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Abstract: This study aims to characterize traumatic spinal cord injury (TSCI) neurophysiologically
using an intramuscular fine-wire electromyography (EMG) electrode pair. EMG data were collected
from an agonist-antagonist pair of tail muscles of Macaca fasicularis, pre- and post-lesion, and for
a treatment and control group. The EMG signals were decomposed into multi-resolution subsets
using wavelet transforms (WT), then the relative power (RP) was calculated for each individual
reconstructed EMG sub-band. Linear mixed models were developed to test three hypotheses:
(i) asymmetrical volitional activity of left and right side tail muscles (ii) the effect of the experimental
TSCI on the frequency content of the EMG signal, (iii) and the effect of an experimental treatment.
The results from the electrode pair data suggested that there is asymmetry in the EMG response of the
left and right side muscles (p-value < 0.001). This is consistent with the construct of limb dominance.
The results also suggest that the lesion resulted in clear changes in the EMG frequency distribution in
the post-lesion period with a significant increment in the low-frequency sub-bands (D4, D6, and A6)
of the left and right side, also a significant reduction in the high-frequency sub-bands (D1 and D2) of
the right side (p-value < 0.001). The preliminary results suggest that using the RP of the EMG data,
the fine-wire intramuscular EMG electrode pair are a suitable method of monitoring and measuring
treatment effects of experimental treatments for spinal cord injury (SCI).

Keywords: fine-wire intramuscular EMG electrode; non-human primate model; traumatic spinal
cord injury; wavelet transform; relative power; linear mixed model
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1. Introduction

Traumatic spinal cord injury (TSCI) is a serious neurological condition. Worldwide, there are
approximately 180,000 new cases each year [1,2]. The most common causes of TSCI are motor vehicle
collisions, falls, sports-related activities, and interpersonal violence [2,3]. TSCI typically damages the motor,
sensory and autonomic fibre tracts. Patients experience a spectrum of clinical abnormalities such as limb
paralysis, dysesthesia, as well as bowel and bladder dysfunction [3–5]. The burden of this condition
is shared by the person affected, family members, the community, as well as the healthcare system.
Long-term survival and quality of life have improved due to enhanced rehabilitation and medical
interventions. However, it has not been convincingly demonstrated that current pharmacological
treatments have substantially improved spinal cord function.

Conceptually, the understanding of TSCI impairments and recovery can be advanced through
animal models [4–9]. Non-human primate models (NHP) are particularly valuable due to the anatomic
and physiological similarities between NHP and human beings [6,7]. The tail in NHPs is analogous to
a human limb. The tail is integral to performing functional tasks such as standing on hindlimbs as well
as reciprocal movements that aid in balance during ambulation [10]. As described later in this paper,
the tail exhibits other features analogous to human beings such as limb dominance or preference.

SCI impairments are usually measured by observing behaviours as well as histopathological
assessment [11]. Electromyography (EMG) signals confer certain advantages over these other methods.
It is particularly useful for assessing TSCI as EMG data collected on a serial basis as this approach
facilitates the characterization of motor unit (MU) activation and recruitment [8]. EMG signals can
be recorded through multiple channels, permitting the simultaneous assessment of multiple muscle
groups. This is particularly helpful in evaluating agonist–antagonist muscle pairs, in which the
assessment of muscle co-contractions are associated with central nervous system disorders [4,9].

EMG data can be obtained through surface recording or intramuscular electrodes placed into the
muscles. There is limited literature regarding the nature of intramuscular EMG signals after TSCI in
animals and humans. The majority of human studies have been based on surface EMG electrodes.
As a general construct, TSCI results in a perturbation of the EMG signal. Calancie et al. [12] studied the
recovery of volitional activity after acute SCI in human beings utilizing pairs of surface EMG electrodes.
This study demonstrated perturbations in some EMG characteristics including abnormalities in
recruitment. Lewko [13] utilized surface EMG electrodes and noted disturbed behaviour in spinal
cord conductivity with quiet standing. Nout and Rosenzweig among others [8], ref. [9] developed
a NHP model of SCI, and the results demonstrated a significant difference in EMG amplitude and
temporal patterns between the healthy and the SCI subjects. Also, they noted uncoordinated muscle
activity during the post-lesion condition. Wiegner et al. and Shahani et al. studied the recruitment
pattern of MUs post-SCI [14] and cortical pathology [15] using needle EMG signals. The results indicate
that MUs fire irregularly with low discharge rate post-SCI. Also, the inter-discharge intervals (IDIs)
have a positive serial correlation which results from the decreased variability in length of the adjacent
intervals. Capogrosso et al. [16] developed a brain-spine interface to modulate the consequences of
TSCI in NHP. EMG signals during continuous locomotion were recorded and averaged to calculate the
spatiotemporal maps of the motoneuron activation in monkeys. Their results suggested a practical
translational pathway for conceptual analysis studies and investigational applications in human
with SCI.

The bio-signals such as EMG are non-stationary signals. Furthermore, EMG signals during
volitional muscle contraction have a random nature which means the active MUs have an irregular
firing rate [17]. Thus, determining the method to select relevant features of the EMG signal becomes
challenging. In this context, several signal processing techniques have been tested, with the goal
of developing a robust method [18]. To advance this goal, mathematical transformations can be
utilized. Specifically, the EMG signal could be represented in different domains; time, frequency,
or a time-frequency/wavelet domain. The amplitude and frequency content of the EMG signal help in
understanding the physiology and the pathology aspects of muscle activity. The frequency content
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of the EMG signal mainly has been calculated using the fast Fourier transform (FFT). However,
FFT may not be an appropriate choice for some cases such as the dynamic and variant level of
contractions [19,20]. To overcome this problem, the wavelet transforms (WT) is applied. The WT is an
efficient mathematical analysis method for temporally nonstationary and spatially nonhomogeneous
bio-signals [21]. Also, this approach has proved its ability to represent precise measurements and to
extract useful information from non-stationary biomedical signals [22–25]. Decomposition, denoising,
and pattern classification are the most common applications of the WT in the EMG field [18,22,26–34].
Phinyomark et al. [30] investigated the usefulness of extracting EMG features from the multi-resolution
wavelet decomposition process. The results showed that the reconstructed EMG of the first and second
level (detail coefficients) have improved the class separability. Yamada et al. [26] introduced a new
EMG decomposition algorithm by adopting the principal component analysis of wavelet coefficients.
This method showed a higher decomposition accuracy when compared to conventional wavelet
methods. Fang et al. [27] decomposed EMG signals into their constituent single motor units using
wavelet spectrum matching, and the results were satisfying.

The intramuscular fine-wire electrode data of this experiment is particularly unique as it is
collected both prior and subsequent to a TSCI. The longitudinal nature of the data, however, presents
the challenge of limiting the sampling rate of the sensors to allow for long-term monitoring. In addition,
free and dynamic movements must be permitted to allow for data collection that reflected the subjects
true volitional control as the limb would be naturally used. Thus, conventional decomposition methods
of EMG data are not suitable for this problem as these methods rely on higher sampling frequency
(around 25 kHz) [35] as well as the need for isometric contractions [36–39].

In this work, the intramuscular fine-wire EMG data have been analyzed using the WT as an
EMG decomposition method and relative power (RP) as a metric of the active MUs within each WT
sub-band. Specifically, this work will address the following questions:

1. Is the intramuscular fine-wire electrode pair data capable of detecting limb dominance in the
subjects prior to lesion?

2. In the post-lesion period, is there a change in EMG activity attributed to the experimental spinal
cord injury and how it could be characterized in term of frequency content?

3. What is the difference in the EMG activity between the control and the treatment group in the
post-lesion period (i.e., is there a treatment effect)?

The collected intramuscular EMG dataset contains information obtained before and after an
experimental TSCI, allowing each subject to serve as normal control. Accurate measurement of
impairment and recovery in a model of TSCI has significant implications for the identification and
development of TSCI therapeutics. With no standardized model for combined pre-lesion, post-lesion,
and recovery analysis, WT with multi-resolution data could provide evidence of being able to account
for multiple effects in a single model. The extended recording period both before and after TSCI in the
NHP model is necessary to replicate TSCI; recovery in humans will be recognized months after injury.
Repeated measurements in the NHP model permit the long-term evaluation effects of experimental
therapies. It is expected that the developed NHP model and its preliminary results will provide a
better understanding of the TSCI and may help with the prediction of recovery in human limbs.

2. Materials and Methods

The focus of the SCI model was to create a lesion that mimics human SCI without clinical
impairments. The experimental methods to create the lesion are described in detail in previous
publications [4,7], but are presented here briefly. The subjects, six adult Macaca fasicularis monkeys,
underwent two surgical procedures. The first to insert a small transmitter (PhysioTel D70, Data
Sciences International, St. Paul, MN, USA) with attached fine-wire intramuscular electrode pair into
the lower back of the subjects. The electrodes were implanted into the left and right flexor cauda longus
and brevis muscles (tail muscles). The EMG signals were measured using the fine-wire electrodes
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with 10 mm inter-electrode distance, 10 mm exposed wire length, 1000 Hz sampling frequency, and
common ground.

Baseline pre-lesion EMG data from the fine-wire electrode pair were collected during voluntary
movement of NHPs within their home enclosures for 30 days. The data were collected from Monday
to Friday (excluding holidays) for approximately 1 h per day. After 30 days, the subjects underwent a
second surgical procedure. A small laminotomy was completed at the L5 vertebral level. An epidural
balloon catheter was inserted and advanced approximately 10 cm cranial to the level of the lower
thoracic spinal cord. The lesion was created by inflation of the balloon with air. The balloon
remained inflated for 60 s and then was deflated. The catheter was then removed, and the surgical
incision closed. The lesions initially disrupted the grey and white matter at the site of lesion creation.
The histopathological features, that were created by this method are similar to human TSCI [4].
To mimic the time frame between human injury and administration of emergency medical treatment,
the subjects remained under anesthesia for one hour. Four subjects that received the experimental
combination treatment for 90 days while two subjects did not receive any treatment. Combination
treatment consisted of a bolus 0.2 mg/kg bolus of thyrotropin releasing hormone (TRH), followed by
a continuous infusion of 0.2 mg/kg per hour for 1 h. These subjects were also treated with 60 mg of
selenium and 80 IU of vitamin E daily. TRH is a tripeptide produced by the hypothalamus; selenium
and Vitamin E are antioxidants. The combination of these agents may modulate the physiological
sequelae of TSCI [40]. This protocol was approved by the Institutional Animal Care and Use Committee
(IACUC) at Harvard University and the University of Wisconsin at Madison. As such, EMG data from
the tail is analogous to EMG data obtained from the limb of a human being with TSCI EMG data were
collected from all six subjects. However, in one subject, the data from one side was not recorded due
to a technical error. As such, raw data in this paper represents the experience of three subjects that
received the combination therapy, and two subjects who did not receive treatment. Figure 1 illustrates
a sample of the recorded raw EMG data.
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Figure 1. Graphical representation of the raw electromyography (EMG) signal.

In this NHP model, the induced lesion produced a TSCI limited to the upper motor neuron
tracts that supply the lower motor neurons of the tail muscles [7]. Lesion of such nature result in
a perturbation in the MUs discharge properties; i.e., abnormalities in the inter-discharge interval,
firing rate, and floating serial correlation coefficient [14,41]. These abnormalities have been typically
characterized in non-physiological experimental conditions such as low force levels and isometric
contraction frequency [14,37–39]. In this work, the EMG data were collected when the subjects engage
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in physiological activities (i.e., locomotion in a cage). The proposed EMG analysis method consists of
the following three steps:

A. The raw EMG data obtained from daily recordings were filtered using a bandpass filter (4th order
Butterworth filter with a lower and an upper cut off frequency of 10 and 450 Hz respectively).
A notch filter with 60 Hz was also applied to eliminate the power line noise, and the input signal
was processed forward and backward to solve phase shift problems. The EMG conditioning
steps have been implemented using MATLAB software (MathWorks, Natick, MA, USA).

B. A decomposition process was applied using wavelet transforms. Each WT sub-band was
assumed to represent the firing rate of a group of MUs. Also, it was assumed that the RP of each
individual sub-band reflects the level of activity for these MUs. Thus, increases or decreases in
RP may characterize the recruitment pattern process of the MUs through different conditions of
the experiment. The filtered EMG signals were broken down into seven frequency sub-bands
using the WT. The discrete wavelet transforms (DWT) was selected for this work because it has
non-redundant results, and it required less computational time and costs [42,43]. A Daubechies
mother wavelet of fourth order ‘db4′ was used due to its similarity to the triphasic pattern of
the motor unit action potential [44]. Consistent with the analysis of other bio-signals, DWT
decomposition was performed using six levels [43,45–48]. The wavelet analysis was performed
in two steps, as presented in Figure 2:

1. The EMG signals were decomposed into seven sub-bands, one approximate coefficient
(cA6), and six detail coefficients (cD1, . . . , cD6).

2. The EMG signal was then reconstructed at each level using inverse discrete wavelet
transform, and seven EMG reconstructed signals (A6, D1, . . . , D6) were obtained from
their coefficients (cA6, cD1, . . . , cD1). Table 1 shows the frequency ranges of the seven
EMG sub-bands.

C. To evaluate the changes in EMG sub-bands during different phases of the experiment,
these changes were characterized using the RP. The probabilistic distribution of the spectral power
was quantified by calculating the relative power of each spectral component [49]. To obtain the RP,
firstly the power spectral density was determined for each reconstructed EMG sub-band signal.
Then, the RP for each individual sub-band was calculated using the following formula [50]:

RP(%) =
SBP
TP

, (1)

where:

RP: the relative power of the desired sub-band.
SBP: the power of the desired sub-band (e.g., A6, D1, . . . or D6).
TP: the total power of all the sub-bands (A6 + D1, . . . , + D6).

Table 1. The frequency ranges of the seven EMG reconstructed sub-bands.

Wavelet Decomposition Level Frequency Range/Hz Reconstructed EMG Sub-Bands

1 250–500 D1
2 125–250 D2
3 62.5–125 D3
4 31.25–62.5 D4
5 15.63–31.25 D5
6 7.81–15.63 D6
6 0–7.81 A6
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The goal was to address the research questions by analyzing specific subsections of the data
and testing specific effects. To test the lateralization effect (attributed to limb dominance), only the
pre-lesion data were considered for the two sides (left and right). Then, the lesion effect was tested
using the data from both pre-and post-lesion periods, and two separate models were fitted one for
each side. To test the treatment effect, two separate models (left and right) were fitted using only
the post-lesion data. The data in this work is considered a clustered longitudinal dataset with three
levels; days are nested in frequency sub-bands, which are in turn nested within subjects (day: is level 1,
sub-bands: is level 2, and subject: is level 3). As a result of such hierarchical structure as in Figure 3,
the non-independence problem of the observations would arise which requires an appropriate statistical
analysis method. A mixed model is a statistical method that was developed particularly to address the
non-independence (correlated, or repeated measurements) issue by including the random effect term
in its model. The developed mixed models controlled for the within-subject correlation by including a
random effect for the subject and the nested sub-bands within each subject, with a variance-covariance
structure and restricted maximum likelihood estimation. The models were implemented in the
statistical software R using the (lme4) package. The significance level was set to (α = 0.05). The RP for
any given subject at (day) i for (sub-band) j nested within (subject) k denoted as RPijk, is represented in
the following equation (see a summary of parameters in Table 2):

RPi jk = β0 + β1 Dayi jk + β2 EFFECT jk + β3 EFFECT jk Dayi jk + β4Freq jk+

β5 Freq jk Dayi jk + β6 Freq jk EFFECT jk + β7 Freq jk EFFECT jk Dayi jk ( f ixed)+
α0k + α1k Dayi jk + α0 jk + α1 jk Dayi jk + εi jk (random),

(2)
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Table 2. Parameters used in Equation (2).

Parameter Definition

RPi jk response (relative power)

Dayi jk experiment day

Freq jk frequency sub-band (D1, D2, D3, D4, D4, D6, and A6)

EFFECT

the main effect in the models, so for:
Model 1: the side effect (categorical variable with two levels (left and right side))
Model 2: the lesion effect (categorical variable with two levels (pre- and post-lesion))
Model 3: the treatment effect (categorical variable with two levels (control and
treatment group))

β0 through to β7
the fixed effect associated with the (intercept, Day, EFFECT, EFFECT*Day, Freq, Freq*Day,
Freq* EFFECT, and Freq* EFFECT*Day)

α0k, α1k the subject random effect associated with the intercept and Day slope, respectively

α0 jk, α1 jk
the random effect of a frequency sub-band nested within a subject associated with the
intercept and Day slope respectively

εi jk random error
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Figure 3. Data Structure: The data in this work was collected from the left (L) and right (R) side of the
tail for five subjects during multiple experiment days (d1, d2, . . . , dn) for (pre- and post-lesion period).
The data of each day was decomposed into seven frequency sub-bands (D1, D2, D3, . . . , A6). Three of
the subjects received a combination of treatment (Treatment group); the remaining two subjects did not
receive any treatment post-lesion (Control group).

3. Results

The results were presented in the form of answers to the three research questions that were stated
in the introduction. They are as follows:
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(1) Is the intramuscular fine-wire electrode pair capable of detecting limb dominance in the subjects prior to
lesion?

To test the symmetry of tail muscle activity on both sides, the RP of the EMG signals during the
pre-lesion period were analyzed using a linear mixed model. The interaction of the frequency sub-band
and the side variable in the statistical model demonstrated a significant effect (p-value < 0.001). Given
that the (side*frequency) interaction is significant, Tukey’s mean comparisons were generated to
identify what means differ significantly. These results suggested that side variable had a significant
effect on the RP value of the D1, D2, D4, and D5 sub-bands. The estimated mean of the RP for the
D1, D2 and D4 sub-bands of the left side were significantly higher than that of the right side. On the
contrary, the estimated mean of the RP for the D5 sub-band on the left side was significantly lower than
that of the right side. The estimated mean for the RP across the different frequency sub-bands for both
sides is illustrated in Figure 4. Taken together, these results showed that the left and right tail muscles
have asymmetry activation.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 15 

 

both sides is illustrated in Figure 4. Taken together, these results showed that the left and right tail 
muscles have asymmetry activation.  

 
Figure 4. The estimated mean of the relative power (RP) of seven reconstructed EMG sub-bands prior 
to the creation of traumatic spinal cord injury (TSCI) for the left and right side of the tail. Of note for 
each band, there is a difference in RP value when compared to the left and right side of the tail. The 
D2 sub-band of the left and right side has the maximum RP, and the significant difference between 
the two sides is at the D1, D2, D4, and D5 sub-bands. The star indicates a significant difference. 

2) In the post-lesion period, is there a change in the EMG activity attributed to the experimental spinal cord 
injury and how it could be characterized in terms of RP? 

To answer this question, the effect of the created lesion was analyzed using a linear mixed model. 
The lesion effect was studied by testing the difference between the EMG characteristics during the 
pre- and post-lesion period. The interaction of the frequency sub-band and the lesion variable in the 
statistical models of both sides demonstrated a significant effect (p-value < 0.001). Given that the 
(lesion*frequency) interaction was significant, Tuckey’s means comparisons were generated to 
identify which means differ significantly. Figures 5 and 6 summarized the estimated mean of the RP 
values for different frequency sub-bands of the pre- and post-lesion group for the two sides. On the left 
side, the estimated mean of the RP for the D4, D6 and A6 sub-bands was significantly higher in the 
post-lesion period compared to the pre-lesion period. On the right side, the estimated mean of the RP 
for the D4, D6, and A6 sub-band was also higher significantly in the post-lesion period. On the other 
hand, the estimated mean of the RP for the D1 and D2 sub-bands was significantly lower in the post-
lesion period compared to pre-lesion period. The results suggested that the created lesion had a clear 
effect on the discharge properties of MUs, and with this technique, changes in discharge properties 
can be detected even when there is no clinical evidence.  

Figure 4. The estimated mean of the relative power (RP) of seven reconstructed EMG sub-bands prior
to the creation of traumatic spinal cord injury (TSCI) for the left and right side of the tail. Of note for
each band, there is a difference in RP value when compared to the left and right side of the tail. The D2
sub-band of the left and right side has the maximum RP, and the significant difference between the two
sides is at the D1, D2, D4, and D5 sub-bands. The star indicates a significant difference.

(2) In the post-lesion period, is there a change in the EMG activity attributed to the experimental spinal cord
injury and how it could be characterized in terms of RP?

To answer this question, the effect of the created lesion was analyzed using a linear mixed model.
The lesion effect was studied by testing the difference between the EMG characteristics during the
pre- and post-lesion period. The interaction of the frequency sub-band and the lesion variable in the
statistical models of both sides demonstrated a significant effect (p-value < 0.001). Given that the
(lesion*frequency) interaction was significant, Tuckey’s means comparisons were generated to identify
which means differ significantly. Figures 5 and 6 summarized the estimated mean of the RP values
for different frequency sub-bands of the pre- and post-lesion group for the two sides. On the left side,
the estimated mean of the RP for the D4, D6 and A6 sub-bands was significantly higher in the post-lesion
period compared to the pre-lesion period. On the right side, the estimated mean of the RP for the
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D4, D6, and A6 sub-band was also higher significantly in the post-lesion period. On the other hand,
the estimated mean of the RP for the D1 and D2 sub-bands was significantly lower in the post-lesion
period compared to pre-lesion period. The results suggested that the created lesion had a clear effect
on the discharge properties of MUs, and with this technique, changes in discharge properties can be
detected even when there is no clinical evidence.Sensors 2019, 19, x FOR PEER REVIEW 9 of 15 
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Figure 6. The estimated mean of the RP of seven reconstructed EMG sub-bands prior and post the
creation of TSCI for the right side of the tail. Of note, the RP values for the lower frequency sub-bands
(D4, D6, and A6) are significantly higher in the post-lesion period, while the higher frequency sub-bands
(D1 and D2) are significantly lower in the post-lesion period. The star indicates a significant difference.
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(3) What is the difference in the EMG activity between the control and the treatment group in the post-lesion
period (Treatment effect)?

The post-lesion data were utilized to generate two separate mixed models, one for each side.
The potential effect of the treatment was analyzed using the RP of the left and the right sides
incorporating an analysis which compared the treatment and the control groups. The interaction of
frequency sub-band and treatment variables in the models of both sides demonstrated a significant
effect (p-value < 0.001). Given that the (treatment*frequency) interaction was significant, Tukey’s mean
comparisons were generated to identify what means differ significantly. Figures 7 and 8 summarize
the estimated mean of the RP values for different sub-bands of the control and treatment group for the
two sides. On the left side, the D1, D2, D3, and D6 sub-bands have a significant difference, while on the
right side the effect was significant in all the sub-bands except the D2. The results suggested that there
is a significant difference in the discharge properties of MUs of the treatment and the control groups
during the post-lesion period.
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Figure 7. The estimated mean of the RP of seven reconstructed EMG sub-bands post-lesion for the
treatment (Tr) and the control (Ctrl) groups of the left side; of note, the RP values for the frequency
sub-bands (D1, D2, D3, and D6) are significantly different. Subjectively, the distribution of the RP in the
treatment group is similar to the RP distribution in the pre-lesion period for all the subjects. The star
indicates a significant difference.
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Figure 8. The estimated mean of the RP of seven reconstructed EMG sub-bands post-lesion for the
treatment (Tr) and the control (Ctrl) group of the right side; of note, the RP values for frequency
sub-bands (D1, D3, D4, D5, D6, and A6) are significantly different. Subjectively, the distribution of the
RP in the treatment group is similar to the RP distribution in the pre-lesion period for all the subjects.
The star indicates a significant difference.

4. Discussion

4.1. Non-Human Primates Appear to Exhibit Limb Dominance

In human beings, the construct of limb dominance or preference is well accepted; i.e., most people
use their right arm for functional tasks, and a minority use the left arm. A select few people can use both
arms equally well (ambidextrous). The question of whether monkeys have limb dominance remains a
subject of scientific inquiry. In this analysis, there is asymmetry related to the RP of EMG data derived
from the left and the right tail muscles. These results suggest that the long-tailed macaque (Macaca
fascicularis) exhibits limb preference and/or dominance. This is also consistent with the observations of
the veterinary staff involved with this project. Generally, limb dominance refers to the preferential
use of one limb to perform functional tasks [51]. This asymmetry in the pre-lesion (normal control)
period has implications for any analysis subsequent to the experimental TSCI. Conceptually, volitional
motor control involves a two-circuit pathway; i.e., the upper motor neurons and the lower motor
neurons of the corticospinal tracts. The upper motor neurons originate in the cortex, travel the internal
capsule and pyramids, and terminate into the grey matter of the spinal cord. The lower motor neurons
originate in the grey matter of the spinal cord, exit via the nerve roots and reach the muscles via the
plexus and peripheral nerves. The data suggest that the neural network that controls the left and right
neurophysiological circuit is not symmetrical. Therefore, it stands to reason that experimental TSCI
will have different effects on the separate circuits. This is consistent with human disease, to the extent
that a lesion in one part of the central nervous system may have different manifestations related to the
limbs. As such, the effects of the lesion, from a neurological perspective, were analyzed in model 2
separately for both the left and the right side.
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4.2. Experimental Traumatic Spinal Cord Injury (TSCI) Causes Perturbation of Electromyographic (EMG) Data

The experimental TSCI resulted in both a physiological and histopathological perturbation [4].
In this analysis, there was a difference in the RP values when comparing the pre- and post-lesion
data; this was statistically significant. Specifically, the low frequency (LF) sub-bands (D4, D6, and A6)
were increased significantly during the post-lesion period on both sides. Also, the high frequency
(HF) sub-bands (D1 and D2) were decreased significantly during the post-lesion period on the right
side. These results are consistent with the literature [14]. As a general construct, neurological
disease is associated with abnormalities in the firing of the motor units and leads to a lower discharge
frequency [14,15,52]. This, in turn, can affect the distribution of the high and low-frequency components
of EMG signals. This shift in the RP value may be related to the disorganized, spontaneous firing of
single or multiple motor units, which affect the frequency distribution. Speculatively, a component of
these abnormalities was be related to spasticity; in TSCI, there may preferentially affect the recruitment
of Type I or Type II motor units, which could also distort the frequency content. The elucidation of
these relationships requires further research. With this method, the change in recruitment behaviour
post the TSCI might be detectable even before the clinical evidence.

4.3. Combination Treatment Is Associated with Treatment Effect

The combination of TRH, selenium and vitamin E is associated with a treatment effect. Specifically,
three subjects received a combination treatment and two subjects did not receive treatment. In the
post-lesion period, there was a significant difference in RP values for most of the frequency sub-bands
of the treatment and the control groups. These results suggested there is a clear difference in the
discharge properties of MUs of the treatment group during the post-lesion period. This finding was
present for both the left and the right side. However, in the context of a limited number of subjects,
this should be considered as a preliminary inference. The rationale for this combination treatment in
TSCI and the implications thereof are published elsewhere [40].

4.4. Recording of EMG Signals from Surface, Needle and Wire Electrodes

There are a variety of methods used to obtain EMG data from humans and animals. As a general
construct, there are three types of electrodes: surface, needle, and wire electrode. The neurophysiological
characteristics and the interpretation of the data derived are not synonymous. Surface electrodes
are placed over the skin; they can be manufactured from a variety of materials and formed into
various sizes and shapes. Surface recording over the skin is subject to distortion of the EMG signal
due to the interposition of the fascia and the subcutaneous tissues. With limb movement, the skin,
the subcutaneous tissue and the muscles move asymmetrically. This contributes further to movement
artifact. These tissues are effectively a low pass filter. In comparison, needle electrodes are made of
metal; subtypes include monopolar, concentric, single fibre and macroelectrodes. Wire electrodes, in
contrast, can vary in diameter and length. Wire electrodes allow for long term implantation in subjects
and are generally well tolerated. When compared to surface electrodes, there is less cross-talk. As a
conceptual argument, data from wire electrodes aggregates the EMG signal from muscle fibres in
multiple motor units. The signal is potentially affected by multiple factors including the proximity of
the signal generator to the wire, phase cancellation, size of fibres, and type of fibres (i.e., fast twitch,
slow twitch). As well, there is some contribution related to the neural network that controls the
agonist–antagonist pair.

The fine-wire recordings from this model are particularly unique. Specifically, the EMG data were
obtained prior and subsequent to TSCI. Additionally, the data were obtained while the subjects were
moving freely (dynamic movements), over an extended period of time. Some potential limitations
include the relatively few numbers of subjects; this is, in part related to cost. As well, the collection of
longitudinal nature precluded a very high sampling rate.
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5. Conclusions

In conclusion, this research characterizes the frequency content of intramuscular EMG signals
recorded pre- and post-TSCI in a validated NHP model. The EMG data were collected in a longitudinal
nature and were obtained from the left- and right side of the Macaca fasicularis tail muscles engaged
in the dynamic/free activity. In the absence of the TSCI, the EMG data demonstrated an asymmetry
activation of the two sides; this is consistent with the human phenomenon of limb preference and/or
dominance. Perturbation with an experimental lesion resulted in a clear EMG consequence. Of note,
the effect of the lesion was different on the left and the right side. Also, there is a preliminary
inference that treatment with a combination of TRH, selenium and vitamin E may improve recovery.
The results indicate that the RP of the decomposed EMG data adds a new dimension to the evaluation
of impairment and recovery in this NHP model of experimental TSCI. This analysis might lead to a
new assessment index for motor unit activity and progression of recovery from TSCI.

Author Contributions: Conceptualization, F.M., H.A.A., S.N., W.A.G., D.L.R., and J.B.S.; Methodology, F.M.; Data
Acquisition, K.B., H.S., D.R.S., W.A.G., A.F.H., and S.N.; Writing—original draft preparation, F.M., S.N., H.A.A.;
Writing—review and editing, F.M., S.N., H.A.A., N.S., E.S., H.S., K.B., D.R.S., W.A.G., A.F.H., D.L.R., J.B.S.; Project
administration, H.S., K.B., W.A.G., A.F.H., S.N.; Funding acquisition, S.N.

Funding: This research was funded in part by the Office of The Director, National Institutes of Health, under Award
Number P51OD011106 to the Wisconsin National Primate Research Center, University of Wisconsin-Madison.
This research was conducted in part at a facility constructed with support from Research Facilities Improvement
Program grant numbers RR15459-01 and RR020141-01. The New England Primate Research Center was the
recipient of NIH Grant 5P51RR000168. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, B.B.; Cripps, R.A.; Fitzharris, M.; Wing, P.C. The global map for traumatic spinal cord injury epidemiology:
Update 2011, global incidence rate. Spinal Cord 2014, 52, 110–116. [CrossRef]

2. Nesathurai, S.; Blaustein, D. The Rehabilitation of People with Spinal Cord Injury, 3rd ed.; Arbuckle Academic
Publishing: Whitinsville, MA, USA, 2013.

3. National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance; University of Alabama at Birmingham:
Birmingham, AL, USA, 2018.

4. Seth, N.; Simmons, H.A.; Masood, F.; Graham, W.A.; Rosene, D.L.; Westmoreland, S.V.; Cummings, S.M.;
Gwardjan, B.; Sejdic, E.; Hoggatt, A.F.; et al. Model of Traumatic Spinal Cord Injury for Evaluating
Pharmacologic Treatments in Cynomolgus Macaques (Macaca fasicularis). Comp. Med. 2018, 68, 63–73.

5. Sledge, J.; Graham, W.A.; Westmoreland, S.; Sejdic, E.; Miller, A.; Hoggatt, A.; Nesathurai, S. Spinal cord
injury models in non human primates: Are lesions created by sharp instruments relevant to human injuries?
Med. Hypotheses 2013, 81, 747–748. [CrossRef]

6. Graham, W.A.; Rosene, D.L.; Westmoreland, S.; Miller, A.; Sejdic, E.; Nesathurai, S. Humane Non-Human
Primate Model of Traumatic Spinal Cord Injury Utilizing Electromyography as a Measure of Impairment
and Recovery. Open J. Vet. Med. 2013, 3, 86. [CrossRef]

7. Nesathurai, S.; Graham, W.A.; Mansfield, K.; Magill, D.; Sehgal, P.; Westmoreland, S.V.; Prusty, S.; Rosene, D.L.;
Sledge, J.B. Model of traumatic spinal cord injury in Macaca fascicularis: Similarity of experimental lesions
created by epidural catheter to human spinal cord injury. J. Med. Primatol. 2006, 35, 401–404. [CrossRef]

8. Nout, Y.S.; Rosenzweig, E.S.; Brock, J.H.; Strand, S.C.; Moseanko, R.; Hawbecker, S.; Zdunowski, S.;
Nielson, J.L.; Roy, R.R.; Courtine, G.; et al. Animal models of neurologic disorders: A nonhuman primate
model of spinal cord injury. Neurotherapeutics 2012, 9, 380–392. [CrossRef]

9. Rosenzweig, E.S.; Courtine, G.; Jindrich, D.L.; Brock, J.H.; Ferguson, A.R.; Strand, S.C.; Nout, Y.S.; Roy, R.R.;
Miller, D.M.; Beattie, M.S.; et al. Extensive spontaneous plasticity of corticospinal projections after primate
spinal cord injury. Nat. Neurosci. 2010, 13, 1505. [CrossRef]

10. Ojha, P.R. Tail Carriage and Dominance in The Rhesus Monkey, Macaca Mulatta. Mammalia 2009, 38, 163–170.
[CrossRef]

http://dx.doi.org/10.1038/sc.2012.158
http://dx.doi.org/10.1016/j.mehy.2013.07.040
http://dx.doi.org/10.4236/ojvm.2013.31014
http://dx.doi.org/10.1111/j.1600-0684.2006.00162.x
http://dx.doi.org/10.1007/s13311-012-0114-0
http://dx.doi.org/10.1038/nn.2691
http://dx.doi.org/10.1515/mamm.1974.38.2.163


Sensors 2019, 19, 3303 14 of 15

11. Sharif-Alhoseini, M.; Khormali, M.; Rezaei, M.; Safdarian, M.; Hajighadery, A.; Khalatbari, M.M.;
Meknatkhah, S.; Rezvan, M.; Chalangari, M.; Derakhshan, P.; et al. Animal models of spinal cord injury:
A systematic review. Spinal Cord 2017, 55, 714. [CrossRef]

12. Calancie, B.; Molano, M.R.; Broton, J.G. EMG for assessing the recovery of voluntary movement after acute
spinal cord injury in man. Clin. Neurophysiol. 2004, 115, 1748–1759. [CrossRef]

13. Lewko, J.P. Assessment of muscle electrical activity in spinal cord injury subjects during quiet standing.
Paraplegia 1996, 34, 158–163. [CrossRef]

14. Wiegner, A.W.; Wierzbicka, M.M.; Davies, L.; Young, R.R. Discharge properties of single motor units in
patients with spinal cord injuries. Muscle Nerve 1993, 16, 661–671. [CrossRef]

15. Shahani, B.T.; Wierzbicka, M.M.; Parker, S.W. Abnormal single motor unit behavior in the upper motor
neuron syndrome. Muscle Nerve 1991, 14, 64–69. [CrossRef]

16. Capogrosso, M.; Milekovic, T.; Borton, D.; Wagner, F.; Moraud, E.M.; Mignardot, J.B.; Buse, N.; Gandar, J.;
Barraud, Q.; Xing, D.; et al. A brainspine interface alleviating gait deficits after spinal cord injury in primates.
Nature 2016, 539, 284–288. [CrossRef]

17. Karlsson, S.; Akay, M. Time-frequency analysis of myoelectric signals during dynamic contractions:
A comparative study. IEEE Trans. Biomed. Eng. 2000, 47, 228–238. [CrossRef]

18. Phinyomark, A.; Nuidod, A.; Phukpattaranont, P.; Limsakul, C. Feature Extraction and Reduction of Wavelet
Transform Coefficients for EMG Pattern Classification. Elektron. Elektrotechnika 2012, 122, 27–32. [CrossRef]

19. Ranniger, C.U.; Akin, D.L. EMG mean power frequency determination using wavelet analysis. In Proceedings
of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
“Magnificent Milestones and Emerging Opportunities in Medical Engineering” (Cat. No.97CH36136),
Chicago, IL, USA, 30 October–2 November 1997; Volume 4, pp. 1589–1592.

20. Zhou, P.; Rymer, W.Z. MUAP Number Estimates in Surface EMG: Template-Matching Methods and Their
Performance Boundaries. Ann. Biomed. Eng. 2004, 32, 1007–1015. [CrossRef]

21. Hramov, A.E.; Koronovskii, A.A.; Makarov, V.A.; Pavlov, A.N.; Sitnikova, E. Wavelets in Neuroscience; Springer:
Berlin/Heidelberg, Germany, 2015.

22. Wang, G.; Zhang, Y.; Wang, J. The analysis of surface EMG signals with the wavelet-based correlation
dimension method. Comput. Math. Methods Med. 2014, 2014, 284308. [CrossRef]

23. Hostens, I.; Seghers, J.; Spaepen, A.; Ramon, H. Validation of the wavelet spectral estimation technique
in biceps brachii and brachioradialis fatigue assessment during prolonged low-level static and dynamic
contractions. J. Electromyogr. Kinesiol. 2004, 14, 205–215. [CrossRef]

24. So, R.C.H.; Ng, J.K.-F.; Lam, R.W.K.; Lo, C.K.K.; Ng, G.Y.F. EMG wavelet analysis of quadriceps muscle
during repeated knee extension movement. Med. Sci. Sports Exerc. 2009, 41, 788–796. [CrossRef]

25. González-Izal, M.; Rodríguez-Carreño, I.; Malanda, A.; Mallor-Giménez, F.; Navarro-Amézqueta, I.;
Gorostiaga, E.M.; Izquierdo, M. sEMG wavelet-based indices predicts muscle power loss during dynamic
contractions. J. Electromyogr. Kinesiol. 2010, 20, 1097–1106. [CrossRef]

26. Yamada, R.; Ushiba, J.; Tomita, Y.; Masakado, Y. Decomposition of electromyographic signal by principal
component analysis of wavelet coefficients. In Proceedings of the IEEE EMBS Asian-Pacific Conference on
Biomedical Engineering, Kyoto, Japan, 20–22 October 2003; pp. 118–119.

27. Fang, J.; Agarwal, G.C.; Shahani, B.T. Decomposition of EMG signal by wavelet spectrum matching.
In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Chicago, IL, USA, 30 October–2 November 1997; Volume 3, pp. 1253–1256.

28. Merlo, A.; Farina, D.; Merletti, R. A fast and reliable technique for muscle activity detection from surface
EMG signals. IEEE Trans. Biomed. Eng. 2003, 50, 316–323. [CrossRef]

29. Sharma, S. Wavelet analysis based feature extraction for pattern classification from Single channel acquired
EMG signal. Elixir Online J. 2012, 50, 0320-1.

30. Phinyomark, A.; Limsakul, C.; Phukpattaranont, P. Application of wavelet analysis in EMG feature extraction
for pattern classification. Meas. Sci. Rev. 2011, 11, 45–52. [CrossRef]

31. Salvador, J. Application of the Wavelet Transform for EMG M-Wave Pattern Recognition. Ph.D. Thesis,
McMaster University, Hamilton, ON, Canada, 2006.

32. Sharma, T.; Veer, K. EMG classification using wavelet functions to determine muscle contraction. J. Med. Eng.
Technol. 2016, 40, 99–105. [CrossRef]

http://dx.doi.org/10.1038/sc.2016.187
http://dx.doi.org/10.1016/j.clinph.2004.03.002
http://dx.doi.org/10.1038/sc.1996.28
http://dx.doi.org/10.1002/mus.880160613
http://dx.doi.org/10.1002/mus.880140111
http://dx.doi.org/10.1038/nature20118
http://dx.doi.org/10.1109/10.821766
http://dx.doi.org/10.5755/j01.eee.122.6.1816
http://dx.doi.org/10.1023/B:ABME.0000032463.26331.b3
http://dx.doi.org/10.1155/2014/284308
http://dx.doi.org/10.1016/S1050-6411(03)00101-9
http://dx.doi.org/10.1249/MSS.0b013e31818cb4d0
http://dx.doi.org/10.1016/j.jelekin.2010.05.010
http://dx.doi.org/10.1109/TBME.2003.808829
http://dx.doi.org/10.2478/v10048-011-0009-y
http://dx.doi.org/10.3109/03091902.2016.1139202


Sensors 2019, 19, 3303 15 of 15

33. Vetter, R.; Schild, J.; Kuhn, A.; Radlinger, L. Discrimination of Healthy and Post-partum Subjects using
Wavelet Filterbank and Auto-regressive Modelling. In Proceedings of the International Conference on
Bio-inspired Systems and Signal Processing, Lisbon, Portugal, 12–15 January 2015.

34. Wakeling, J.M.; Lee, S.S.M.; Arnold, A.S.; Miara, M.D.; Biewener, A.A. A Muscle’s Force Depends on the
Recruitment Patterns of Its Fibers. Ann. Biomed. Eng. 2012, 40, 1708–1720. [CrossRef]

35. Parsaei, H. EMG Signal Decomposition Using Motor Unit Potential Train Validity; University of Waterloo:
Waterloo, ON, Canada, 2011.

36. Farina, D.; Crosetti, A.; Merletti, R. A model for the generation of synthetic intramuscular EMG signals to
test decomposition algorithms. IEEE Trans. Biomed. Eng. 2001, 48, 66–77. [CrossRef]

37. Stashuk, D.W.; Farina, D.; Søgaard, K. Decomposition of intramuscular EMG signals. In Electromyography:
Physiology, Engineering, and Noninvasive Applications; Wiley-Interscience: Hoboken, NJ, USA; IEEE Press:
Piscataway, NJ, USA, 2005; pp. 47–80.

38. Negro, F.; Muceli, S.; Castronovo, A.M.; Holobar, A.; Farina, D. Multi-channel intramuscular and surface
EMG decomposition by convolutive blind source separation. J. Neural Eng. 2016, 13, 026027. [CrossRef]

39. Nawab, S.H.; Wotiz, R.P.; de Luca, C.J. Decomposition of indwelling EMG signals. J. Appl. Physiol. 2008, 105,
700–710. [CrossRef]

40. Sledge, J.; Mahadevappa, K.; Stacey, P.; Graham, A.; Nesathurai, S. A Speculative Pharmaceutical Cocktail to
Treat Spinal Cord Injury. Am. J. Phys. Med. Rehabil. 2016, 95, e108–e110. [CrossRef]

41. Luca, C.J.D. Control properties of motor units. J. Exp. Biol. 1985, 115, 125–136.
42. Messer, S.R.; Agzarian, J.; Abbott, D. Optimal wavelet denoising for phonocardiograms. Microelectron. J.

2001, 32, 931–941. [CrossRef]
43. Al-Qazzaz, N.K.; Ali, S.H.B.M.; Ahmad, S.A.; Islam, M.S.; Escudero, J. Selection of Mother Wavelet Functions

for Multi-Channel EEG Signal Analysis during a Working Memory Task. Sensors 2015, 15, 29015–29035.
[CrossRef]

44. Luca, C.J.D. Physiology and Mathematics of Myoelectric Signals. IEEE Trans. Biomed. Eng. 1979, BME-26,
313–325. [CrossRef]

45. Al-Qazzaz, N.K.; Ali, S.H.M.; Islam, S.; Ahmad, S.A.; Escudero, J. EEG Wavelet Spectral Analysis During a
Working Memory Tasks in Stroke-Related Mild Cognitive Impairment Patients. In International Conference for
Innovation in Biomedical Engineering and Life Sciences; Springer: Singapore, 2015; pp. 82–85.

46. Mammone, N.; Foresta, F.L.; Morabito, F.C. Automatic Artifact Rejection from Multichannel Scalp EEG by
Wavelet ICA. IEEE Sens. J. 2012, 12, 533–542. [CrossRef]

47. Inuso, G.; Foresta, F.L.; Mammone, N.; Morabito, F.C. Wavelet-ICA methodology for efficient artifact removal
from Electroencephalographic recordings. In Proceedings of the 2007 International Joint Conference on
Neural Networks, Orlando, FL, USA, 12–17 August 2007; pp. 1524–1529.

48. Burhan, N.; Kasno, M.; Ghazali, R. Feature extraction of surface electromyography (sEMG) and signal
processing technique in wavelet transform: A review. In Proceedings of the 2016 IEEE International
Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 22 October 2016;
pp. 141–146.

49. Hu, X.; Wang, Z.; Ren, X. Classification of surface EMG signal using relative wavelet packet energy. Comput.
Methods Programs Biomed. 2005, 79, 189–195. [CrossRef]

50. Ko, K.-E.; Yang, H.-C.; Sim, K.-B. Emotion recognition using EEG signals with relative power values and
Bayesian network. Int. J. Control Autom. Syst. 2009, 7, 865. [CrossRef]

51. Sadeghi, H.; Allard, P.; Prince, F.; Labelle, H. Symmetry and limb dominance in able-bodied gait: A review.
Gait Posture 2000, 12, 34–45. [CrossRef]

52. De Carvalho, M.; Eisen, A.; Krieger, C.; Swash, M. Motoneuron firing in amyotrophic lateral sclerosis (ALS).
Front. Hum. Neurosci. 2014, 8, 719. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10439-012-0531-6
http://dx.doi.org/10.1109/10.900250
http://dx.doi.org/10.1088/1741-2560/13/2/026027
http://dx.doi.org/10.1152/japplphysiol.00170.2007
http://dx.doi.org/10.1097/PHM.0000000000000486
http://dx.doi.org/10.1016/S0026-2692(01)00095-7
http://dx.doi.org/10.3390/s151129015
http://dx.doi.org/10.1109/TBME.1979.326534
http://dx.doi.org/10.1109/JSEN.2011.2115236
http://dx.doi.org/10.1016/j.cmpb.2005.04.001
http://dx.doi.org/10.1007/s12555-009-0521-0
http://dx.doi.org/10.1016/S0966-6362(00)00070-9
http://dx.doi.org/10.3389/fnhum.2014.00719
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Non-Human Primates Appear to Exhibit Limb Dominance
	Experimental Traumatic Spinal Cord Injury (TSCI) Causes Perturbation of Electromyographic (EMG) Data
	Combination Treatment Is Associated with Treatment Effect
	Recording of EMG Signals from Surface, Needle and Wire Electrodes

	Conclusions 
	References

