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Abstract: Herein, the problem of target tracking in wireless sensor networks (WSNs) is investigated
in the presence of Byzantine attacks. More specifically, we analyze the impact of Byzantine attacks
on the performance of a tracking system. First, under the condition of jointly estimating the target
state and the attack parameters, the posterior Cramer–Rao lower bound (PCRLB) is calculated. Then,
from the perspective of attackers, we define the optimal Byzantine attack and theoretically find a
way to achieve such an attack with minimal cost. When the attacked nodes are correctly identified
by the fusion center (FC), we further define the suboptimal Byzantine attack and also find a way to
realize such an attack. Finally, in order to alleviate the negative impact of attackers on the system
performance, a modified sampling importance resampling (SIR) filter is proposed. Simulation results
show that the tracking results of the modified SIR filter can be close to the true trajectory of the
moving target. In addition, when the quantization level increases, both the security performance and
the estimation performance of the tracking system are improved.
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1. Introduction

Wireless sensor networks can be flexibly deployed in various application environments and
perform tasks such as the sensing, acquisition, processing, and transmission of target information.
When the perceived information needs to combine with nodes’ locations to develop its own value,
the self-localization process of sensor nodes becomes the application premise of wireless sensor
networks (WSNs). In practical applications, when WSNs are deployed in a non-secure environment,
the sensor nodes may be subjected to various attacks. Through modifying the reference data (such as
anchor positions or ranging information), the attackers can produce severe damage to the localization
accuracy [1–5].

How to prevent attackers from modifying the reference data or how to realize reliable localization
under attack has always been the research focus in the field of secure localization. In the past decades,
researchers have proposed many reliable localization strategies. The most intuitive strategy is to
employ some techniques to protect the integrity of the reference data and make the observation process
robust. This strategy can be called the secure localization strategy based on robust observations.
The representative work includes the distance bounding protocol [6] and the SeRLoc algorithm [7].
These methods mainly use the time constraints, space constraints, or signal coding techniques to protect
the physical properties of beacon information. However, this type of method relies on additional
hardware units and is not suitable for large-scale promotion.

When modified observations from attackers (or as we called them, the malicious observations)
are unavoidable, the researchers propose detecting and eliminating the malicious observations and
then using the remaining honest observations to achieve node localization [8–10]. This strategy can
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be called the secure localization strategy based on malicious node detection. A typical work is the
MEF-based localization algorithm proposed in Reference [8]. A common feature of this type of method
is that the detection of malicious nodes usually needs to compare a large amount of data, thus causing
a heavy calculation overhead. Meanwhile, a certain type of detection method can only detect a specific
type of malicious attack. So, the applicability of this kind of method is weak.

In order to reduce the requirements on the hardware, and also to improve the applicability of
secure localization algorithms, some researchers choose to develop methods to improve the robustness
of the position computation process (i.e., the key process of node localization). In the traditional
trilateration method, the position estimates are derived in the sense of least squares. Since the cost
function of this method is the sum of the squared errors of all sample data, it is very sensitive to
the outliers. A single malicious observation may cause a serious deviation in the position estimate.
In response to this problem, Li et al. [11], proposed a positioning mechanism based on the idea of least
median of squares, which estimates the unknown parameters by minimizing the median of the residual
squares. Results show that, in the absence of measurement noise, even if there are 50% of outliers in
the observation data, this method can still output the correct position estimate. In Reference [12], the
authors combined iterative gradient descent with selective pruning of inconsistent measurements to
achieve reliable localization. During each iteration, the forward direction is corrected by eliminating
the suspicious gradient vectors, thereby ensuring that the iterative path is constantly approaching the
true position of the unknown node. A common feature of the above methods is that they enhance the
reliability of the positioning system by improving the robustness of the position computation process.
Therefore, this type of strategy can be called the secure localization strategy based on robust computing.

Most existing secure localization algorithms study how to defend against malicious attacks from
the perspective of defenders. Few articles examine the impact of different attack strategies on the
positioning systems from the perspective of attackers. This paper focuses on the target tracking problem
under Byzantine attacks and investigates the optimal Byzantine attack strategy for malicious nodes in
different situations. The prototype of Byzantine attacks comes from the issue of Byzantine generals [13],
where some traitors try to confuse other loyal generals by delivering false information. Here, we
apply the malicious behaviors of delivering false data into sensor networks. For the fragile sensor
networks, such a type of attack is easy to implement. A typical example is the man-in-the-middle
(MiM) attack [14]. In the MiM attacks, the attacker first disguises itself as a legal fusion center (FC) to
collect data from sensor nodes. Then, they modify the data and send false information to the real FC.

Vempaty et al. [15,16], analyzed the distributed estimation problem under Byzantine attacks.
In their model, the attackers are unaware of the true states of the target, the quantization scheme
employed by each node, and the estimation method used by the FC. They can only access and modify
the quantized results of attacked nodes. By means of the posterior Cramer–Rao lower bound (PCRLB),
the authors successfully quantized the impact of a Byzantine attack on the system performance and
derived the minimum number of attacked nodes to achieve the maximum degradation to the system
performance. Based on the above, Nadendla et al. [17], extended the system framework from binary
quantization to L-dimensional (L ≥ 2) quantization and found the optimal Byzantine attack that blinds
any distributed inference network. In Reference [18], the authors investigated the optimal processing
of honest observations and malicious observations. When the number of observations or the total
number of nodes approaches infinity, the authors theoretically proved that the FC has the ability to
classify all nodes according to the types of attacks.

In this paper, we consider a WSN that is deployed for the purpose of tracking the real-time state
(denoted as θt) of a moving target. After obtaining noisy measurements about the target, the sensors
first quantize their raw observations and then send the quantized measurements to a fusion center,
which is responsible for estimating θt. Figure 1 shows the simplified model of the entire system. Here,
we extend the framework of the target tracking problem in Reference [19] to a more general case where
sensors use L-dimensional quantization schemes. The PCRLB for total unknowns (including unknown
target states and unknown attack parameters) is calculated. From the perspective of attackers, we
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define the optimal Byzantine attack and derive how to achieve such an attack with a minimal cost.
When all attacked nodes are correctly identified by the FC, we further define the suboptimal Byzantine
attack and also find a way to realize such an attack. In order to alleviate the negative impact of
Byzantine attacks, we propose a modified SIR filter. Simulation results show that by using the modified
SIR filter, the tracking results can be very close to the true trajectory of the moving target. In addition,
when the quantization level increases, the security performance and the estimation performance of the
tracking system are both improved.
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Figure 1. Simplified system model. The value ηi,t is measurement noise of the ith sensor, si,t is the raw
measurement, ui,t is the quantized sensor measurement, and vi,t is the measurement received by the
fusion center, where i = 1, . . . , N.

The remainder of this paper is organized as follows. Section 2 describes the system model for
the target tracking problem under Byzantine attacks. Next, we calculate the PCRLB of the unknowns
and determine the optimal and suboptimal attack strategy for the attackers in Section 3. In Section 4,
the modified SIR filter is proposed, and simulation results are also presented. Finally, conclusions are
made in Section 5.

2. System Model

We consider a single target moving in a 2-dimensional plane whose dynamics is defined by a
state vector, θt = [xt, yt, vxt, vyt]

T, where xt and yt are the x and y coordinates of the moving target
in the time unit, t, respectively. The values vxt and vyt denote the velocities in the x and y directions.
The evolution of the target state sequence is defined as follows:

θt = F̃θt−1 + wt, (1)

where F̃ is the state transition matrix and wt is the process noise, which is assumed to be white and
Gaussian with zero mean and covariance matrix, Q1. It is assumed that the FC has exact knowledge of
the target state-space model and the process noise statistics.

In order to track the real target state, a sensor network consisting of N spatially distributed sensors
is deployed. Each sensor measures the signal emitted from the target. The measured signal at each
sensor follows:  si,t = ai,t + ηi,t

a2
i,t = P0(d0/di,t)

α , (2)

where si,t is the received signal amplitude at the ith sensor at time instant t. The measurement noises,{
ηi,t

}N

i=1
, are assumed to be independent across sensors and follow a common Gaussian distribution,

N(0, σ2). The value P0 is the measured power at the reference distance d0, α is the path-loss exponent,
and di,t is the distance between the target and the ith sensor. Without loss of generality, we assume
d0 = 1 and α = 2.



Sensors 2019, 19, 3436 4 of 16

Due to the energy and bandwidth constraints, each sensor locally quantizes its received signal, si,t,
and sends the quantized result, ui,t, to the FC through an ideal channel. The quantized process follows:

ui,t =



0, λ
(0)
i,t < si,t < λ

(1)
i,t

1, λ
(1)
i,t ≤ si,t < λ

(2)
i,t

...
...

L− 1, λ
(L−1)
i,t ≤ si,t < λ

(L)
i,t

, (3)

where L is the quantization level and
{
λ
(l)
i,t

}L

l=0
are the quantization thresholds of sensor i at time instant t,

specifically, λ(0)i,t = −∞ and λ(L)i,t = +∞. After receiving all the quantized data, Vt = [v1,t, v2,t, · · · , vN,t]
T,

the FC can sequentially estimate the target state, θt, using a sampling importance resampling (SIR)
method [20].

However, in a non-secure environment, the sensor nodes may be subjected to various attacks.
This paper considers the Byzantine attacks, in which the attackers deteriorate the system performance
by capturing several nodes and forcing them to transmit false information. In the following, the
attacked and un-attacked nodes are called Byzantine nodes and honest nodes, respectively. Here
we assume that the attackers cannot interfere with the acquisition of the analog data, si,t, and the
transmission of the quantized data, ui,t. It can only locally access and modify the quantized data
of Byzantine nodes. More specifically, when the sensor i is honest, its quantized data, ui,t, remains
unchanged. When the sensor i is attacked, its quantized data, ui,t = l, can be modified to ui,t = m with

a probability q(t)l,m (l, m ∈ [0, L − 1]). Note that, the Byzantine attack parameter satisfies

L−1∑
m=0

q(t)l,m = 1. (4)

For the sake of compactness, we arrange the attack parameters at time instant t + 1 as an unknown
vector, as follows:

qt+1 =
[
q(t+1)

0,0 , · · · , q(t+1)
0,L−1 , q(t+1)

1,0 , · · · , q(t+1)
1,L−1 , · · · , q(t+1)

L−1,0 , · · · , q(t+1)
L−1,L−1

]T
. (5)

3. Analysis of Attack Strategies for the Byzantine Nodes

3.1. Performance Metric

In order to quantify the impact of Byzantine attacks on the system performance, we set the PCRLB
as the performance metric. When the attack vectors are considered, the system state model can be
reformulated as follows: {

θt = F̃θt−1 + wt

qt = qt−1 + βt
, (6)

where βt is the process noise, which is assumed to be white and Gaussian with zero mean and a
covariance matrix, Q2.

In the above model, the total unknown vector isΘt = [θT
t , qT

t ]
T. Let Θ̂t(V1:t) be an estimator of

Θt using the observations V1:t = {V1, · · · , Vt} up to time instant t, then the mean square error matrix of
the estimation error satisfies the following:

E
[(
Θ̂t(V1:t) −Θt

)(
Θ̂t(V1:t) −Θt

)T
]
≥ J−1

t , (7)
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where Jt is the Fisher information matrix (FIM). Reference [21] shows that Jt can be sequentially
calculated through the following method:

Jt+1 = D22
t −D21

t (Jt + D11
t )
−1

D12
t , (8)

where  D11
t = E

{
−∇Θt∇

T
Θt

log p(Θt+1|Θt )
}
,

D12
t = E

{
−∇Θt∇

T
Θt+1

log p(Θt+1|Θt )
}
= (D21

t )
T , (9)


D22

t = D22,a
t + D22,b

t

D22,a
t = E

{
−∇Θt+1∇

T
Θt+1

log p(Θt+1|Θt )
}

D22,b
t = E

{
−∇Θt+1∇

T
Θt+1

log p
(
Vt+1

∣∣∣Θt+1
)} . (10)

Note that the above expectations are taken with respect to the joint probability distribution,
p(Θ0:t+1, V1:t+1). In our framework, the log-likelihood function, log p

(
Vt+1

∣∣∣Θt+1
)
, evaluated at

Vt+1 = rt+1, can be expressed as follows:

log p
(
Vt+1

∣∣∣Θt+1
)
=

N∑
i=1

L−1∑
m=0

δ(ri,t+1 −m) log p(m)
i,t+1, (11)

where the δ-function is defined as follows:

δ(x) =
{

1, x = 0
0, x , 0

. (12)

The probability, p(m)
i,t+1, is

p(m)
i,t+1 , Pr(vi,t+1 = m

∣∣∣qt,θt+1 )

= (1− ρ)Pr
(
vi,t+1 = m

∣∣∣θt+1, i = Honest
)
+ ρPr

(
vi,t+1 = m

∣∣∣θt+1, i = Byzantine
)

= (1− ρ)Pr
(
ui,t+1 = m

∣∣∣θt+1
)
+ ρ

L−1∑
l=0

q(t+1)
l,m Pr

(
ui,t+1 = l

∣∣∣θt+1
) (13)

where parameter, ρ, represents the probability that any node is attacked. According to the quantization
process, the conditional probability, Pr

(
ui,t+1 = m

∣∣∣θt+1
)
, can be calculated as follows:

w(m)
i,t+1 , Pr

(
ui,t+1 = m

∣∣∣θt+1
)
= Pr

(
λ
(m)
i,t+1 ≤ si,t+1 < λ

(m+1)
i,t+1

∣∣∣θt+1

)
= Ψ

(
(λ

(m)
i,t+1 − ai,t+1)/σ

)
−Ψ

(
(λ

(m+1)
i,t+1 − ai,t+1)/σ

) (14)

where Ψ(x) is the complementary cumulative distribution function of the standard normal distribution.
Based on (11), (9) and (10) can be simplified as follows:

D11
t = FTQ−1F, D12

t = −FTQ−1, D22,a
t = Q−1, (15)

D22,b
t = E


N∑

i=1

L−1∑
m=0

1

p(m)
i,t+1

∂p(m)
i,t+1

∂Θt+1


∂p(m)

i,t+1

∂Θt+1


T, (16)

where

F =

[
F̃ 0
0 I

]
, Q =

[
Q1 0
0 Q2

]
. (17)
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Note that the expectations in Equation (16) are taken with respect to p(Θ0:t, V1:t)p(Θt+1|Θt ).

3.2. Optimal Byzantine Attacks

For the attackers, the goal is to cause as much damage to the system as possible. Here, we call
the event of causing maximum damage as blinding the FC, which refers to making the observations
from sensors non-informative to the FC. When the Byzantine nodes adopt an attack strategy such that
the observation data, Vt+1, does not contain any information about Θt+1, then the Fisher information
of Θt+1 obtained from Vt+1 become zero, and the only beneficial way to estimate Θt+1 is to use the
prior information of the unknowns. From (9) and (10), we know that this is the minimum increment
of Fisher information that FC can obtain at time unit t + 1. In other words, such an attack strategy
achieves the maximum degradation to Jt+1. Based on this, the following definition is given:

Definition 1. Consider a distributed estimation framework where the parameter of interest is Θt+1 and the
contaminated observation data is Vt+1. A Byzantine attack is said to be optimal if it makes the Fisher information
of Θt+1 obtained from Vt+1 become zero.

Theorem 1. If a Byzantine attack is such that for any t ≥ 0,

D22,b
t = 0, (18)

then the observation data, Vt+1, does not contain any information aboutΘt+1.

Proof. By substituting Equation (15) into Equation (8), we have the following:

Jt+1 = D22,b
t +

(
Q + FJtFT

)−1
. (19)

As can be seen from the equation, at time instant t + 1, D22,b
t is the only matrix that is related to

Vt+1 and can contribute to Jt+1. Thus, to make the observations Vt+1 do not contain any information
about Θt+1 the attackers need to ensure that any t ≥ 0, D22,b

t = 0 �

Proposition 1. If the attack parameters satisfy that for any t ≥ 0, l, m ∈ [0, L − 1],

q(t+1)
l,m =

 1− 1
ρ +

1
ρL , l = m

1
ρL , l , m

, (20)

then the optimal Byzantine attack is achieved.

Proof. From Equation (16), we know that D22,b
t can be divided into four blocks as follows:

D22,b
t =

[
B11 B12

B21 B22

]
, (21)

where

B11 = E


N∑

i=1

L−1∑
m=0

1

p(m)
i,t+1

∂p(m)
i,t+1

∂θt+1


∂p(m)

i,t+1

∂θt+1


T, (22)

B12 = E


N∑

i=1

L−1∑
m=0

1

p(m)
i,t+1

∂p(m)
i,t+1

∂θt+1


∂p(m)

i,t+1

∂qt+1


T = (B21)

T, (23)
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B22 = E


N∑

i=1

L−1∑
m=0

1

p(m)
i,t+1

∂p(m)
i,t+1

∂qt+1


∂p(m)

i,t+1

∂qt+1


T. (24)

According to the definition of p(m)
i,t+1, we have the following:

p(m)
i,t+1 = (1− ρ) ·w(m)

i,t+1 + ρ
L−1∑
l=0

q(t+1)
l,m ·w(l)

i,t+1

= (1− ρ+ ρq(t+1)
m,m ) +

∑
l,m

[ρq(t+1)
l,m − (1− ρ+ ρq(t+1)

m,m )]w(l)
i,t+1

(25)

∂p(m)
i,t+1

∂θt+1
=

Γm
i,t+1

σ
√

2π

∂ai,t+1

∂θt+1
. (26)

In the above equation, Γm
i,t+1 is as follows:

Γm
i,t+1 , (1− ρ)·γm

i,t+1 + ρ
L−1∑
l=0

q(t+1)
l,m ·γl

i,t+1 =
∑
l,m

[
ρq(t+1)

l,m −

(
1− ρ+ ρq(t+1)

m,m

)]
γl

i,t+1, (27)

where γl
i,t+1 , exp

{
−(λ

(l)
i,t+1 − ai,t+1)

2
/2σ2

}
− exp

{
−(λ

(l+1)
i,t+1 − ai,t+1)

2
/2σ2

}
and it satisfies that∑L−1

l=0 γ
l
i,t+1 = 0. When the attack parameters satisfy Equation (20), it can be shown that for any

m ∈ [0, L− 1] as follows:
Γm

i,t+1 = 0, (28)

p(m)
i,t+1 = 1/L. (29)

As a result, for any t ≥ 0, B11 = 0, B12 = 0, and B22 = 0. By Theorem 1, it can be concluded that
under the conditions of Equation (20), the attackers realize the optimal Byzantine attack. �

Equation (29) demonstrates that when the attack parameters satisfy Equation (20), the conditional
probability, p(m)

i,t+1, of any node at any time is independent of the observation data, vi,t+1, and its value
is only determined by parameter L. In other words, there is no information about Θt+1 in the new
observations. At this point, the only beneficial information that can be utilized is the prior information
of the unknowns.

By noticing that q(t+1)
m,m ≥ 0, we obtain the following:

ρ ≥ (L− 1)/L . (30)

In general, the stronger the attackers are, the larger the value of parameter ρ will be. In order
to achieve optimal Byzantine attacks and minimize the requirements on the attackers’ capabilities,
it is desirable to set ρ = ρmin , (L− 1)/L . At this point, the optimal attack parameters become
the following:

q(t+1)
l,m =

{
0, l = m
1/(L− 1) , l , m

. (31)

When L = 2 and ρ = ρmin = 1/2, the attack parameters in Equation (31) become q(t+1)
0,0 = q(t+1)

1,1 = 0

and q(t+1)
0,1 = q(t+1)

1,0 = 1, which implies that to achieve the optimal Byzantine attack, all Byzantine
nodes must flip their own local quantized measurements with a probability of ‘1’.

Figure 2 depicts the relationship between ρmin and L. It can be observed that when L gradually
increases, ρmin also increases. If ρmin is considered as the proportion of attacked nodes in the network,
when L = 2, ρmin= 0.5, it means that in order to achieve optimal Byzantine attacks, the attackers need
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to capture at least 50% of sensor nodes in the network. As L increases, the number of nodes that need
to be captured also increases, which places a higher requirement for the attackers. In the extreme cases
(i.e., L→∞, ρmin= 1), all nodes in the network must be captured by the attackers.
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3.3. Sub-Optimal Byzantine Attacks

In the analysis of optimal Byzantine attacks, it is assumed that the FC knows the probability that
each node is captured (i.e., ρ), but it is not clear about the real attribute of each node (i.e., malicious or
honest.). In that case, it is possible for attackers to make the new observations of all nodes containing
no information about Θt+1. Recently, the work in References [2,18] shows that, for some classes of
Byzantine attacks with a sufficient number of observations, the FC is able to perfectly identify and
categorize the attacked sensors into different groups. Thus, in this section, we further derive the most
destructive Byzantine attack strategy when the FC knows the real attributes of all nodes. It is worth
mentioning that under this case, the least amount of Fisher information that can be obtained to develop
the PCRLB is the information contained in the observations from un-attacked sensors. In other words,
if the data contribution from each attacked sensor observation to the FIM becomes zero, then the
maximum degradation of the PCRLB can be achieved. Based on this, the following definition is given.

Definition 2. Consider a distributed estimation framework where the FC knows the attribute of each node. A
Byzantine attack is said to be suboptimal if it makes the Fisher information ofΘt+1 obtained from each attacked
sensor observation become zero.

When the true states of all nodes are known to the FC, the log-likelihood function of received data
can be expressed as follows:

log p
(
Vt+1

∣∣∣qt+1,θt+1
)
=

∑
i∈S0

L−1∑
m=0

δ(ri,t+1 −m) log p(m)

i∈S0,t+1 +
∑
i∈S1

L−1∑
m=0

δ(ri,t+1 −m) log p(m)

i∈S1,t+1, (32)

where S0 and S1 are the sets of honest sensors and Byzantine sensors, respectively. The probabilities
p(m)

i∈S0,t+1 and p(m)

i∈S1,t+1 are defined as follows:


p(m)

i∈S0,t+1 , Pr
(
vi,t+1 = m

∣∣∣θt+1, i ∈ S0
)
= w(m)

i,t+1

p(m)

i∈S1,t+1 , Pr
(
vi,t+1 = m

∣∣∣qt,θt+1, i ∈ S1
)
=

L−1∑
l=0

q(t+1)
l,m w(l)

i,t+1

, (33)
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and they satisfy that
∑

m p(m)

i∈S0,t+1 =
∑

m p(m)

i∈S1,t+1 = 1. By substituting Equation (32) into Equation (10),
we get the following:

D22,b
t = H22,0

t +
∑
i∈S1

H22,1
i,t , (34)

where the matrices H22,0
t and H22,1

i,t are defined as follows:

H22,0
t = E


∑
i∈S0

L−1∑
m=0

1

p(m)

i∈S0,t+1

∂p(m)

i∈S0,t+1

∂Θt+1


∂p(m)

i∈S0,t+1

∂Θt+1


T, (35)

H22,1
i,t , E


L−1∑
m=0

1

p(m)

i∈S1,t+1

∂p(m)

i∈S1,t+1

∂Θt+1


∂p(m)

i∈S1,t+1

∂Θt+1


T. (36)

Theorem 2. If the Byzantine attacks are such that for any i ∈ S1 and t ≥ 0,

H22,1
i,t = 0, (37)

then the observation data of each attacked node does not contain any information aboutΘt+1.

Proof. By substituting Equation (34) into Equation (8), we get the following:

Jt+1 =
(
Q + FJtFT

)−1
+ H22,0

t +
∑
i∈S1

H22,1
i,t . (38)

As can be seen from Equation (38), at time instant t + 1,
∑

i∈S1
H22,1

i,t is the only matrix that is
related to the Byzantine nodes’ observations and can contribute to Jt+1. Thus, to make each attacked
sensor observation containing no information about Θt+1, the attackers need to ensure that H22,1

i,t = 0
for any t ≥ 0 and i ∈ S1. �

Proposition 2. Given the Equations (32) and (34), if the Byzantine attack parameters satisfy that for any t ≥ 0,
l, m ∈ [0, L− 1],

q(t+1)
l,m = q(t+1)

m,m = 1/L, (39)

then the suboptimal Byzantine attack is achieved.

Proof. Since Θt = [θT
t , qT

t ]
T, H22,1

i,t can also be further divided into four bocks as follows:

H22,1
i,t =

[
Hi,11 Hi,12

Hi,21 Hi,22

]
,

where

Hi,11 = E

 L−1∑
m=0

1
p(m)

i∈S1,t+1

∂p(m)

i∈S1,t+1

∂θt+1

∂p(m)

i∈S1,t+1

∂θt+1

T


Hi,12 = E

 L−1∑
m=0

1
p(m)

i∈S1,t+1

∂p(m)

i∈S1,t+1

∂θt+1

∂p(m)

i∈S1,t+1

∂qt+1

T
 = (Hi,21)

T

Hi,22 = E

 L−1∑
m=0

1
p(m)

i∈S1,t+1

∂p(m)

i∈S1,t+1

∂qt+1

∂p(m)

i∈S1,t+1

∂qt+1

T


(40)
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From (33), we know the following:

∂p(m)

i∈S1,t+1

∂θt+1
=

m
i∈S1,t+1

σ
√

2π

∂ai,t+1

∂θt+1
, (41)

where parameter m
i∈S1,t+1 ,

∑L−1
l=0 q(t+1)

l,m ·γl
i,t+1. When the condition Equation (39) is satisfied,

m
i∈S1,t+1 = q(t+1)

m,m ·γ
m
i,t+1 +

L−1∑
l,m

q(t+1)
l,m ·γl

i,t+1 =
L−1∑
l,m

(q(t+1)
l,m − q(t+1)

m,m )γl
i,t+1 = 0, (42)

p(m)

i∈S1,t+1 = q(t+1)
m,m

L−1∑
l=0

w(l)
i,t+1 = q(t+1)

m,m = 1/L. (43)

As a result, for any i ∈ S1 and t ≥ 0, H22,1
i,t = 0. By Theorem 2, it can be concluded that under the

conditions of Equation (39), the suboptimal Byzantine attacks are achieved. �

From Equation (43), we know that when the attack parameters satisfy Equation (39), the conditional
probability, p(m)

i∈S1,t+1, becomes independent of the attacked sensor observations. In other words,
the attacked sensor observations received by the FC do not contain any valid information about
the unknowns. Therefore, the FC can only use the prior information and the un-attacked sensor
observations to estimate the unknowns.

3.4. Numerical Results

In this subsection, we present numerical results in support of our analysis on Byzantine attacks in a
target tracking problem. It is assumed that the mobile target is free to move within a 600 × 600 square
area. The target motion model is assumed to be a near constant velocity model and the state transition
matrix and the covariance matrix of the process noise are defined as follows:

F̃ =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

, Q1 = q


T3/3 0 T2/2 0

0 T3/3 0 T2/2
T2/2 0 T 0

0 T2/2 0 T

, (44)

where T is the observation interval and q is a process noise parameter. In the monitoring area, N sensor
nodes are evenly distributed and the total number of Byzantine nodes is M = ρ·N. The observations
between nodes are assumed to be independent. The total observation time is Ts. All nodes adopt
the same entropy-based heuristic quantization scheme proposed in Reference [22] at any time and all
Byzantine nodes modify their local quantized observations according to the settings of Equation (20).
The default parameter settings are listed in Table 1.
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Table 1. Default parameter settings for Byzantine attacks.

Parameters Values

Network size 600 × 600
N 10
Ts 10
T 1
q 0.16

P0 25,000
L 2
ρ 0.5
σ 0.1

In simulations, we calculated the frequency of vi,t+1 = 0 for all nodes and all time units over
1000 randomized trials. The results listed in Figure 3 show that when the Byzantine attack parameters
satisfy Equation (20), the frequency of vi,t+1 = 0 is approximately 0.5 for all nodes and all time units,
resulting in equiprobable quantized values at the FC. In other words, the conditional probabilities
of the received data become p(0)i,t+1 ≈ p(1)i,t+1 ≈ 1/2, which is consistent with the theoretical results of
Equation (29) under optimal Byzantine attacks.
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Next, we assume that the first M sensor nodes are Byzantine nodes and their attack parameters
follow Equation (39). However, these malicious nodes are correctly identified by the FC. Under this
circumstance, we also calculated the frequency of vi,t+1 = 0 for all Byzantine nodes and all time units
over 1000 randomized trials. The results, listed in Figure 4, show that when the Byzantine parameters
follow Equation (39), the frequency of vi,t+1 = 0 is approximately 0.5 for all Byzantine nodes and all time

units. In other words, the conditional probabilities of received data become p(0)i∈S1,t+1 ≈ p(1)i∈S1,t+1 ≈ 1/2,
which is consistent with the result of Equation (43) under suboptimal Byzantine attacks.



Sensors 2019, 19, 3436 12 of 16
Sensors 2019, 19, 3436 12 of 16 

 

 
Figure 4. Frequency of , 1 0i tv + =  for all Byzantine nodes and all time units under suboptimal 

Byzantine attacks. 

4. Identification of Byzantine Nodes 

4.1. The Modified SIR Filter 

In order to alleviate the negative impact of Byzantine attacks on the system performance, a 
modified SIR filter is proposed. Table 2 shows the main flow of the filter. 

Table 2. The main flow of modified SIR filter. 

The Modified SIR Filter 
1   Initialization: Set t = 1, randomly draw pN  particles ( )

0θ
i  from ( )0θp  and set ( )

0 1=i
pw N . 

2   While ≤ st T  do 
3   Prediction: ( )( )

1~ ( )θ θ θ −
ii

t t tp . 

4   Calculating the weights: ( )( ) ( )
1 ( )ii i

t t tt pτ τ −∝ ⋅ V θ , ( ) ( ) ( )
1
pNi i j

t t tjτ τ τ
=

=   . 

5   Resampling according to the weights: ( ) 1 ( ) ( ){ , } ~ { , }i i i
t P t tN τ−θ θ . 

6   Preliminary estimation: ( )
11θ θ

=
= ⋅ PN i

t P tiN . 

7   Byzantine node identification: Determine the states of all nodes based on θt  and Vt , and 
prune out the attacked observations from all Byzantine nodes. 

8   Update the particle set with the remaining observations and output the final target state 
estimation, θ̂t , at time unit t. 

9   Set t = t + 1. 
10   End While 

In the above filter, pN  is the total number of valid samples, 0( )p θ  is the initial distribution 

of the target state, and 1( )θ θ −t tp  denotes the particle prediction function. In the resampling step, the 

number of copies of the particle ( )θ i
t  is proportional to its weight, ( )i

tτ . In step 7, we adopt the 
Byzantine identification scheme proposed in [23] to determine the attributes of sensor nodes. 
However, the scheme in [23] only considers binary quantization and is not completely suitable for 
our cases. So, some small modifications are made here. First, parameter ,γ̂ i t  is calculated through 
the following formula: 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
t+1

th
e 

fr
eq

ue
nc

y 
of

 v
i,t

+1
 =

 0
 fo

r a
ll 

by
za

nt
in

e 
no

de
s

Figure 4. Frequency of vi,t+1 = 0 for all Byzantine nodes and all time units under suboptimal
Byzantine attacks.

4. Identification of Byzantine Nodes

4.1. The Modified SIR Filter

In order to alleviate the negative impact of Byzantine attacks on the system performance, a
modified SIR filter is proposed. Table 2 shows the main flow of the filter.

Table 2. The main flow of modified SIR filter.

The Modified SIR Filter

1 Initialization: Set t = 1, randomly draw Np particles θ(i)0 from p(θ0) and set w(i)
0 = 1/Np .

2 While t ≤ Ts do

3 Prediction: θ(i)t ∼ p(θt

∣∣∣∣θ(i)t−1 ).

4 Calculating the weights: τ̃(i)t ∝ τ
(i)
t−1·p(Vt

∣∣∣∣θ(i)t ), τ(i)t = τ̃
(i)
t /

∑Np

j=1 τ̃
( j)
t .

5 Resampling according to the weights:
{
θ(i)t , N−1

P

}
∼

{
θ(i)t , τ(i)t

}
.

6 Preliminary estimation: θ̃t = 1/NP ·
∑NP

i=1 θ
(i)
t .

7 Byzantine node identification: Determine the states of all nodes based on θ̃t and Vt, and
prune out the attacked observations from all Byzantine nodes.

8 Update the particle set with the remaining observations and output the final target state
estimation, θ̂t, at time unit t.

9 Set t = t + 1.
10 End While

In the above filter, Np is the total number of valid samples, p(θ0) is the initial distribution of
the target state, and p(θt|θt−1 ) denotes the particle prediction function. In the resampling step, the
number of copies of the particle θ(i)t is proportional to its weight, τ(i)t . In step 7, we adopt the Byzantine
identification scheme proposed in [23] to determine the attributes of sensor nodes. However, the
scheme in [23] only considers binary quantization and is not completely suitable for our cases. So, some
small modifications are made here. First, parameter γ̂i,t is calculated through the following formula:

γ̂i,t = (tγ̂i,t−1 + χ)/t , (45)
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where χ is defined as follows:

χ =

{
0, vi,t = v̂i,t
1, vi,t , v̂i,t

. (46)

In the above equations, v̂i,t is the observation estimated based on θ̃t and γ̂i,t characterizes the
probability that node i modifies the quantized observation at time t, and its value is related to the
historical observations

{
vi,1, · · · , vi,t

}
and the preliminary target state estimation θ̃t. From Equation (31),

we know that in order to achieve the optimal Byzantine attacks with minimal cost, the Byzantine nodes
must modify the original quantized data to other possible values. Thus, we use the following statistic
to determine the nodes’ states:

Λi,t =

∣∣∣∣∣∣ γ̂i,t − 0
γ̂i,t − 1

∣∣∣∣∣∣. (47)

In the above equation, the numerator Λi,t describes the deviation between γ̂i,t and the probability
that honest nodes modify the quantized observations. The denominator describes the deviation
between γ̂i,t and 1 (i.e., the probability that the malicious nodes modify the quantized observations
under optimal Byzantine attacks). When Λi,t > 1, the denominator is smaller than the numerator. Thus,
we incline to accept that node i is a Byzantine node. Otherwise, node i is identified as an honest node.

After determining the states of all nodes, we prune out the observation data from all Byzantine
nodes and use the remaining observations to update the particle set and output the final estimate of
the unknown target state.

4.2. Numerical Results

In this subsection, the performance of the modified SIR algorithm is evaluated. For the mobile
target, it is assumed to freely move in a 600 × 600 square area. The real initial target state is
θ0 = [5, 5, 6, 6]T. The state dynamics are modeled using the matrix F̃ and Q1, defined in Equation (44).
There are N = 100 evenly distributed sensors in the monitoring area and the total number of Byzantine
nodes is M = 40. The total observation time is Ts= 80. All nodes adopt the same quantization scheme
as in Section 3.4. The Byzantine attack parameters follow the Equation (31). For the filter, the initial
state particles are generated from p(θ0), which is assumed to be Gaussian, and its expectation and
variance are E(θ0) and Var(θ0), respectively. The default parameter settings are listed in Table 3.

Table 3. Default parameter settings for modified SIR filter.

Parameters Values

Network size 600 × 600
N 100
M 40
Ts 80
T 1
q 0.16

P0 25,000
σ 0.1

E(θ0) [10, 20, 6, 6]T

Var(θ0) diag([36, 36, 0.04, 0.04])
Np 100

Figure 5 shows the estimation results in a particular realization. From Figure 5a, it can be observed
that by employing the Byzantine identification scheme, the estimated tracks can be close to the true
trajectory of the moving target. Figure 5b shows the improvement of tracking performance in the
sense of localization errors when L increases. In our paper, the localization errors are defined as the
distances between the estimated coordinates and the true locations of the moving target. It can be
observed that the median of localization errors when L = 2 is 3 times larger than that of localization
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errors when L = 8. Figure 6 shows the detection rate and false detection rate in this realization. It can
be seen that the modified SIR filter can identify all the Byzantine nodes within a certain period of time.
More precisely, when L = 2, all the Byzantine nodes are detected during the first 30 rounds of tracking.
When L = 8, the time required to identify all malicious nodes is shorter (i.e., t = 5). Combined with the
former results in Figure 5, it can be concluded that when L increases, both the tracking results and the
security performance of the system are improved.
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Figure 5. Estimation results of the modified SIR filter: (a) The estimated tracks of the moving target
when L = 2 and L = 8; and (b) the logarithm of the localization errors.
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Figure 6. The detection rate and the false detection rate of the modified SIR filter: (a) The number
of Byzantine nodes that are correctly identified; (b) the number of honest nodes that are misjudged
as Byzantines.

5. Conclusions

In summary, the problem of target tracking with quantized sensor observations is considered
in the presence of Byzantine attacks. From the perspective of attackers, we have analyzed the most
destructive effect of Byzantine attacks on the system performance in the sense of PCRLB. The results
showed that the fusion center becomes ‘blind’ to the information from all sensors when the Byzantine
attack parameters follow Equation (20). In such a case, the total observations received by the fusion
center do not contain any information about the target parameters, which generates the maximum
degradation to the PCRLB. When the Byzantine attack parameters follow Equation (39), only the
attacked observations do not contain any information about the target parameters, which generates
the maximum degradation to the PCRLB when all the Byzantine nodes are correctly identified by
the fusion center. We have also proposed a modified SIR filter to minimize the negative impact of
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attackers on the system. Results show that increasing the quantization level can effectively improve
the estimation performance and security performance of the system.
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