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Abstract: A vortex-induced vibration (VIV) experiment on a standing variable-tension deepsea riser
was conducted to investigate the applicability and sensitivity of Bare Fiber Bragg Grating (BFBG)
sensor technology for testing deepsea riser vibrations. The dominant frequencies, dimensionless
displacements, in-line and cross-flow couplings of the riser VIV under different top tensions were
observed through wavelet transform and modal decomposition. The result indicated that, excited
by the same external flow velocities, the cross-flow and in-line dominant frequencies of the riser
both decreased with increasing top tension. In terms of displacement responses, increasing top
tension caused the root mean square (RMS) displacement to decrease and the vibration amplitude to
reduce. In terms of cross-flow and in-line coupling, the closer a location is to the ends of the riser,
the smaller the trajectory is and the more standard the “8” becomes. During top tension increases,
there exists a “lag” in the time when the riser’s vibration trajectory becomes an “8”. The Slalom
Surround Installation approach can effectively prevent the local breakage of the optical fiber string.
BFBG sensor technology can give an accurate presentation of the displacement time history, vibration
amplitude and frequency of the riser, provides a clear picture of how the riser’s mode and VIV evolve
as a function of flow velocity.

Keywords: deepsea riser; vortex-induced vibration; top tension; BFBG sensor technology;
experimental test

1. Introduction

Top-tensioned risers are a unique form of riser application that tensions the riser by applying
tension through a top tensioner. They usually serve as a component for linking dynamic floating
units to the underwater systems. When ocean currents flow past these slender, cylindrical structures,
at a given flow velocity, alternately discharged vortexes at the tail will form cyclic wake. Owing to
the cyclicity and asymmetry of vortex shedding, the fluid will exert a cyclic pulsating force to the
structure in both in-line and cross-flow directions, causing it to vibrate in both directions. This is what
we call vortex-induced vibrations (VIV) [1,2]. When the natural frequency of the riser structure is
close to the vortex shedding frequency, vibration will force the vortex shedding frequency to lock in
somewhere near the natural frequency of the structure, referred to as a ”lock-in”, thereby intensifying
the cross-flow vibration of the riser. This “lock-in” will accelerate the fatigue damage of the riser.

In order to reduce or eliminate the damaging effect caused by the change of vortex-induced
vibration caused by the change of top tension and prolong the service life of deepsea riser, scholars
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from various countries have conducted extensive research. Chaplin et al. measured the VIV of a
top-tensioned riser undergoing stepped currents in a water flume [3]. Lie and Kaasen investigated the
VIV of a top-tensioned riser at a port by measuring the modal response of the riser and the in-line and
cross-flow VIV of the riser under large aspect ratios [4]. Huera-Huarte and Bearman looked at the
wake flow structure and VIV responses of a flexible cylinder and examined how top tension affects the
phase-locked vibration response bifurcation of the riser model [5,6]. Lee and Allen tested the VIV of
a top-tensioned flexible cylinder and demonstrated that top tension and structural rigidity can play
a critical role in vibration frequency [7]. Srinil et al. investigated the impacts of riser’s fluid-solid
coupling parameters on riser’s nonlinear dynamics under different sheared currents through numerical
VIV simulation and prediction of variable-tension vertical flexible risers in linearly sheared currents [8].
The researchers used different theories and analytical methods to test the dynamic response of the riser
under different top tensions. Among them, Gao et al. analyzed the VIV response and parameters of
full-size, tension deepsea risers under non-locked-in conditions with a model based on the Vander Pol
theory. They concluded that the riser’s inherent frequency in in-line direction is higher than that in
cross-flow direction and top tension variation makes a great difference to the riser’s inherent frequency
and vibration mode [9]. Li et al. was the first to apply vector finite element method to the dynamic
behavior analysis of top tension risers [10]. They derived the motion formulation for riser particles by
simulating the inter-particle interaction with plane bending bar elements. They developed a Matlab
solver, calculated the dynamic response characteristics of the riser under ocean currents and waves
and compared the result with measurements from traditional finite element method. Zhang et al.
converted the partial differential equation of motion for deepsea tension risers into a Mathieu equation
using the Gallerkin procedure [11]. They yielded the instability diagram of the riser by stacking each
separate order of mode of the riser against this Mathieu instability diagram and compared the result
with the numerical computation result based on the Floquet theory. Zhang et al. used the discrete
control equation of finite element method and solved it in the time domain using the Newmark-β
approach [12]. They examined the limit displacement, bending moment, stress, and top and bottom
corners of a top-tensioned riser subjected to up-convex internal isolated wave. They analyzed the
impacts of the amplitudes of the internal isolated wave, density difference between adjacent layers, top
tension, and wall thickness on riser response.

Fiber Bragg grating (FBG) sensors are a new sensor technology that is superior over its traditional
counterparts due to small volume, light mass, simple head construction, high capacity, good stability,
simple wire routing, corrosion rigidity, high precision, resistance to electromagnetic interference (EMI),
and flexibility for remote transmission and distributed measurement [13–15]. As it avoids the exposure
to EMI and the null drift potential in small structural strain cases for electrometric techniques, this new
technology is more applicable for marine projects subjected to humidity, corrosion, and complex EMI.
As FBG sensors are small in volume and light in mass, their extra mass to the riser model is ignorable.
Besides, they are also suitable for underwater operations. As a number of measuring points have to be
deployed along the length of a deepsea riser to enable VIV modal analysis, the greatest advantage
of using FBG sensors is that a number of gratings can be written into one single fiber to make up a
sensor array and allow for distributed sensing. This eliminates the need of large amounts of lead wires,
the difficulty of routing the wires, and the need of numerous data acquisition and analysis interfaces
challenging traditional electrometric sensors. Moreover, excessive lead wires would cause the fluid
around the riser to produce severe disturbance, which could then modify the initial external flow field
and greatly limit the data accuracy. When traditional FBG sensors are used, as fibers have very low
bending strengths, the wires are usually encapsulated. As the cross section of the fiber is larger after it
is encapsulated, when installed on the surface of a large aspect ratio riser, it will affect the flow state
surrounding the riser and change the dynamic response characteristics of the riser itself. Therefore,
the use of Bare Fiber Bragg Grating sensor technology is an ideal choice for deep sea riser VIV testing,
but a series of core technologies such as the sensitive testing, positioning, installation of Bare Fiber
Bragg Grating sensors, the improvement of fiber flexural strength and the development of new coating
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material shave not yet been broken, which has great constraints on the long-term stability of FBG
sensors in the marine environment.

As reviewed above, we consider the limitations of the existing research mainly focused on the
limitation of the top tension as a factor limiting the rotating motion of the riser. Therefore, in this paper,
we explore the applicability and sensitivity of Bare Fiber Bragg Grating (BFBG) sensing technology in
vibration testing of long and thin marine structures such as deepsea risers. In this study, we carried
out a VIV experimental test on a standing variable-tension riser subjected to a uniform flow in the
combined wave–current water flume of the Engineering Hydrodynamics Laboratory, Ocean University
of China. In this study, we used BFBG sensors to observe the VIV dominant frequency, dimensionless
displacement, and in-line and cross-flow coupling of the variable-tension riser by varying the external
flow velocity and top tension and using wavelet transform (WT) and modal decomposition.

2. Bare Fiber Grating Sensing Technology and Data Analysis Method

2.1. Working Principle of BFBG Sensor Technology

The Fiber Bragg Grating (FBG) sensor is a wavelength modulation type optical fiber sensor that
obtains sensing information by modulating the optical fiber Bragg wavelength by external physical
parameters, and is made by utilizing the photosensitivity of the optical fiber material. In principle,
it belongs to a light reflecting type device and a fiber grating sensor. The working principle is shown in
Figure 1 [16].

The Fiber Bragg Grating (FBG) sensor is made of the photosensitivity of optical fiber material.
The continuous broadband light emitted by the light source through the optical fiber is coupled with the
optical field, so that the broadband light is selectively reflected back to a corresponding narrow band
light and returned along the original transmission fiber. The remaining broadband light is transmitted
directly through the past.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 19 

 

been broken, which has great constraints on the long-term stability of FBG sensors in the marine 

environment. 

As reviewed above, we consider the limitations of the existing research mainly focused on the 

limitation of the top tension as a factor limiting the rotating motion of the riser. Therefore, in this 

paper, we explore the applicability and sensitivity of Bare Fiber Bragg Grating (BFBG) sensing 

technology in vibration testing of long and thin marine structures such as deepsea risers. In this study, 

we carried out a VIV experimental test on a standing variable-tension riser subjected to a uniform 

flow in the combined wave–current water flume of the Engineering Hydrodynamics Laboratory, 

Ocean University of China. In this study, we used BFBG sensors to observe the VIV dominant 

frequency, dimensionless displacement, and in-line and cross-flow coupling of the variable-tension 

riser by varying the external flow velocity and top tension and using wavelet transform (WT) and 

modal decomposition. 

2. Bare Fiber Grating Sensing Technology and Data Analysis Method 

2.1. Working Principle of BFBG Sensor Technology 

The Fiber Bragg Grating (FBG) sensor is a wavelength modulation type optical fiber sensor that 

obtains sensing information by modulating the optical fiber Bragg wavelength by external physical 

parameters, and is made by utilizing the photosensitivity of the optical fiber material. In principle, it 

belongs to a light reflecting type device and a fiber grating sensor. The working principle is shown 

in Figure 1 [16]. 

The Fiber Bragg Grating (FBG) sensor is made of the photosensitivity of optical fiber material. 

The continuous broadband light emitted by the light source through the optical fiber is coupled with 

the optical field, so that the broadband light is selectively reflected back to a corresponding narrow 

band light and returned along the original transmission fiber. The remaining broadband light is 

transmitted directly through the past. 

 

Figure 1. Schematic diagram of the operation and Select configuration diagram of the FBG sensor. (a) 

Working principle of Fiber Bragg grating (FBG); (b) wavelength division multiplexing (WDM) 

technology for FBG sensors; (c) Selection and configuration of FBG sensors. 

When the temperature or strain used for the fiber grating changes, the wavelength of the narrow-

band light center reflected back will change linearly. According to the coupled mode theory, only the 

light wave that satisfies the Bragg condition can be reflected, which is expressed as: 

λB = 2neff Λ. (1) 

where λB [17] is the center wavelength of the reflected light wave of the FBG, neff is the effective 

refractive index of the core, and Λ is the fiber grating period. 
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(a) Working principle of Fiber Bragg grating (FBG); (b) wavelength division multiplexing (WDM)
technology for FBG sensors; (c) Selection and configuration of FBG sensors.

When the temperature or strain used for the fiber grating changes, the wavelength of the
narrow-band light center reflected back will change linearly. According to the coupled mode theory,
only the light wave that satisfies the Bragg condition can be reflected, which is expressed as:

λB = 2neff Λ. (1)

where λB [17] is the center wavelength of the reflected light wave of the FBG, neff is the effective
refractive index of the core, and Λ is the fiber grating period.
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When the temperature and stress of the fiber grating change, the core effective refractive index neff
or the grating period Λ changes, and the central reflection wavelength also changes accordingly, which
is expressed as:

∆λB = (1− Pe)∆ελB + (α f + ξ)∆TλB (2)

where ∆λB is the amount of change in the center wavelength of the reflected light wave [18], Pe is
the effective elastic coefficient of the fiber, ∆ε is the amount of strain change, ∆T is the amount of
temperature change, αf is the thermal expansion coefficient of the fiber, and ξ is the thermo-optic
coefficient of the fiber.

Equation (2) reflects that the amount of change in the center wavelength of the fiber grating is
linearly related to the strain change amount or the temperature change amount, and the corresponding
strain or temperature variable can be obtained by inverse calculation by the above formula. It can
be known from the formulas (1) and (2) that the effective elastic coefficient Pe is an important action
parameter for the strain caused by the stress change, and can be described as the amount of refractive
index change due to stress or strain. Based on the principle and composition of the FBG sensor, it has
the characteristics of high sensitivity, corrosion resistance, high and low temperature resistance and
electromagnetic interference resistance. For the typical long-structure structural fluid-solid coupling
test of deepsea riser VIV test, the above characteristics are especially important.

2.2. Data Analysis Methods

2.2.1. Analysis of Strain Data

In the process of strain data acquisition in the oscillating interval, in order to eliminate the initial
strain caused by the top tension and the axial strain during the vibration of the riser, the bending strain
of the riser caused by VIV is accurately collected, and the BFBG strain sensors are separately arranged.
Four sets of bare fiber strings were used to engrave grating measuring points along the length of
the fiber string according to the test scheme, and the dynamic strains in the cross-flow and in-line
directions were measured. The strains obtained from the two measuring points in the symmetrical
position are averaged to obtain the bending strain of the riser, as shown in Equations (3) and (4):

εCF(t) = [εCF−2(t) − εCF−4(t)]/2 (3)

εIL(t) = [εIL−1(t) − εIL−3(t)]/2 (4)

where: εCF(t), εIL(t) is the cross-flow and in-line direction bending strain of the riser caused by
vortex-induced vibration; εCF−2(t), εCF−4(t) corresponds to two cross-flow directions. The strain time
history obtained by the sensor; εIL−1(t), εIL−3(t) is the strain time history obtained by eliminating the
initial bending strain corresponding to the two sensors in the in-line direction.

2.2.2. Time Frequency Analysis Method

Wavelet transform (WT) is a new transform analysis method that overcomes the shortcomings of
window size and frequency variation. It provides a “time-frequency” window with frequency change,
which is ideal for signal time-frequency analysis and processing tool. The continuous WT equation is
shown as follows:

W(a, τ) = a−1/2

∞∫
−∞

f (t)Ψ∗(
t− τ

a
)dt (5)

where, W(a, τ) means the coefficient obtained after the function f (t) is subject to wavelet transform
or the value of change in frequency in terms of time scale; a means scale factor; τ means shift factor;
Ψ(t) means mother wavelet function. The mother function used is Morlet complex wavelet, which is
defined as follows:

Ψ(t) = eiωte−t2/2 (6)
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Its Fourier transform is expressed as follows:

Φ(ω) =
√

2πe−1/2(ω−ω0)
2

(7)

The coefficient matrix W(a, τ) obtained after WT was obtained. The actual frequency function
f (t) is returned to according to transform scale. The change in the color depth shown on the time
frequency plots is the vibration intensity under the frequency. According to our analysis, the change in
the intensity of frequency within time domain and the laws of changes in the characteristic frequency
of VIV can be reflected on the time frequency plots. Also, frequency components and the instability of
VIV in time sequence can be presented on the plots.

2.2.3. Strain Signal Based Modal Analysis Theory

For a riser with the length of L that is articulated at both ends, the vibration displacement of the
structure at any time t can be expressed as y = y(z, t) According to the modal decomposition
of structural dynamics theory [19], the displacement at the time t can be expressed by the
following equation:

y(z, t) =
∞∑

n = 1

ωn(t)ϕn(z) z ∈ [0, L]. (8)

where, ϕn(z) means vibration mode function; and ωn(t) means weight coefficient.
For a riser structure that is articulated at both ends, its vibration mode function ϕn(z) can be

expressed as the following sine function:

ϕn(z) = sin
nπz

L
z ∈ [0, L]. (9)

Thus, the displacement function can be expressed as follows:

y(z, t) =
N∑

n = 1

ωn(t) sin
nπz

L
z ∈ [0, L]. (10)

By solving the weight function corresponding to each mode ωn(t), the displacement time history
of each point of the riser can be calculated.

3. Experimental Set-up

3.1. Experimental Apparatus

The experiment was carried out in the combined wave–current water flume of the Engineering
Hydrodynamics Laboratory, Ocean University of China. The flume has a cross section of 1.0 × 1.2 m,
a maximum working water depth of 1 m and a maximum external flow velocity of 1 m/s. The working
water depth is 0.8 m, and the flow velocity is 0.1–0.6 m/s. The flume is sided with toughened glass,
partitioned with steel columns and bottomed with steel plate which can be used for fixing the riser
support. The entire system can be used to simulate regular flow velocities and precisely vary the top
tension. Figure 2 shows the general setup of the experiment.

The test apparatus consists of a supporting structure, a top tension system, a riser model, and a
signal measuring and acquisition system. To ensure accurate application of top tension, a top tension
applying system compatible with the supporting structure was designed. Along the upper end of the
riser, the top tension system comprises a universal joint, a tensiometer, force transfer screw, steel strand,
and a self-locking tensioner. To increase the rigidity of the fixing structure at the upper part of the riser,
two equally sized aluminum alloy plates with the same boring positions are fabricated and connected
to each other with high-strength power screws along the edge of the plates. The force transfer screw
at the upper part of the riser connecting the steel strand is run through the hole in the middle of the
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two aluminum alloy plates such that tension can be applied to the riser by adjusting the tensioner.
The periphery of the aluminum alloy plate is connected to the linear guide via a sliding block such that
the plate will slide freely during tension application. When the reading on the tensiometer arrives at
the design value, the tensioner will lock itself and lock the force transfer screw connecting the riser in
on the aluminum alloy plate; the aluminum alloy plate will be locked in on the linear guide by the
”lock-in” function of the sliding block. This device is designed to prevent unstable load at the end of
the riser during external flow velocity variation and effectively control the application of top tension
on the riser. Figure 3 shows the actual experimental conditions. The top tension applying system is
shown in Figure 4.Sensors 2019, 19, x FOR PEER REVIEW 6 of 19 
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3.2. Riser Model

The experimental model consists of an organic glass pipe with outside diameter 18.0 mm, wall
thickness 1.0 mm, and effective length 2.0 m. Risers were specifically fabricated by a professional
manufacturer according to design, separately sampled the selected riser models, and tested the
mechanical properties in the universal testing machine. The left picture in Figure 4 shows the pull test
of the universal test machine, and the right picture shows the sample of the riser model selected for the
test. During the experiment, the riser model was placed in standing posture in a uniform flow with
water depth 0.8 m. Table 1 details the parameters used for the experiment.

Table 1. Detailed parameters of the riser.

Parameter Unit Value

Total length L m 2.0
Outer diameter D mm 18.0
Wall thickness δ mm 1.0

Mass per unit length m Kg 0.065
Sectional area S mm2 53.41

Submerged length Ls m 0.8 (40%)
Slenderness ratio (λ = L/D) - 111.11

Elasticity modulus E GPa 2.391
Bending rigidity EI N·m2 4.63

Material M - PMMA

3.3. BFBG Sensors

A high-definition digital camera was used to monitor riser vibration and to take photos at the end
of the sampling time. Top tension was varied by adjusting the tension applying device, as illustrated by
Figure 5b. Bare Fiber Bragg Grating (BFBG) sensors were used for the experiment. Four strings of bare
fibers were deployed symmetrically along the surface of the riser. Six grating measuring points were
engraved on each fiber string and four FBG sensors were mounted at each point at 90◦ intervals. A total
of 24 measuring points was deployed along the length of the riser model to measure the cross-flow and
in-line riser vibration, as illustrated by Figure 5a. As bare fibers have very small diameters—-as small
as 0.25 mm, high brittleness and limited bending strength, while their serial nature can prevent the
potential impact of wire routing, the fibers are extremely prone to rupture damages. Hence, to prevent
the bare fibers from rupture during installation, we developed a Slalom Surround Type Installation
approach, as illustrated by Figure 5f. This method greatly reduces the rupture potential of bare fibers
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and well guarantees the overall operational stability and durability of the fiber system during the
experiment. Bare fiber strings and a four-channel SM130 FBG demodulator (Micron Optics, Atlanta,
GA, USA) were used, as illustrated by Figure 5c,d.
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3.4. Riser VIV Test Cases under Different Top Tensions

Based on the BFBG sensor technology, five levels of top tension, namely, 19.8 N, 39.2 N, 58.8 N,
78.4 N, and 98.0 N were designed. To avoid potential impacts of vortex discharge induced by the
Doppler velocimeter on the experiment and to measure the flow velocity accurately, the Doppler
velocimeter was mounted at 2.0 m upstream of the riser. 10 levels of flow velocity spanning from 0.1 to
0.6 m/s were applied at 0.05–0.1 m/s incremental intervals. Top tension was applied to the riser by a top
tension applying system consisting of a top tension applying device, a fixed pulley, wire rope, a load
plate, a guide rod, a fixing plate, and a AXT-S-100 external digital tensiometer with sensor sensitivity
of 1.5–3.0 mV/V. Table 2 details the design experimental cases.

Table 2. Experimental cases.

Top Tension (N) Serial Number (m/s) Inherent Frequency (Hz)

19.8 0.1–0.6 3.408
39.2 0.1–0.6 4.354
58.8 0.1–0.6 5.139
78.4 0.1–0.6 5.801
98.0 0.1–0.6 6.403
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4. Results and Discussion

4.1. Response Frequency

In order to investigate the impacts of top tension on the riser’s dominant frequency, the riser
model was fixed in still water. Without changing the other influencing factors, the BFBG strain signals
were obtained through external load excitation by varying the external flow velocity at 10 levels;
the dominant frequencies of the riser under different cases were yielded through Fourier transform
of these strain signals [20]. Figure 6 shows the dimensionless dominant frequencies of the riser in
cross-flow (a) and in-line (b) directions versus reduced velocity under different top tensions.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 19 

 

4. Results and Discussion 

4.1. Response Frequency 

In order to investigate the impacts of top tension on the riser’s dominant frequency, the riser 

model was fixed in still water. Without changing the other influencing factors, the BFBG strain signals 

were obtained through external load excitation by varying the external flow velocity at 10 levels; the 

dominant frequencies of the riser under different cases were yielded through Fourier transform of 

these strain signals [20]. Figure 6 shows the dimensionless dominant frequencies of the riser in cross-

flow (a) and in-line (b) directions versus reduced velocity under different top tensions. 

From these diagrams, at T = 19.8–98.0 N, when Ur < 3.0, the dimensionless dominant frequency 

made a “jump” in both directions and is largely deviated from the fitting curve, but the dimensionless 

dominant frequency in both directions gradually increased with increasing reduced velocity. The 

cross-flow dimensionless dominant frequencies were linearly fitted using least squares method. The 

slope ratio was the Strouhal number. Under all five levels of top tension, the Strouhal numbers were 

not much different but all fluctuated near 0.18; the slope ratios yielded from linear fitting of the in-line 

dimensionless dominant frequencies all stayed near 0.36. This concurs with the observation that the 

in-line to cross-flow dominant frequency ratio is approximately 2: 1 [21–23]. 

 

Figure 6. The dimensionless dominant frequency of VIV in the direction of cross-flow (a) and in-line (b) 

varies with reduced velocity and Strouhal number fitting under different top tension. 

Figure 7 shows the dimensionless dominant frequency of VIV in the direction of cross-flow 

varies with the outflow velocity under different top tension. As flow velocity increased, the dominant 

frequency of the riser gradually increased both in cross-flow and in-line directions under all five 

levels of top tension. However, under the same flow velocity, as top tension increased level by level, 
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(b) varies with reduced velocity and Strouhal number fitting under different top tension.

From these diagrams, at T = 19.8–98.0 N, when Ur < 3.0, the dimensionless dominant
frequency made a “jump” in both directions and is largely deviated from the fitting curve, but the
dimensionless dominant frequency in both directions gradually increased with increasing reduced
velocity. The cross-flow dimensionless dominant frequencies were linearly fitted using least squares
method. The slope ratio was the Strouhal number. Under all five levels of top tension, the Strouhal
numbers were not much different but all fluctuated near 0.18; the slope ratios yielded from linear
fitting of the in-line dimensionless dominant frequencies all stayed near 0.36. This concurs with the
observation that the in-line to cross-flow dominant frequency ratio is approximately 2: 1 [21–23].

Figure 7 shows the dimensionless dominant frequency of VIV in the direction of cross-flow
varies with the outflow velocity under different top tension. As flow velocity increased, the dominant
frequency of the riser gradually increased both in cross-flow and in-line directions under all five
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levels of top tension. However, under the same flow velocity, as top tension increased level by level,
the dominant frequency of the riser gradually decreased, as marked by the purple dotted line in
Figure 7.
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outflow velocity under different top tension.

For the “lock-in” state of riser VIV, it is generally accepted that the theoretical interval is
[6.0, 7.5] [24]. As derived, the first-order inherent frequency of the riser under the five levels of
top tension was 3.408 Hz, 4.354 Hz, 5.139 Hz, 5.801 Hz, and 6.403 Hz, respectively; consequently,
the theoretical external flow velocity interval for ”lock-in” at the corresponding top tensions should
be [0.36, 0.46], [0.47, 0.59], [0.56, 0.69], [0.63, 0.78], and [0.69, 0.86], respectively. Hence, four typical
levels of external flow velocity, namely 0.35, 0.45, 0.55, and 0.60 m/s, were used to observe how the
characteristic frequency of the riser in the ”lock-in” interval evolves under different top tensions.

To give a clear characterization of the transient variation of the riser when entering the ”lock-in”
interval, Figure 8 depicts the cross-flow strain time history curve, wavelet time–frequency scale
diagrams, and power spectral density curves of the riser VIV versus flow velocity under different
top tensions (for each top tension, (a)–(d), (e)–(h), (i)–(l), (m)–(p), (q)–(t), correspond to four levels of
flow velocity: 0.35, 0.45, 0.55, and 0.60). From these diagrams, within the tested flow velocity interval,
the intensity of third- or higher-order frequency was very small, whereas first- and second-order
frequencies had a high involvement; as external flow velocity increased, the intensity of the second-order
frequency increased remarkably. This is because the riser had jumped out of the first-order ”lock-in”
region and was nearing the second-order ”lock-in”. When U > 0.35 m/s, at T = 19.8–39.2 N interval,
the riser strain displayed a “bimodal” (“Bimodal” means that there are two peaks in the strain
time history curve of the riser due to the superposition of strain signals [25].) state in time series,
and high-order harmonic components can be observed from the time–frequency diagram. When
T = 58.8–98.0 N, no obvious “bimodal” was detected from the riser’s strain time history, and the
high-order harmonic components in VIV response were no longer remarkable. This suggests that as
top tension increased, the cross-flow and in-line coupling of the riser gradually decreased. Interestingly,
when U = 0.45 m/s, the intensity of first-order vibration was weak at T = 19.8 N, 58.8 N, and 98.0 N;
at T = 39.2 N and 78.4 N, high-vibration red regions appeared across the oscillographic interval;
the strain amplitude remained “bimodal”. As top tension increased, the strain amplitude continued to
decline and the difference between the two peaks continued to diminish. When U = 0.55 m/s, it can be
observed that at T = 19.8 N, the intensity of the riser’s second-order vibration gradually increased
and its distribution was quite concentrated. In this case, the second-order vibration frequency was
gradually excited; as top tension increased, the energy region of the second-order vibration frequency
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was discretized and the intensity decreased. When U = 0.6 m/s, almost the same thing happened to
the riser’s VIV response as when U = 0.55 m/s under all top tensions. In particular, at T = 39.2 N,
when U = 0.6 m/s, the riser’s strain amplitude displayed a sudden local decline. The corresponding
vibration frequency was discretized in time series 3–35 s, and a wideband occurred in the power
spectral density curve. As analyzed above, after wavelet transform, the time-domain signals obtained
by BFBG sensors can accurately describe the dominant frequency and intensity evolutions of risers
with different top tensions and gives a true picture of the dynamic responses in and outside the
”lock-in” interval.
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Figure 8. Strain time history (top left), enlargements of strain time history (top right), wavelet
time–frequency scale diagrams (bottom left) and power spectral density diagrams (bottom right) of
cross-flow riser VIV versus flow velocity under different top tensions (for each level of top tension,
(a)–(d), (e)–(h), (i)–(l), (m)–(p), (q)–(t), correspond to four flow velocities: 0.35, 0.45, 0.55, and 0.6 m/s).

4.2. VIV Displacement Response Analysis

Figure 9 compares the in-line and cross-flow RMS dimensionless displacements of the riser versus
flow velocity under different top tensions. The purple dotted line delineates the RMS dimensionless
displacement curve variation rule of the riser at the same flow velocities under different top tensions.
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The blue and red imaginary lines represent the RMS dimensionless displacement curves variation rule
of the riser versus external flow velocity.

From the cross-flow and in-line RMS dimensionless displacements of the riser shown in Figure 9,
as top tension increased, the RMS displacement of the riser decreased in both directions. That
is, increasing top tension will reduce the riser’s vibration amplitude, as have been reached the
corresponding conclusion from Figure 8. At T = 19.8–98.0 N, when U < 0.55 m/s, as external flow
velocity increased, the RMS displacement curve of the riser displayed an increase. In particular,
at T = 19.8–39.2 N, when U > 0.55 m/s, as external flow velocity increased, the RMS displacement
curve of the riser displayed a decline. At T = 58.8–98.0 N, the vibration increase of the riser was
marginally smaller and across the entire external flow velocity interval. This may be attributed to
the fact that the increase of the outflow velocity makes the vibration mode of the riser jump from the
first order to the second order [26], in Figure 10. When U = 0.3 m/s, increasing top tension seemed to
cause a gradual longitudinal decline of the RMS dimensionless displacement. In cross-flow direction,
when U > 0.45 m/s, the riser’s vibration amplitude was quite similar at T = 19.8 N and T = 39.2 N; when
U > 0.45 m/s, increasing top tension did not change the vibration of the riser at T = 19.8–39.2 N, whereas
at T = 58.8–98.0 N, as external flow velocity increased, the vibration amplitudes of the riser drew closer;
at U = 0.6 m/s, the they became the same. This indicates that within this interval, increasing the top
tension will increase the RMS displacement growth amplitude of the adjacent two flow velocities in
Figure 9.
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Figure 10. Each (1/20) s of the riser forms a cross-flow deflection curve in motion, T = 19.8 N, U = 0.3 m/s,
U = 0.45 m/s, U = 0.6 m/s.

Modal response analysis based on the stable, accurate strain measurements by BFBG sensors
yielded the cross-flow and in-line RMS displacements along the length of the riser at U = 0.3 m/s
(a), U = 0.45 m/s (b), and U = 0.6 m/s (c) under different top tensions, as shown in Figure 11. Here
coordinate (z/L) denotes the normalized riser height. From these graphs, the riser VIV was dominated
by first-order mode under all top tensions. When U = 0.3 m/s, at T = 19.8–98.0 N, the RMS displacements
along the length of the riser in both cross-flow and in-line directions were positively correlated to
increasing top tension, which concurs with our previous observations from Figure 9; when U = 0.45 m/s,
at T = 19.8–98.0 N, increasing top tension no longer made a great difference to the riser’s vibration
amplitude; when U = 0.6 m/s, in cross-flow direction, the effect of top tension variation on the riser’s
RMS dimensionless displacement further degraded and the RMS displacements under T = 19.8 N,
58.8 N, 78.4 N, 98.0 N were quite the same. The same happened in in-line direction, too. The results
show that the vibration effect of tension riser decreases with the increase of flow velocity.
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Figure 11. Cross-flow and in-line riser RMS displacements curves along the length of the riser at
U = 0.3 m/s (a), U = 0.45 m/s (b), U = 0.6 m/s (c) under different top tensions.
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Standing wave effect describes a mode of vibration in which the vibration response varies
temporally, whereas traveling wave effect describes a mode of vibration in which the vibration response
varies both spatially and temporally. Bai et al. [27] observed that stable vibration amplitude exists
in a standing wave region, with no obvious variation along the axis of the riser, whereas obvious
displacement can be observed in the traveling wave region along the axis of the riser. In cross-flow
direction, vibration is dominated by standing waves, whereas in in-line direction, standing waves
occur on the boundary and in the still regions and these waves are passed from the high-velocity region
toward the low-velocity region of stepped currents. Figure 12 shows the time-varying graphs of the
riser’s dimensionless vibration amplitude under different top tensions. Only standing waves existed
under the experimental cases. At T = 19.8–98.0 N, when 0.3 m/s < U < 0.6 m/s, as top tension increased,
the riser’s vibration amplitude gradually decreased; as external flow velocity increased, the riser’s
vibration changed from first-order mode to second-order mode [28,29] and the vibration intensity
increased. The riser’s standing wave effects across the external flow velocities and top tensions were
compared. Longitudinal analysis of these graphs reveals that top tension variation did not make much
difference to the standing wave effect. Horizontal analysis discovered that external flow variation
made a remarkable difference to the standing wave effect. The standing wave is in a transitional period
of transformation to traveling wave. At the same velocity, the standing wave effect of the opposite
riser is weak when the top tension increases.
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Figure 12. Time-varying graphs of riser dimensionless amplitudes at U = 0.3 m/s, U = 0.45 m/s,
U = 0.6 m/s under different top tensions. (a1–a5) T = 19.8–98.0 N, U = 0.3m/s, dimensionless
amplitude time-varying diagram of riser; (b1–b5) T = 19.8–98.0 N, U = 0.45 m/s, dimensionless
amplitude time-varying diagram of riser; (c1–c5) T = 19.8–98.0 N, U = 0.6 m/s, dimensionless amplitude
time-varying diagram of riser.
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4.3. Cross-Flow and in-Line Coupling

Vandiver [30] observed that the drag force of the in-line causes the bending deformation of the
riser when the vortex excitation vibration occurs except the cross-flow periodic vibration caused by the
loss of the vortex. At the same time, the vortex-induced vibration will cause the structure to vibrate
upward in-line, and the in-line vibration amplitude is generally smaller than the cross-flow vibration
amplitude. Cross-flow vibration of the riser is highly correlated to in-line vibration. From these graphs,
at T = 19.8–98.0 N, when the flow velocity was low, the riser’s vibration displacement trajectory was
quite small. When U = 0.35 m/s, the riser’s vibration trajectory first approximated an “8”. As flow
velocity increased, the “8” disappeared and turned into a “crescent”. At T = 19.8 N, as external flow
velocity increased, the riser’s vibration displacement trajectory became a standard “8”, meaning the
vibration amplitude increased. At T = 39.2–98.0 N, when U < 0.45 m/s, as external flow velocity
increased, the riser’s vibration displacement trajectory turned from a “spot” into an “8”. After that,
when U > 0.45 m/s, the riser’s vibration amplitude increased, the displacement trajectory became a
“fried dough twist” and this “fried dough twist” grew even more obvious with increasing top tension.
As the top tension increases step by step, it is found that the “8” shape of the riser vibration track lags
behind. Where “lag” refers to the delay phenomenon of the “8” shape of the vibration track of the riser
with the increase of the top tension under the comparison of the top tension of the adjacent two stages
in Figure 13.
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Figure 13. Riser vibration trajectories versus flow velocity under different top tensions.

Figure 14 shows the motion trajectories at measuring points along the length of the riser when
U = 0.45 m/s under different top tensions. As top tension increased, the displacement trajectory
gradually reduced. Increasing top tension caused the riser’s vibration frequency to increase, thereby
reducing its vibration displacement. At T = 19.8–58.8 N, along the axis of the riser, it is discovered that
the riser’s displacement trajectory maximized somewhere near the center of the riser, since the riser’s
vibration at this time was dominated by first-order mode. Taking the center of the riser as the dividing
line, the closer a location is to the ends of the riser, the smaller the trajectory becomes; the closer a
location is to the center of the riser, the more standard the “8” becomes. However, the part above the
central point is not fully symmetrical to the part below the central point; the part of the riser in the flow
field displayed a “fried dough twist” shape. The trajectories at the ends are different because the riser
was not completely submerged in the uniform flow. Instead, the upper part is exposed to open air
while the lower part is in a flow field. The different damping states and extra water masses between
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the above-water part and underwater part have accounted for the different vibration amplitudes
and trajectories.Sensors 2019, 19, x FOR PEER REVIEW 17 of 19 
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5. Conclusions

A vortex-induced vibration (VIV) experiment on a standing variable-tension riser was conducted
in the combined wave–current water flume of the Engineering Hydrodynamics Laboratory, Ocean
University of China to investigate the applicability and sensitivity of Bare Fiber Bragg Grating (BFBG)
sensor technology for testing vibrations of deepsea risers and other slender marine structures. BFBG
sensors were used to observe the dominant frequencies, dimensionless displacements, and in-line and
cross-flow coupling of the riser VIV by varying the external flow velocity and top tension and using
wavelet transform (WT) and modal decomposition. The following conclusions have been drawn:

(1) By changing the initial top tension of the five-level small difference, the BFBG sensing
technology is used to measure the dynamic response of the riser strain, displacement, frequency and
cross-flow and in-line coupling under the top tension. It is reflected that in the test of top tension
deepsea riser VIV, BFBG sensing technology has good sensitivity and can clearly reflect the riser
mode characteristics and vortex-induced vibration evolution process accompanying the flow velocity
process. The Slalom Surround Installation approach can effectively prevent local breakage of the
fiber optic string and competently ensure the operational stability of the bare fiber grating sensor
in the experimental testing. Considering the diversity and complexity of the marine environment,
the improvement of the flexural strength of the fiber and the development of new coating materials are
crucial for the long-term stability of the BFBG sensor in the marine environment.

(2) The in-line and cross-flow dominant frequencies of the riser gradually decreased across the
same flow velocities with increasing top tension. Third- and higher-order vibration frequencies were
very weak, whereas first- and second-order vibrations had a high involvement. As external flow
velocity increased, the second-order frequency intensified remarkably, and the high-order harmonic
components and “bimodal” pattern in the riser’s frequency response gradually disappeared with
increasing top tension. In terms of displacement response, increasing top tension caused the RMS
displacement of the riser to decrease and its amplitude to deteriorate. Since the riser has a tendency to
change from the first-order mode to the second-order mode, at U > 0.55 m/s, T = 19.8 N, 39.2 N, the root
mean square of the riser displacement suddenly drops, and the vibration intensity gradually enhanced.

(3) Under the high flow velocity excitation, the increase of the top tension has a weak influence on
the standing wave effect of the riser, and the standing wave gradually shows the transition trend to the
traveling wave. With the riser center as the boundary, the closer to the end of the riser, the smaller the
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trajectory, and the more standard the “8” shape is. Due to the difference between the damping state of
the flow field and the additional water quality, the vibration trajectories of the upper and lower parts
of the riser center point are not strictly symmetrical, and the vibration trajectory of the lower riser has
a “twist” shape. As the top tension increases, the riser vibration trajectory appears “lag”.
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