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Abstract: The classifier of support vector machine (SVM) learning for assessing the quality of
arteriovenous fistulae (AVFs) in hemodialysis (HD) patients using a new photoplethysmography
(PPG) sensor device is presented in this work. In clinical practice, there are two important indices
for assessing the quality of AVF: the blood flow volume (BFV) and the degree of stenosis (DOS). In
hospitals, the BFV and DOS of AVFs are nowadays assessed using an ultrasound Doppler machine,
which is bulky, expensive, hard to use, and time consuming. In this study, a newly-developed PPG
sensor device was utilized to provide patients and doctors with an inexpensive and small-sized
solution for ubiquitous AVF assessment. The readout in this sensor was custom-designed to increase
the signal-to-noise ratio (SNR) and reduce the environment interference via maximizing successfully
the full dynamic range of measured PPG entering an analog–digital converter (ADC) and effective
filtering techniques. With quality PPG measurements obtained, machine learning classifiers including
SVM were adopted to assess AVF quality, where the input features are determined based on optical
Beer–Lambert’s law and hemodynamic model, to ensure all the necessary features are considered.
Finally, the clinical experiment results showed that the proposed PPG sensor device successfully
achieved an accuracy of 87.84% based on SVM analysis in assessing DOS at AVF, while an accuracy of
88.61% was achieved for assessing BFV at AVF.

Keywords: photoplethysmography (PPG) sensor; arteriovenous fistula (AVF); hemodialysis (HD)
patients; machine learning classifiers; support vector machine (SVM)

1. Introduction

The arteriovenous fistula (AVF), which refers to the surgical connection between an artery and a
vein at the forearm, is the lifeline of chronic kidney disease (CKD) patients for performing hemodialysis
(HD) treatment. It is well known that after long-term HD treatments, the endothelia cell at the AVF
may suffer from various lesions, such as thrombosis, inflammation, hyperplasia or calcification, etc.,
which may lead to failures of H.

D treatment [1]. According to the National Kidney Foundation [1], AVF can be assessed by
evaluating the degree of stenosis (DOS) and blood flow volume (BFV) flowing inside. In hospitals, the
DOS at AVF is assessed by a non-invasive Doppler machine or invasive angiography. On the other hand,
BFV at AVF is measured also by a non-invasive Doppler machine or invasive concentration dilution
methods. However, all conventional methods need well-trained operators as well as expensive and
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bulky instruments. Therefore, neither of them are possible of becoming popular in the home-care market
as small-sized sensors. Toward inexpensive, convenient measurements, there were some published
works devoted to developing small-sized sensors for evaluating DOS and/or BVF non-invasively.

As for measuring DOS, different researchers have dedicated efforts to smaller-sized sensors based
on acoustic phonocardiograms (PCGs), optical photoplethysmography (PPG), and ultra-sound Doppler.
Wang et al. [2] presented a small-sized stethoscope auscultation sensor with a radial basis neural
network, which shows an accuracy of 87.84% in detecting the DOS of AVF. Chen et al. [3] published a
PCG sensor system for evaluating DOS at AVF using a fuzzy Petri net, which reached a 95% accuracy.
Yieh et al. [4] proposed an SVM algorithm using a conventional stethoscope auscultation to assess
DOS. Although the acoustic sensors show promising results, the high-sensitivity acoustic sensors used
for stethoscope auscultation may easily be influenced by unavoidable environmental sound noise,
especially in public spaces such as hospitals [5], significantly limiting usability. On the other hand,
Wu et al. [6] presented a bilateral PPG sensor system to evaluate DOS at AVF by a cooperative game
algorithm, which results in a correlation greater than 0.9. Du and Stephanus [7,8] published works
assessing DOS at AVF using bilateral PPG sensors and achieved 94.82% in accuracy. However, the size
of the bilateral PPG sensor was too large to transform into a portable or wearable device for homecare,
not to mention only 11 subjects were tested [8]. Wu et al. [9] developed a small-sized ultra-sound
Doppler module to assess DOS, which suffers, as opposed to the bulky ultra-sound Doppler machine,
from the variations induced by environmental interference, different operators, and techniques of
digital post-signal processing. In this work, a single, small-sized, hand-held PPG sensor [10] was
utilized for assessing DOS at AVF based on measured PPG waveforms. The sensor system was
successfully designed to minimize the environmental lighting interference for high accuracy.

As for measuring BFV non-invasively using small-sized and inexpensive sensors, recently,
Webb et al. [11] proposed a patch-type thermal sensor for measuring BFV by sensing the heat
transportation of microcirculation. The results showed a correlation of 0.75. Lee et al. [12] published
a magneto-plethysmographic sensor for measuring blood flow, resulting in a correlation of 0.9355.
However, thermal sensors and magnetic sensors radiate heat and an electromagnetic field to patients,
which may lead to high-power consumption and, thus, they are not suitable for development as
portable devices for long-term monitoring. Zhu et al. [13] used a digital camera and accompanying
digital image processing techniques to extract visual pulsation at a patient’s wrist to assess BFV.
The resulting accuracy was only 71%, possibly due to the complexity involved in the digital image
processing. Chiang et al. [10] presented a single, newly-developed PPG sensor system to monitor and
quantify the BFV in AVF with a resulting correlation of 71.76%. The experimental result showed that
overestimations occurred for insufficient BFV, which may result in a very high (>50%) type II error
(false-negative rate).

Based on the current medical standards of the National Kidney Foundation (NKF) [1], both DOS
and BFV are critical in assessing the functionality of AVF. Thus, this study was devoted to developing
new algorithms of machine learning classifiers to successfully determine if both DOS and BFV satisfy
the NKF’s standards, after which subsequent medical treatments can be undertaken. In terms of
accuracy and ubiquitous usage of the new hand-held PPG module developed, the work presented
herein well demonstrates favorable performance as opposed to all the aforementioned prior studies.
This work is organized as follow: In Section 2, the theories and principles of the PPG sensor and
hemodynamics are proposed. Section 3 describes the PPG sensor system and the assessing algorithms.
In Section 4, the clinical experiments and the results are presented. Section 5 concludes the work with
a discussion.

2. Theories and Principles

Theories and principles assessing DOS and BFV at AVF are reviewed in this section to determine
the input features for classifier algorithms to later develop.
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2.1. Beer–Lambert’s Law

Photoplethysmography (PPG) is a non-invasive measuring method aimed at sensing the pulsation
of the blood vessel by acquiring the reflective lights from a light-emitted diode (LED) toward a
photodiode (PD). Photoplethysmography sensors are known for their non-invasive, small-sized,
inexpensive, easy-to-use measurements, and it is widely used in hospitals for monitoring heart rate [14],
heart rate variability [15], blood pressure [16], blood oxygen level [17], etc. A typical PPG signal is
shown in Figure 1, where the PPG signal is composed of a very large direct component (DC) and a
very small alternating component (AC). The DC results from stationary tissues, such as veins, skins,
and bones, etc., while the AC from the pulsation of the measured vessel. The mathematical equation of
a PPG signal can be described using the known physical theory, Beer–Lambert’s law, as:

Ir = I0·exp(εtCtSt)·exp(εbCbSb), (1)

where Ir denotes the received light intensity from the PD; I0 denotes the intensity of the incident light;
εb and εt denote the light absorption coefficients of blood and tissues, respectively; cb and ct denote
the Mohr concentrations of blood and tissues, respectively; sb and st denote the transmission paths of
light of blood and tissues, respectively. Note that sb is time-varying due to the diameter changes of the
measured blood vessel. Moreover, by applying the Taylor approximation to the exponential function
in Equation (1), one can obtain:

Ir = I0·exp(εtctst)·(1 + εbcbsb),
= I0·exp(εtctst) + I0·exp(εtctst)εbcbsb,
= DC + AC.

(2)
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Figure 1. A typical photoplethysmography (PPG) signal, which consists of a very large DC component 
(>90%) and a very small AC component (<10%) with pulse frequency the same as heart rate (about 
50–110 bpm). 
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Figure 1. A typical photoplethysmography (PPG) signal, which consists of a very large DC component
(>90%) and a very small AC component (<10%) with pulse frequency the same as heart rate (about
50–110 bpm).

To derive the length of the light transmission path with the aim to reduce the interference from
other tissue, the 2nd term in Equation (2), AC, is normalized by DC, yielding:

sb =
1
εbcb

AC
DC

, (3)
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where the effects of other tissue (εt, ct, and st) are normalized. Note that the AC/DC is generally
defined as perfusion index (PI) [18,19]. Moreover, considering the blood oxygen level, the term εbcb in
Equation (3) can be expanded to [20]:

εbcb = SpO2·εHbO + (1− SpO2)εHb, (4)

where SpO2 denotes the blood oxygen saturation level; εHbO and εHb denote the light absorption
coefficients of oxy-hemoglobin and hemoglobin, respectively. Combining Equations (3) and (4) yields:

PI ≡
AC
DC

= sb[SpO2·εHbO + (1− SpO2)εHb], (5)

where PI denotes the perfusion index. In Equation (5), the light transmission path sb is, in fact,
proportional to the time-varying diameter of the measured blood vessel in pulsation. This equation is
important for deriving BFV and DOS in the following sections.

2.2. Hemodynamic Models

To derive the input features for assessing BFV, the hemodynamic model of AVF is derived herein.
In this work, the telegrapher equations were introduced to solve the hemodynamic model of AVF. At
first, the momentum and mass conservation equations of AVF can be prescribed by [21]:

−
∂p(z, t)
∂z

= Rq(z, t) + L
∂q(z, t)
∂t

, (6)

−
∂q(z, t)
∂z

= Gp(z, t) + C
∂p(z, t)
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, (7)

where q(z,t) and p(z,t) denote the instantaneous BFV and blood pressure (BP) at location z and at time t,
respectively; z denotes the axis along the AVF, as shown in Figure 2. Also, in Equations (6) and (7),

R = c1
128η

d4
0
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4ρ

πd2
0

; G = 0; C =

(
1− σ2

)
πd3

0

4hE
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R denotes the blood vessel resistance; L denotes the blood vessel inertance; G denotes the influence
of vascular branch, which is assumed to be zero; C denotes the blood vessel compliance; η denotes
the dynamic viscosity of blood (about 0.035 g/cm·s); ρ denotes the blood density (about 1.056 g/cm3);
σ denotes the Poisson’s ratio of blood vessel; d0 denotes the blood vessel diameter at the measuring
spot; h denotes the thickness of the vessel wall; E denotes the Young’s elastic modulus of blood vessel;
and c1 and c2 are the parameters describing the influence from pulsation of heart rate, which can be
approximated by [22]:

c1 = 0.18W + 0.45, c2 = −0.018W + 1.39, (9)

where W denotes the Womersley number. This number is defined as [23]:

W = d0

√
ωρ

4η
, (10)

where ω denotes the heart rate frequency. It is assumed that R, L, and C are independent from t and
z. Also, it is assumed that blood vessels are in finite lengths. Therefore, Equations (6) and (7) can
be solved with solutions analogized to the well-known telegrapher equation (see Appendix A for
details), yielding:

p(z, t) = P+
0 e−αz cos(−βz +ωt), (11)

q(z, t) = Q+
0 e−αz cos(−βz +ωt), (12)
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where P0
+ denotes the BP wave along the positive direction, while Q0

+ denotes the BFV along the
positive direction. Check Appendix A for the definitions of other parameters in Equations (11) and
(12). In fact, Equations (11) and (12) are the solutions of the hemodynamic model’s analogy to the
telegrapher equation, and they serve well as the essential equations to decide the input features for
assessing DOS and BFV at AVF Sections 2.3 and 2.4
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2.3. Degree of Stenosis (DOS)

According to the National Kidney Foundation [1], DOS is defined as the ratio of the cross-sectional
area between normal AVF and stenosis AVF, which can be expressed as:

DOS = 1−
d2

D2 × 100%, (13)

where d and D denote the diameters of the stenosis blood vessel and the normal vessel, respectively, as
show in Figure 3. From Figure 3, Equation (13) can be also re-expressed as:

DOS = 1−
d2

(d + 2h2)
2 × 100% = 1−

d2

(d + 2h− 2h1)
2 × 100%, (14)

where h1 denotes the basic thickness of the blood vessel, which is typically assumed to be a constant;
h2 denotes the thickness of the endothelial hyperplasia. To obtain the vessel thickness h, the average
blood vessel compliance is introduced [22], which is:

C ≡
Amax −Amin
SBP−DBP

, (15)

where Amax and Amin denote the maximum and minimum cross-sectional areas of the blood vessel; and
SBP and DBP denote the systolic blood pressure (SBP) and diastolic blood pressure (DBP), respectively.
Combining Equation (15) and the definition of C in Equation (8) leads to a blood-vessel thickness as:

h =

(
1− σ2

)
πd3

0

E
SBP−DBP
d2

max − d2
min

, (16)

where dmax and dmin denote the maximum and minimum diameters of the blood vessel, respectively.
Actually, in Equation (16), dmax and dmin can be expressed in terms of the length of the light transmission
path sb as seen in Equations (3) and (5), and then substituting Equation (16) into Equation (14) yields:

DOS = f1(PImax, PImin, SpO2, SBP, DBP), (17)
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where PImax and PImin denote the maximum and minimum perfusion indices corresponding to sb,max

and sb,min, respectively, based on Equation (5). Note further that, based on Equation (5) where AC
and DC can be measured by the PPG sensor, PImax and PImin in Equation (17) can be obtained. Also,
based on the analysis presented in this section, sb,max, sb,min, and SpO2 are all important factors to
DOS, and furthermore, they are independent of each other, not only in the mathematical sense, but
also physiologically. In short, five independent input features affecting DOS are derived, as shown in
Equation (17), to assess DOS at AVF by the classifier algorithms to develop in Section 3.2.
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2.4. Blood Flow Volume (BFV)

To derive the BFV at AVF, the characteristic impedances of AVF is introduced herein as:

Z0
P(z)
Q(z)

=
P+

0

Q+
0

=

√
R + jωL
G + jωC

, (18)

where Z0 denotes the characteristic impedances of AVF. Therefore, Equation (12) can be rearranged as:

q(z, t) =
P+

0

Z0
e−αz cos(−βz +ωt). (19)

Furthermore, it is assumed that the measuring spot of the PPG sensor is placed at z = 0, as shown
in Figure 2. Hence, Equation (19) becomes:

q(0, t) = P+
0 cos(ωt)

√
G + jωC
R + jωL

. (20)

To obtain the average BFV, P0
+ can be approximated using average mean blood pressure (MBP) as:

P+
0 ≡MBP =

1
3

SBP +
2
3

DBP. (21)

The average BFV at AVF can then be obtained by combining Equations (20) and (21), that is:

qavg =

∣∣∣∣∣∣∣MBP

√
G + jωC
R + jωL

∣∣∣∣∣∣∣, (22)
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where qavg denotes the average BFV at AVF, and the absolute symbol is added to obtain the magnitude
of complex signals. Combining Equations (8), (15), and (22), all the dependence of the average BFV can
be prescribed by:

qavg = f2(PImax, PImin, SpO2, SBP, DBP, ω). (23)

As seen in Equation (23), six input features were successfully derived for assessing BFV at AVF
via algorithms to develop in Section 3.2.

3. Sensor System Design

With input features determined for classifiers, a readout circuitry was designed and realized, as
shown Figure 4. This readout consisted of the front-end analog readout circuitries, micro-controller unit
(MCU), wireless communication, and the assessing algorithm. This readout circuitry was implemented
on a printed circuit board (PCB). Enclosing the PCB was a newly-developed PPG sensor device, as
shown in Figure 5. Also, the photo of measurement using this PPG sensor device is shown in Figure 6.
The detailed designs of the circuitry and the algorithms are described in the following.
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Figure 4. The system architecture of the proposed wireless PPG sensor system for accessing
arteriovenous fistulas (AVFs), which is composed of a 904 nm wavelength light-emitting diode
(LED), a photodiode (PD), a transimpedance amplifier (TIA), a band-pass filter, an analog–digital
converter (ADC), a microcontroller unit (MCU), a wireless communication interface, and the proposed
classifiers for accessing DOS and blood flow volume (BFV) of AVFs.
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Figure 5. A photo of the proposed portable, wireless, small-sized PPG sensor device for assessing
AVF quality.
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3.1. Readout Circuitry

The analog readout circuitry of the employed PPG sensor device was composed of a light emitted
diode (LED), a photodiode (PD), a transimpedance amplifier (TIA), a band-pass filter, a programmable
gain amplifier (PGA), and an analog–digital converter (ADC), as shown in Figure 4. First, the light
beams emitted from the LED penetrate, refract, and reflect back from the blood vessels in the measured
AVF. Then, the intensity changes of the reflected light due to the pulsation of the blood vessels at the
AVF are detected and converted by the PD into electrical current signals. Next, a TIA circuit was
designed and implemented to transform the current signals from PD into the voltage signals. Third, to
deal with motion artifacts and interferences from ambient lighting (50 or 60 Hz), a 4th-order band-pass
filter with cut-off frequencies about 0.2 and 10 Hz was proposed to delete the undesired frequency
components. Note that the cut-off frequencies are determined in a real-time fashion by the adopted
MCU based on the heart rate analyzed from the measured PPG waveforms. This adaptiveness of the
cut-offs is highly important, considering the large variations in heart rate from person to person, i.e.,
approximately 50–110 Hz. Moreover, a tunable PGA circuit was proposed to increase the SNR by
controlling the PPG signals to fill the full dynamic range of the ADC. Note that the novel designs of the
4th-order band-pass filter and the tunable PGA make it possible to render PPG waveforms that are
almost DC-free and fully dynamic ranged. Finally, the digital PPG signals converted from the ADC are
transmitted wirelessly to a smart-phone application or a laptop for the classifier algorithm to assess
AVF quality.

3.2. Assessing Algorithms

In this work, three different machine learning classifiers are proposed to assess the quality of the
AVF, including k-nearest neighbors (kNN), naïve Bayes classifier (NBC), and support vector machine
(SVM). The details are described in the followings.

3.2.1. k-Nearest Neighbors (kNN)

The k-nearest neighbors (kNN) is a popular non-parametric supervised learning method used for
classification or pattern recognition. It is reported to reveal promising results in PPG sensor applications
in biometrics identification [24] and in detecting obstructive sleep apnea [25]. The basic concept of
kNN is to classify the testing data by training data with the k nearest Euclidean distance. Although
the simple computation makes kNN suitable for implementation in many small-sized devices or into
application-specific integrated circuits (ASICs), the computation time may grow without proper feature
reduction and/or data compression. Generally, the computation time for the complexity of N samples
in a D feature dimension using k-nearest samples is in an order of D × N × k. In this work, the distance
matrix was calculated using Euclidean distance, while the optimized k value was obtained by a using
grid search technique.
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3.2.2. Naive Bayes Classifier (NBC)

Naive Bayes classifier is a known supervised learning method for classifying data by applying
Bayes theorem under the assumption that all features are independent of each other. Although the
independences among all features are always violated in real-world problems, NBC still reveals some
robustness in two-class classification due to the fact that the classification results based on the maximum
a posterior portability regardless of the probability function of each class. Naive Bayes classifier is
widely used in classification applications for PPG sensors such as biometrics [26], cardiac alarming [27],
etc. In this work, all feature distributions were assumed to be Gaussian distribution. Therefore, the
mathematical equation of the probability density function of the testing data y classified to class Ck can
be expressed as:

p(x = y|Ck ) =
1√

2πσ2
k

exp

− (y− µk)
2

2σ2
k

, (24)

where x denotes a continuous value; y denotes the testing data; Ck denotes the kth class; µk and σ2
k

denote the mean and variance of the training dataset, respectively.

3.2.3. Support Vector Machine (SVM)

The SVM classifier is a popular supervised learning algorithm for data classification, of which
the basic concept is to find a hyper-plane separating the two classes with the largest margin. The
computation process of SVM can be described as a Lagrange optimization problem in dual quadratic
form:

Lp =
1
2
β′β+ C∗

∑n

j
ζ j −

∑n

j
µ jζ j −

∑n

j
α j

(
yi f j

(
x j

)
−

(
1− ζ j

))
, (25)

where Lp is the objective function of Lagrange; fj(x) is the separating hyper-plane with pointing vector
β and bias vector b; αj and µj are the Lagrange multiplier; xj are the features vector with the class
label yj; ξj is the slack variable representing the subjects of misclassification; and C* is the penalty for
misclassification. Moreover, solving Equation (25) leads to the dual formulation as:

max
α

∑n

j
α j −

1
2

∑n

j

∑n

k
α jαky jykx′jxk, (26)

subjected to the constraint: ∑n

j
y jα j = 0, 0 ≤ α j ≤ C∗. (27)

To deal with non-linear-separable classification problems, the kernel function technique was
introduced to transform the dot product x’jxk into another features space. In this work, the radial basis
function is proposed as the kernel function:

G
(
x j, xk

)
= exp

− ‖ x j − xk ‖
2

σ

, (28)

where G(xj,xk) denotes the radial basis kernel function for substituting the dot product x’jxk; σ is a
tunable parameter denoting the scaling factors. The optimized value of C* and σ are determined by
using a grid search technique.

3.2.4. Input Features

According to the discussion in Section 2, the input features for assessing AVF by DOS and BFV
are determined based on Equations (17) and (23), respectively, as listed in Table 1. Note herein that the
six features selected, as seen in Table 1, are complete based on the thorough physiological analysis
leading to Equations (17) and (23) in Sections 2.2 and 2.3, but not guaranteed independent of each other.
This possible non-independence is supposed to be well tackled by the three adopted machine-learning
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classifiers, especially the SVM that establishes hyperplanes among features to tackle the dependencies.
To avoid weighted error, all features are normalized to −1 and 1 before training. Also, to avoid
over-fitting results, 10 fold cross validation was introduced in this work. The steps for the 10 fold cross
validation process are:

Step (1): randomly divide subjects into 10 subsets.
Step (2): take only one subset for testing and leave the other for training.
Step (3): repeat Step (2) 10 times.
Step (4): calculate the average accuracy and analyze the results.

Table 1. The input features for assessing DOS and BFV.

Symbol Features for
Assessing DOS

Features for
Assessing BFV Measurement Description

The max of peak to peak
interval (PImax) O O

The perfusion index
(AC/DC) by the PPG

sensors

The normalized
maximum length of

light transmission path
in blood

The min of peak to peak
interval (PImin) O O

The perfusion index
(AC/DC) by the PPG

sensors

The normalized
minimum length of

light transmission path
in blood

sphygmomanometer.
Oxyhemoglobin

saturation by pulse
oximetry (SpO2)

O O Oximeter The blood oxygen
saturation level

Systolic Blood Pressure
(SBP) O O Electronic

sphygmomanometer
The systolic blood

pressure

Diastolic Blood Pressure
(DBP) O O Electronic

sphygmomanometer
The diastolic blood

pressure

Heart rate (ω) X O The proposed PPG
sensors The heart rate

4. Clinical Validation

4.1. Experiment Setup

According to the National Kidney Foundation [1], AVFs with DOS larger than 30% are regarded as
high-risk in patients. Patients were labeled into DOS-positive and DOS-negative classes. The ground
truths of DOS were measured by an ultrasound Doppler machine, Phillips ClearVue 550. In this work,
there were a total of 74 subjects who participated in the DOS assessment experiments, including 45
patients labeled as DOS-positive class (DOS < 30%), while 29 patients were labeled as DOS-negative
class (DOS > 30%). On the other hand, also according to the National Kidney Foundation [1], the BFV
at AVF should be at least 600 mL/min for functional HD treatments. The ground truths of BFV were
also obtained by the aforementioned ultrasound Doppler machine, Phillips ClearVue 550. There were
a total of 79 subjects who participated in the BFV assessment experiment, including 61 subjects labeled
as BFV-positive class (BFV > 600 mL/min), while 18 subjects were labeled as BFV-negative class (BFV <

600 mL/min).
Prior to measurements, all subjects were asked to rest for at least 10 min. During the

experiments, the DOS and BFV of each patient were measured and labeled as positive or negative by
professional nephrologists. Systolic and diastolic blood pressures were measured with an electronic
sphygmomanometer, while the oxyhemoglobin saturation for pulse oximetry (SpO2) was measured
by a certified oximeter. The proposed PPG sensor was placed at the same measuring spot as the
ultrasound Doppler machine. The values of PImax, PImin, and HR (ω) were obtained via calculations
based on the measured PPG signals. A photo of the proposed PPG sensor device during measurement
is shown in Figure 6.
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4.2. Experiment Results

A typical PPG waveform measured by the employed PPG sensor device is shown in Figure 7. The
confusion matrix of the classification results of assessing DOS and BFV are shown in Tables 2 and 3,
respectively, where it can be seen that the SVM classifier showed higher accuracies and lower type II
error as compared to other methods. A comparison table to other works is given as Table 4.
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Table 2. The confusion matrix for assessing DOS.

Samples Number = 74 Ground Truth (Actual Class)

Positive Negative

Classification Results of k-Nearest Neighbors
(kNN)

(Predicted Class)

Positive TP = 32 (43.24%) FP = 5 (6.76%)

Negative FN = 13 (17.57%) TN = 24 (32.43%)

Classification Results of Naive Bayes Classifier
(NBC)

(Predicted Class)

Positive TP = 41 (55.41%) FP = 8 (10.81%)

Negative FN = 4 (5.41%) TN = 21 (28.38%)

Classification Results of Support Vector
Machine (SVM)

(Predicted Class)

Positive TP = 42 (56.76%) FP = 6 (8.11%)
Negative FN = 3 (4.05%) TN = 23 (31.08%)

Table 3. The confusion matrix of assessing BFV.

Samples Number = 79 Ground Truth (Actual Class)

Positive Negative

Classification Results of kNN
(Predicted Class)

Positive TP = 51 (64.56%) FP = 6 (7.59%)
Negative FN = 10 (12.66%) TN = 12 (15.19%)

Classification Results of NBC
(Predicted Class)

Positive TP = 59 (74.68%) FP = 8 (10.13%)
Negative FN = 2 (2.53%%) TN = 10 (12.66%)

Classification Results of SVM
(Predicted Class)

Positive TP = 59 (74.68%) FP = 7 (8.86%)
Negative FN = 2 (2.53%) TN = 11 (13.92%)
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Table 4. Performance comparison table to other prior works.

H. Y.
Wang et al.
(2014) [2]

Du Y.-C.
et al.

(2018) [8]

D. F. Yeih
et al.

(2014) [4]

J. X. Wu
et al.

(2015) [9]

P. Y.
Chiang

et al.
(2017) [10]

F. Zhu
et al.

(2016) [13]
This Work

Sensor Stethoscope
Auscultation

Bilateral
PPG

Stethoscope
Auscultation Ultrasound Single PPG Camera Single PPG

Assessing Index DOS DOS DOS DOS BFV BFV DOS and BFV

Principle Acoustic Optical Acoustic Doppler Optical Optical Optical

Communication Wireless Wired Wireless Wired Wireless Wired Wireless

Assessing
Algorithm

Neural
Network

Neural
Network

Support
Vector

Machine

Color
Relation
Analysis

Neural
Network

Optic Flow
Methods

Support
Vector

Machine

Size 9 cm × 4
cm × 2 cm Large - Large 9 cm × 8

cm × 4 cm Large 9 cm × 3.5 cm
× 1.5 cm

Number of
Subjects 479 11 22 50 40 40 DOS: 74

BFV: 79

Accuracy 87.8% 94.82% 84.3% 83% R2 =
0.7176 *

R2 = 0.71 *
(with
32.5%
outlier

subjects)

DOS: 87.84%
BFV: 88.61%

Type II Error 10.75% - 16.7% - >50% - DOS: 6.67%
BFV: 3.28%

* Correlation to ground truth is regarded as accuracies.

Observing Table 4, it is clear that the employed PPG sensor device with the designed SVM classifier
demonstrated significantly better performance as compared to acoustic sensors in accuracy and type II
error for assessing DOS. Although the bilateral PPG sensor [8] shows the highest accuracy in assessing
DOS, its sensor’ size are too large to be implemented with a portable or wearable device, not to mention
only 11 subjects were tested. On the other hand, for assessing BFV, the proposed PPG sensor device
was much better than the authors’ previous work [10] in type II error. Lastly, the employed PPG
sensor device with the designed SVM classifier showed better performance compared to the camera
sensor [13] in both the sensor’s size and assessing results.

5. Conclusions

A newly developed PPG sensor device with a SVM classifier designed for assessing DOS and
BFV at AVF were proposed in this work. The optical theory of PPG and the hemodynamic models
of AVF were reviewed and solved by an analogy to the telegrapher equation to determine all the
possible input features of classifiers for assessing BFV. In addition, the readout circuitry for the PPG
sensor device was custom-designed successfully to reduce ambient interference and also improve
signal quality. Three classifiers of kNN, NBC, and SVM were applied for assessing AVF. Experiments
were conducted with the results showing that the SVM rendered the best performance, successfully
achieving the accuracies of 87.84% and 88.61% in assessing AVF quality by DOS and BFV, respectively.
These well-demonstrated performances are favorable to the results by all prior arts. The satisfactory
accuracies of sensing DOS/BFV presented by the PPG sensor device and the SVM algorithm inside
offer hemodialysis patients a convenient device to monitor the quality of their AVFs ubiquitously,
including at home. With high accuracies achieved on DOS and BFV individually, future efforts are
being undertaken to develop a new classifier to ensure both DOS and BFV are within secure ranges
(DOS < 30% and BFV > 600 mL/min) defined by the National Kidney Foundation.
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Appendix A

At first, it is supposed that:
p(z, t) = P(z)e jωt, (A1)

q(z, t) = Q(z)e jωt, (A2)

where P(z) and Q(z) denote the phasers of p(z,t) and q(z,t), respectively. Substituting Equations (A1)
and (A2) into Equations (6) and (7) gives:

−∂P(z)
∂z

= (R + jωL)Q(z), (A3)

−∂Q(z)
∂z

= (G + jωC)P(z). (A4)

Taking partial derivatives of Equations (A3) and (A4) with respect to z yields:

−∂2P(z)
∂z2 = (R + jωL)

∂Q(z)
∂z

, (A5)

−∂2Q(z)
∂z2 = (G + jωC)

∂P(z)
∂z

. (A6)

Combining Equations (A3)–(A6) leads to:

−∂2P(z)
∂z2 = (R + jωL)(G + jωC)P(z), (A7)

−∂2Q(z)
∂z2 = (R + jωL)(G + jωC)Q(z), (A8)

where the impedance term can be expressed as:

γ2 = (R + jωL)(G + jωC). (A9)

Therefore, Equations (A7) and (A8) can be rewritten as:

−∂2P(z)
∂z2 = γ2P(z), (A10)

−∂2Q(z)
∂z2 = γ2Q(z). (A11)
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Equations (A10) and (A11) are to be solved for P and Q in homogenous formats as:

P(z) = P+
0 e−γz + P−0 eγz, (A12)

Q(z) = Q+
0 e−γz + Q−0 eγz, (A13)

where P0
+ and P0

− denote the BP wave along positive and negative directions, respectively, while Q0
+

and Q0
− denote the BFV along positive and negative directions, respectively. The pulse waves from

the negative direction, P0
− and Q0

−, are the waves reflected from peripheral microvessels. Moreover, it
is known that wave velocity of blood (about 10 m/s) is much faster than fluid velocity of blood (about
50 cm/s), thus, the waveforms of P and Q are superimposed at AVF. Furthermore, considering the
amplitude of the reflected wave is small enough at AVF to be considered as negligible as compared to
the forward wave, Equations (A12) and (A13) can be approximated by:

P(z) = P+
0 e−γz, (A14)

Q(z) = Q+
0 e−γz. (A15)

Substitution of Equations (A14) and (A15) into Equations (A1) and (A2) gives:

p(z, t) = P+
0 e−γze jωt, (A16)

q(z, t) = Q+
0 e−γze jωt, (A17)

Considering only the real parts of BP and BFV waves give the solutions of BP and BFV as

p(z, t) = Re
⌊
P+

0 e−γze jωt
⌋
= P+

0 e−αz cos(−βz +ωt), (A18)

q(z, t) = Re
⌊
Q+

0 e−γze jωt
⌋
= Q+

0 e−αz cos(−βz +ωt), (A19)

where Re denotes the real parts of complex numbers.
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