusion.
In Network in Network [17], two consecutive 1 × 1 convolutional layers were regarded as a way to
enhance model discriminability for local patches. From another perspective, this structure is also a good
choice to refine feature maps. Highway network [18] first provided the idea of feature reuse to ease the
optimization difficulty suffered by deep networks. ResNet [19] generalized it with identity mappings.
DenseNet [20] further boosted the frequency of skip-connection. DenseNet has a better representation
ability than ResNet because it can produce a higher accuracy with fewer parameters. The concatenation
operation of DenseNet was followed but some connections between long-range layers were removed
by us. Because of this weakly dense pattern, our network is called Weakly DenseNet.

Experiment results showed that Weakly DenseNet achieved the highest accuracy in classifying
citrus pests and diseases. With regard to computational complexity, our proposed model is also
lightweight. These phenomena indicate that the optimization of network structure is more important
than blindly increasing the depth or width. The main contributions of this work are summarized
as follows:

A specific image dataset of citrus pests and diseases is created. It is a relatively complete image
dataset for the diagnosis of citrus pests and diseases.

A novel and lightweight convolutional neural network model is proposed to recognize the types
of citrus pests and diseases. The network design is based on improving parameter efficiency.

A new data augmentation method is developed to reinforce model generalization ability, which
can significantly reduce the similarity between generated images.

2. Related Work

Pests and diseases can cause great damage to crops if they are not controlled. To recognize them,
farmers used to rely on experienced experts. With the popularity of image sensors, using computer
vision methods to identify pests and diseases has become a trend. Boniecki et al. [21] have proposed to
use image analysis techniques and artificial neural network model to classify images of apple pests in
simple background. Their dataset included 12,000 images from six species of apple pests which are
most commonly found in Polish orchards. For training and testing proposed artificial neural network
model, seven selected coefficients of shape and 16 color characteristics were extracted from each pest
image as inputs. Sun et al. [22] have combined SLIC (simple linear iterative cluster) with SVM (support
vector machine) classifier to detect diseases on tea plant. Their algorithm improved the prediction
accuracy of disease images taken with complex backgrounds but needed more pre-treatments to reduce
interference. A total of 1308 pictures from five common tea plant diseases were included in their dataset.
These images were divided into two parts with a ratio of 4:1 for training and testing. Ferentinos [23]
has employed deep CNN models to perform plant disease detection and diagnosis. They used an
open database which contains 87,848 photographs of leaves to train each model. Images without
pre-processing were regarded as inputs in his study. Compared with other selected models, VGG
achieved the highest success rate with 99.48%. These advantages of deep CNNs have encouraged
more researchers to apply them in the agricultural field.

A wide range of CNN architectures has been proposed to improve performance. VGGNets [24]
first use small size convolution filters to reduce parameters and increase depth. ResNet exploits



Sensors 2019, 19, 3195 3 of 18

a simple identity skip-connection to ease optimization issues of deep networks. WideResNet [25]
replaces the bottleneck structure in ResNet with two broad 3 × 3 convolutional layers to reduce depth.
DenseNet enhances deep supervision [26] by iteratively concatenating input features with output
features. Xception [27] introduces a depthwise separable convolution to decrease the number of
parameters in a regular convolution. In it, depthwise convolution is responsible for feature extraction
and pointwise convolution (a regular 1 × 1 convolution) is used for cross-channel feature fusion.
This new convolution operation has become a core component of many lightweight networks, such as
MobileNets [28,29] and ShuffleNets [30,31]. The structure of MobileNet-v1 is similar to that of VGG.
MobileNet-v2 develops an inverted residual block to increase memory efficiency. To maintain the
representational power of narrow layer in each inverted residual block, ReLU activation [32] behind it
is removed. ShuffleNet-v1 employs group convolution [33] to further reduce the computational cost of
depthwise separable convolution, a channel shuffle operation is adopted to enhance the information
exchange of subgroups. ShuffleNet-v2 is constructed based on ShuffleNet-v1. However, it suggests
splitting channels into two equal parts and using concatenation instead of addition to execute feature
reuse. People tend to use their architectures designed for the ImageNet without considering their
own dataset scale. This behavior may lead to overfitting problems and waste of computing resources.
Different from previous approaches, a novel, and lightweight network was constructed to classify
images in our dataset.

3. Dataset

The dataset used in our experiment included 17 species of citrus pests and seven types of citrus
diseases. Pests’ images were mainly collected from the Internet. Images of diseases were taken in a
tangerine orchard of Jeju Island using a high-resolution camera. Our image dataset is available at the
website of Appendix B. Table 1 shows the name and number of images of each kind of pest and disease.

Table 1. The description of citrus pests and diseases image dataset.

Class ID Common Name Scientific Name Number of Samples

Citrus Pests

8 Mediterranean fruit fly Ceratitis capitata 558
0 Asian citrus psyllid Diaphorina citri Kuwayama 359
5 Citrus longicorn beetle Anoplophora chinensis 597
7 Brown marmorated stink bug Halyomorpha halys 606
3 Southern green stink bug Nezara viridula 488
4 Fruit sucking moth Othreis fullonica 600
1 Citrus swallowtail Papilio demodocus 600
15 Citrus flatid planthopper Metcalfa pruinosa (Say) 555
9 Citrus mealybug Planococcus citri 495
13 Aphids Toxoptera citricida 514
11 Citrus soft scale Hemiptera: Coccidae 497
12 False codling moth Thaumatotibia leucotreta 511
14 Root weevil Diaprepes abbreviatus,

Pachnaeus opalus
378

2 Forktailed bush katydid Scudderia furcata 600
10 Cicada Cicadoidea 508
6 Garden snail Cornu aspersum 618
16 Glassy-winged sharpshooter Homalodisca vitripennis 567

Total 9051

Citrus Diseases

17 Anthracnose Colletotrichum gloeosporioides 467
18 Canker Xanthomonas axonopodis 598
20 Melanose Diaporthe citri 532
21 Scab Elsinoë fawcettii 503
19 Leaf miner Liriomyza brassicae 427
22 Sooty mold Capnodium spp 568
23 Pest hole 415

Total 3510
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3.1. Image Collection of Citrus Pests

Insect pests have metamorphosis properties. We focused on images of adults. This is because
other stages in their life cycles are short and rare to observe. The appearance of the same pest can vary
significantly from one viewing angle to another (refer to Figure 1). To reduce the effect of shooting
angle on classification accuracy, photos of pests taken from different angles were gathered. Some citrus
pests have small sizes, such as aphid, mealybug, and scale. It is difficult to capture images of their
individuals and most of them live by groups to resist predators. For these species, pictures of their
group living on a tree were collected (refer to Figure 2).
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Figure 1. Pictures of brown marmorated stink bug taken from different angles.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 17 

 

 Citrus Diseases 

17 Anthracnose Colletotrichum gloeosporioides 467 

18 Canker Xanthomonas axonopodis 598 

20 Melanose Diaporthe citri 532 

21 Scab Elsinoë fawcettii 503 

19 Leaf miner Liriomyza brassicae 427 

22 Sooty mold Capnodium spp 568 

23 Pest hole  415 

 Total  3510 

3.1. Image Collection of Citrus Pests 

Insect pests have metamorphosis properties. We focused on images of adults. This is because 
other stages in their life cycles are short and rare to observe. The appearance of the same pest can 
vary significantly from one viewing angle to another (refer to Figure 1). To reduce the effect of 
shooting angle on classification accuracy, photos of pests taken from different angles were gathered. 
Some citrus pests have small sizes, such as aphid, mealybug, and scale. It is difficult to capture 
images of their individuals and most of them live by groups to resist predators. For these species, 
pictures of their group living on a tree were collected (refer to Figure 2). 

 

Figure 1. Pictures of brown marmorated stink bug taken from different angles. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Examples of small size citrus pests: (a), (c), and (e) are the images of their individuals, (b),
(d), and (f) are those of their groups.

3.2. Image Collection of Citrus Diseases

Compared with pests, features of citrus diseases are more regular. Pictures of citrus diseases were
mainly taken in the summer after a heavy rain because the incidence was higher than usual. To keep
more details, the distance between camera and diseases was close. Some diseases will cause leaf holes
at a later phase. To enhance comparison, images of the leaf holes created by pests (PH) were included
as a disease label. Figure 3 displays sample images of each disease.
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3.3. Data Augmentation

The problem of imbalanced data classification has been discussed by Das et al. [34]. It prompted
us to increase the number of images in the class whose dataset scale was smaller than that of others.
For augmenting image data, the generic practice is to perform geometric transformations, such as
rotation, reflection, shift, and flip. However, images generated by a single type of operation are
similar to each other. They increase the probability of overfitting. To avoid this situation, a new data
augmentation method was proposed, which could randomly select three kinds of operations and
combine them together to produce new images. Available operations and values of them are shown in
Table 2. Figure 4 presents pictures obtained from this approach.
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Table 2. Parameter set for data augmentation.

Operation Value

Rotation [0
◦

, 15
◦

]
Width shift [0, 0.2]
Height shift [0, 0.2]

Shear [0, 0.2]
Zoom [0.8, 1.2]

Horizontal flip -
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4. Weakly DenseNet Architecture

Convolutional layers in the CNN model are responsible for feature extraction and generation.
Therefore, many researchers have focused on increasing depth and width to improve classification
accuracy. In contrast, the proposed Weakly DenseNet was created to improve parameters’ utilization.
To reach this goal, a complex cross-channel operation was adopted to refine feature maps and
concatenation method was used for feature reuse.
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4.1. The 1 × 1 Convolution for Feature Refinement

A regular convolution contains two aspects: Local receptive field and weight share. From the
local receptive field point of view, a 1 × 1 convolution regards each pixel of a feature map as input.
However, when weight share is considered, it was equivalent to the whole feature map multiplied by a
learnable weight. Therefore, this kind of convolution has the function of refining feature maps.

One layer of 1 × 1 convolution only implements a linear transformation. Many network
architectures just use it to alter channel dimension [19,20]. To extend the functionality of 1 × 1
convolution, two layers of it were stacked after each 3 × 3 convolutional layer. The proposed structure
takes each whole feature map as an input and thus does not need an extra branch to execute feature
recalibration. This reduces the optimization difficulty in contrast with SENet [13]. Figure 5 illustrates
the difference between them.
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4.2. Feature Reuse

As network depth increases, gradient propagation becomes more difficult. ResNet addresses
this issue by adding input features to output features across a few layers (1). DenseNet simplifies the
addition operation by concatenation, which allows feature maps from different depths to combine
along channel dimension (2). Considering operation efficiency, the concatenation method of DenseNet
was selected for feature reuse

X̃ = X + H(X) (1)

X̃ =
{
X, H(X)

}
(2)

where X represents inputs, H(X) is defined as the underlying mapping, X̃ denotes outputs. In the
addition operation, X and X̃ should have the same dimension.

However, overuse of features of previous layers can increase network overhead. To solve this
problem, DenseNet employs a transition layer to reduce the number of input features for a dense
block. The dense connectivity pattern of DenseNet also made low-level features to be repeatedly used
many times. Yosinski et al. [35] have proved that features generated by convolutions far from the
classification layer are general, thus contributing little to classification accuracy. According to their
conclusion, some connections between long-range layers were removed.

4.3. Network Architecture

The network architecture was divided into three parts during design. Figure 6 demonstrates the
building block of each part. As for the frequency (v) of feature reuse, it was adapted to the depth of
the network:
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Features generated by adjacent convolutions are highly correlated [6]. A final classification layer
concentrates on using high-level features [20]. Therefore, keeping connections between short-distance
layers and reducing the combination of low-level features to the classification layer are necessary.

Middle layers produce features are between general and specific [35]. It is assumed that if the
network depth is increased, the value of v in the middle layers should be enlarged. Figure 7 illustrates
the building block of DenseNet for fitting ImageNet dataset. In it, v > 1.

We set v to 1, because our network was constructed not very deeply based on image data scale of
citrus pests and diseases. Table 3 summarizes the architecture of the network.

Each convolution in the building block is followed by a batch normalization layer [36] and a ReLU
layer [32].
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Table 3. Network architecture for citrus pests and diseases.

Block Output Size

Initial Block (a) 56 × 56 × 32
Intermediate Block (b) 56 × 56 × 96
Intermediate Block (c) 28 × 28 × 192
Intermediate Block (b) 28 × 28 × 384
Intermediate Block (c) 14 × 14 × 768

1 × 1 conv, stride 1 14 × 14 × 512
1 × 1 conv, stride 1 14 × 14 × 512

2 × 2 max pool, stride 2 7 × 7 × 512
Classification Block (d) 1 × 1 × 24

5. Experiments and Results

The original dataset was split into three parts: Training set, validation set, and test set. The ratio
between them was 4:1:1. The images in each set were resized to 224 × 224 by a bilinear interpolation
approach. To evaluate the effectiveness of Weakly DenseNet, it was compared with several baseline
networks from different aspects. The software implementation was based on Keras with TensorFlow
backend. The hardware foundation was GPU, 1080Ti. Code and models are provided in Appendix C.

5.1. Training

All the networks were trained with SGD and a Nesterov momentum [37] of 0.9 was introduced to
accelerate convergence. To improve models’ generalization performance, a small batch size of 16 was
selected during training [38]. The initial learning rate was set to 0.001 and it can be adjusted based on
Algorithm 1.
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Algorithm 1. Learning Rate Schedule

Input: Patience P, decay θ, validation loss L
Output: Learning rate γ
1: Initialize L = L0, γ = γ0

2: i← 0
3: while i < P do
4: if L ≤ Li then
5: i = i + 1
6: else
7: L = Li
8: i = i + 1
9: end if
10: end while
11: if L = L0 then
12: γ = γ ∗ θ

13: end if

In the experiment, P = 5 and θ = 0.8. Weight initialization proposed by He et al. [39] was followed,
and a weight decay of 10−4 was used to alleviate the overfitting problem. The maximum training
epoch of each model was 300. The rate of Dropout was set to be 0.5.

The VGG-16 of this paper used a global average pooling layer [17] to reduce the number of
parameters in fully connected layers. In the original SE block, the size of the hidden layer was reduced
by a ratio (r > 1) to limit model complexity. To keep the same computation cost as NIN-16, the value of
r was set to 1 by us.

Table 4 shows the training results of each model. With regard to classification accuracy,
WeaklyDenseNet-16 was the highest, followed by VGG-16, and NIN-16. The higher accuracy of NIN-16
than SENet-16 indicates that two layers of 1 × 1 convolution have better performance of refining
feature maps than SE block. By concatenating previous layers’ features, the recognition performance of
NIN-16 was significantly strengthened: The accuracy of WeaklyDenseNet-16 was 1.58 percent higher
than that of NIN-16. As for computation cost, VGG-16 was the largest while that of SENet-16 was the
least. It should be noticed that ShuffleNets and MobileNets overfitted citrus pests and diseases image
dataset. Even though they had similar model sizes to WeaklyDenseNet-16, their larger values of depth
brought bigger error rate on validation dataset. As for training speed per batch size, bigger size model
took more time except for ShuffleNet-v2 [31]. The accuracy training plots of benchmark models are
displayed in Figure 8. It can be seen that each model completely converges in 300 epochs.

Table 4. Training performance of selected models.

Model Name Training Accuracy Validation
Accuracy

Model Size (MB) Training Time
(ms)/Batch Size

MobileNet-v1 99.23 85.45 25 152
MobileNet-v2 99.28 87.97 33.9 198
ShuffleNet-v1 99.13 83.58 28.8 145
ShuffleNet-v2 98.72 83.58 42 144

VGG-16 99.82 93 120.2 303
SENet-16 99.10 88.71 19.5 138
NIN-16 99.63 91.84 19.6 137

WeaklyDenseNet-16 99.83 93.42 30.5 138

‘NIN’ represents Network in Network.



Sensors 2019, 19, 3195 11 of 18

Sensors 2019, 19, x FOR PEER REVIEW 11 of 17 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 8. Training plot of each model. (a) MobileNet-v1, (b) MobileNet-v2, (c) 
ShuffleNet-v1, (d) ShuffleNet-v2, (e) NIN-16, (f) SENet-16, (g) VGG-16, (h) 
WeaklyDenseNet-16. 

5.2. Test 

Figure 8. Training plot of each model. (a) MobileNet-v1, (b) MobileNet-v2, (c) ShuffleNet-v1, (d)
ShuffleNet-v2, (e) NIN-16, (f) SENet-16, (g) VGG-16, (h) WeaklyDenseNet-16.



Sensors 2019, 19, 3195 12 of 18

5.2. Test

Test accuracy results of selected models are shown in Figure 9 which shows the same accuracy
trend as Table 4. The confusion matrix of Weakly DenseNet-16 on the test dataset is presented in
Figure A1 (refer to Appendix A). Figure A1a shows that the recall rate (3) of citrus root weevil is
the lowest and that of the citrus swallowtail is the highest. Among misclassified images, citrus
anthracnose and citrus canker are the most easily confused by the proposed model: Nine images
of citrus anthracnose were considered as the class of citrus canker and four images of citrus canker
were regarded as citrus anthracnose by the network. The two diseases at later phase show a similar
appearance on leaves. Thus, Weakly DenseNet-16 gave some incorrect predictions. The precision rate
(4) of the PH is the largest while that for citrus flatid planthopper is the lowest. Figure A1b displays
the wrong predictions between citrus pest and disease. Ten images of citrus disease were misclassified
into pest labels and seventeen pictures of citrus pest were identified as diseases by mistake. In them,
the probability that citrus soft scale is falsely regarded as citrus sooty mold is the highest. Adult citrus
soft scales can secrete honeydew sooty mold around them for growth, which shows a similar pattern
to the symptom of sooty mold.

Recall =
Number o f true positive samples

Number o f true positive samples + Number o f f alse negative samples
× 100% (3)

Precision =
Number o f true positive samples

Number o f true positive samples + Number o f f alse positive samples
× 100% (4)
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Figure 9. Comparison of the test accuracy.

The hierarchical structure of the CNN model allows features generated from layers of different
depths to show significant differences [40]. To better understand the learning capacity of intermediate
building blocks of Weakly DenseNet-16, several important feature maps of them were visualized and
compared. From Figure 10, it can be noticed that:
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intermediate building block 1, (c) and (g) sampled features of the intermediate building block 2,
(d) and (h) examples of the feature maps in the intermediate building block 3. Brighter color in images
corresponds to higher value.
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A bank of convolutional filters in the same layer can extract features of different parts of the target
object. This feature extraction method allows the CNN model to acquire sufficient visual information
for subsequent analysis.

With increasing depth, the background features become less visible. Therefore, CNN models
do not require additional pre-processing techniques to reduce background noise. They are more
convenient to use than conventional machine learning algorithms.

Features of the deeper layer are more abstract than those of the shallow layer. More convolution
and max pooling operations are performed on shallow layer features in the deeper layer, resulting in
higher-level features that are more suitable for classification.

6. Conclusions and Future Work

Pests and diseases can reduce citrus output. To control their impact, a new image dataset about
citrus pests and diseases was created and a novel CNN architecture was proposed to recognize them.
The network was constructed from the aspect of improving parameters’ utilization instead of depth
and width. The structure of two 1 × 1 convolutional layers was revisited and applied to refine feature
maps. To relieve the optimization difficulty in the deep network, the idea of feature reuse was followed.
Considering operation efficiency, the concatenation method of DenseNet was employed. However,
the high frequency of feature reuse increased the overhead of network. To save computation cost, the
value of feature reuse frequency was set based on network depth. To further improve the robustness of
the CNN model, a new data augmentation algorithm was provided, which can significantly lessen
the similarity between generated images. In experimental studies, NIN-16 got a test accuracy of
91.66% which was much higher than that of SENet-16 (88.36%). This phenomenon indicates that
two-layer 1 × 1 convolution has better performance of refining feature maps than SE block. The higher
accuracy of WeaklyDenseNet-16 (93.33%) than NIN-16 indicates that feature reuse method can further
enhance network performance. VGG-16 achieved the second-highest classification accuracy (93%) but
consumed the most computing resources: Model size is 120.2 MB. This fact implies the importance of
network structure optimization on fitting different datasets.

The object scale in the image is an essential factor that influences classification accuracy of the CNN
model. Using extremely deep networks to identify big scale objects will cause a waste of computational
resources. For the identification of small size objects, shallow networks cannot give accurate results.
Future work is to build a CNN model that can adapt to the size of the object in the image.

Author Contributions: Conceptualization, S.X. and M.L.; methodology, S.X.; software, S.X.; validation, M.L., S.X.,
K.-k.L.; formal analysis, M.L., K.-k.L.; data curation, S.X.; writing—original draft preparation, S.X.; writing—review
and editing, all authors.
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Figure A1. The confusion matrix for the test set. (a) test result of each class, (b) prediction for pest and
disease label.

Appendix B

Image dataset is available at: https://files.mycloud.com/home.php?brand=webfiles#23a3c71/

device_30757105/ARlab/xingshuli600/.

Appendix C

Models and code are available at: https://github.com/xingshulicc/xingshulicc/tree/master/citrus_
pest_diseases_recognition.
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