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Abstract: Based on a multiple layer perceptron neural networks, this paper presents a real-time
channel prediction model, which could predict channel parameters such as path loss (PL) and
packet drop (PD), for dedicated short-range communications (DSRC). The dataset used for training,
validating, and testing was extracted from experiments under several different road scenarios
including highways, local areas, residential areas, state parks, and rural areas. The study shows
that the proposed PL prediction model outperforms conventional empirical models. Meanwhile,
the proposed PD prediction model achieves higher prediction accuracy than the statistical one.
Moreover, the prediction model can operate in real-time, through updating its training set, to predict
channel parameters. Such a model can be easily extended to the applications of autonomous driving,
the Internet of Things (IoT), 5th generation cellular network technology (5G) and many others.

Keywords: channel models; neural networks; wireless communications; prediction methods;
vehicular and wireless technologies; dedicated short-range communication

1. Introduction

1.1. Background and Motivation

Channel modeling is essential for the design and evaluation of the protocols adopted in vehicular
communication and networks [1]. For vehicular wireless communication, if the sensitivity of the
receiver is constant, the state of the transmitter and the path loss (PL) will become the main factors
affecting the communication transmission quality [2]. In reality the road environment is complex:
Conditions such as occlusion, reflection, multi-path so on and so forth, can have a negative impact
on PL. Therefore, predicting PL in time and then making corresponding compensation adjustments at
the transmitter can effectively guarantee the link quality. In addition, in some cases the transmission
environment is too complicated. This leads to the fact that, based on the prediction of the PL, even if
the transmitter operates in the limit state the communication may still be unstable. In this case, it is
necessary to effectively predict the packet drop rate (PDR) and then adjust the transmission strategy.
According to the prediction result of the PDR, before the environment further deteriorates the data
with a low packet loss rate are preferentially transmitted.

Vehicle-to-vehicle channels differ significantly from those of cellular systems due to time varying
environments that consist of roads, surrounding vehicles, and objects [3]. There are two main types of
channel prediction models:

• Theoretical model:
Theoretical models mainly include ray optical prediction models such as ray-tracing models [4,5]
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and ray-launching models [6,7]. Ray tracing models are approximations of Maxwell equations
and are based on simulations. These models can accurately depict the channel. However, they
suffer from heavy computational load; therefore, it is difficult to use them to depict the variance of
the real world in real-time.

• Empirical model:
Empirical models, such as the dual-slope (DS) distance-breakpoint PL [8,9], polynomial fitting [10],
and generalized gamma (GG) shadowed fading models [11], could be used as general reference
models, but are not appropriate for real-time applications.

This paper proposes a real-time neural network (NN) model to predict channel parameters
based on the latest data collected. This NN model has the ability to self-train and adapt to changes
in the environment or the scene. Therefore, it is suitable for real-time channel prediction for vehicular
communications. In addition, unlike empirical models, the NN model can fit general distributions
while retaining local details. Although the NN approach has been widely researched in recent years,
its application in communication systems, especially channel prediction, is still in its infant stages [12,13].

1.2. Related Work

Prediction of channel parameters, including PL and packet drop (PD), is the foremost task in channel
modeling [14]. Traditionally, communications systems are modeled by mathematical superposition,
approximation, and fitting, which suffer from the oversimplified real-world issues. NNs have overcome
these issues and have been increasingly utilized in communications recently.

The proposed PL and PD NN-based prediction model reflects the relationship between the input
(distance, velocity, etc.) and the output (PL, PD, etc.) in connectionism under various environments.

Replacing the traditional communication modules with multilayer NN models is a new research topic.
Thanks to the update of NN algorithms and upgrades of computer hardware (e.g., the graphics processing
unit—GPU) over recent years, the application of NNs for communications has been studied. In the field
of wireless communication, deep learning has been used for modulation detection [15], channel encoding
and decoding [16,17], and channel estimation [18,19]. A novel iterative belief propagation-convolutional
neural network (BP-CNN) architecture has been proposed for channel decoding under correlated
noise. Iterating between BP and CNN will gradually improve the decoding signal-to-noise ratio (SNR)
and, hence, result in a better decoding performance [17]. Similarly, a channel estimation and signal
detection approach based on deep learning for orthogonal frequency-division multiplexing (OFDM)
systems is proposed in [18]. Unlike the current least squares (LS) and minimum mean-square error
(MMSE) estimation methods, it estimates channel state information (CSI) implicitly and thus recovers
the transmitted symbols directly.

Furthermore, NNs can replace the entire blocks in the communication system with the same
or even better performance [20]. The communication system is interpreted as an auto-encoder for
the first time in [15]. Communications system design is considered as an end-to-end reconstruction
task that seeks to jointly optimize transmitter and receiver components in a single process by deep
learning. After that, a complete communications system solely composed of NNs using unsynchronized
off-the-shelf software-defined radios and open-source deep-learning software libraries was built in [21].

As for PL models, various methods are applied in PL models, such as theoretical models based on
Maxwell’s equations, ray tracing models based on simulation, and empirical models, parameters of
which are derived from experimental data for each defined category. Empirical models characterize the
channels in corresponding scenarios well. The typical free space channel model and Stanford University
Interim (SUI) models were applied to urban environments in centimeter-wave and millimeter-wave
frequency bands [22]. Improved Rural Macrocell (RMa) models were applied to rural areas in the
frequency range from 0.5 GHz to 30 GHz [23]. A bounded model is used to calculate the decay of
signal power caused by PL [24]. Artificial neural network (ANN) models were used for macrocell
PL prediction [25], and a 3rd Generation Partnership Project (3GPP) blockage model was utilized to
predict the PL caused by the blockage of traffic sign posts [26]. When the environment changes, these
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kinds of empirical models are no longer valid. An Alpha-Beta-Gamma (ABG) model and a Close-In
(CI) free-space reference distance model was introduced to predict PL through a measured dataset [27];
these are also empirical models but can adapt to changes in the environment. In addition, there are
many NN-based PL methods in wireless communications [28–31]. They are very valuable and useful
in static PL prediction. However, in real-time PL prediction, we need to predict the real-time PL in
a short time. That is, these methods face the drawback of sacrificing local information or over-fitting
when predicting real-time PL in wireless communication. In contrast, the proposed NN-based PL
model can overcome these deficiencies and show more accurate results in real-time PL prediction.

In wireless communication, the performance of the system will be affected when the PDR or
round-trip latency increase [32]. The packet with excessive delay is usually discarded to achieve the
minimum and balanced PDR for wireless traffic [33]. The research included a PD algorithm for various
packet loss rates [34], improved algorithm for latency and PD [35], and PDR optimization algorithm [36].
Regarding PD, most of the related research is focused on controlling unreliable communication channels
caused by known PDs without any predicted information to enhance the system performance [37–39].
This paper presents a solution to predict PD which can be utilized to improve system reliability.

In the field of vehicular communications, there is scant relevant research on a unified or a general
channel prediction model, of which the NN structure to predict PL and PD are similar. The prediction
model updates its training set with most recent measurements in real-time. However, the proposed
NN based model takes multiple factors into account. Thus, it could model local situations in a higher
granularity than traditional ones.

1.3. Contributions and Innovations

The main contributions of this paper are summarized as follows:

• The proposed NN model can be used for predicting PL. The PL prediction model shows better
performance compared to that of commonly used empirical models, such as the dual-slope
distance-breakpoint PL model, polynomial fitting model, and GG shadowed fading model.

• The proposed NN model can be used to predict PL in real-time and it can be updated in real-time.
Therefore, the model not only guarantees the real-time performance, but also updates the PL
prediction locally according to the actual environment with higher accuracy.

• The proposed NN model can be used for predicting PD. The model predicts the PDR in the future
period by the PD situation in the current time slot. And, with the acquisition of new data, the PD
prediction model is updated in real-time. This model provides a higher prediction accuracy than
the statistics-based model.

The innovations of this paper are reflected in the following two aspects.

• In the theoretical aspect, the paper introduces the ANN algorithm into the field of vehicular
communication. Although artificial neural algorithms are making rapid progress, this is an innovative
application for vehicular communication, in terms of channel modeling and prediction.

• In the semi-physical simulation, this paper proposes a prediction model based on ANN.
The model can predict channel parameters, including PL and PDR, based on the measured
dataset. The simulation results show that: (1) in the PL offline prediction part, the ANN model
is more accurate than the traditional model; (2) in the PL online prediction part, the ANN model
has a better ability to fit the dataset than the traditional model, and is more capable of reflecting
the details of different time steps; and (3) in the PDR online prediction part, the ANN model has
a better trade-off between precision and accuracy than the traditional model.

The remainder of this paper is organized as follows. The second section presents how to obtain
data from dedicated short-range communications (DSRC) on-board units (OBUs) such as global
positioning system (GPS), speed, and received signal strength indicator (RSSI). Section 3 introduces
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a proposed model to predict PL in real-time. This NN-based model has a better ability to predict the
channel PL distribution than the three current empirical models. Moreover, this model can update
the channel predictions in real-time. In Section 4, we use the same model for real-time PD prediction.
The proposed NN-based PD prediction model provides lower mean square error (MSE) and higher
accuracy than the statistics-based model.

2. DSRC Network Sniffer and Data Connection

The experiments were carried out by two midsize vehicles, and each roof mounts a DSRC OBU at
an approximate height of 1.48 meters. The OBUs were outside of the vehicles for most of the tests.
However, some tests were performed with OBUs placed inside the vehicles due to heavy rain to
prevent the electronics getting wet. The GPS antennas had to be mounted outside of the vehicles in all
weather conditions; otherwise, the GPS position would stop updating. An additional micro-controller
(Raspberry Pi) was connected with each of the DSRC OBUs via a RS-232 serial interface for data
exchange. A diagram of the DSRC network sniffer and data connection is shown in Figure 1.
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Figure 1. Diagram of the dedicated short-range communications (DSRC) network sniffer and
data connection.

We developed the software by using Autotalks SDK (Software Development Kit) for device
configuration and data generation running on the DSRC OBUs. The data include the current longitude,
latitude, altitude, heading angle and ground speed from the GPS sensor, as well as the timestamps,
packet counters, and RSSI of each packet. The timestamps are inserted before each packet has been
sent and after it has been received on both OBUs. Packet counters were used for PD rate calculation.
On the micro-controllers, we developed a GUI (graphical user interface) based on Linux OS to collect
data from the OBUs as well as to send the configuration parameters to control them. The collected data
can be stored locally or sent to our private server for real-time display. The custom parameters include
data rate, packet rate, packet size, transmit power, channel number, priority, etc. A DSRC OBU, GPS
antenna, and an additional micro-controller for the DSRC network vehicle experiments, are shown in
Figure 2.

All experimental data were collected with the same device configurations. We set the transmit
power at 23 dBm, the data rate at 6 Mbps, 1000 bytes packet size, and 10 Hz packet rate. Channel
172 and 174 were used for the bidirectional communication. The band of the DSRC was allocated at
75 MHz of spectrum in 5.9 GHz. There are 7 channels in total, each occupying 10 MHz of bandwidth.
The center frequencies of channel 172 and channel 174 were 5.86 GHz and 5.87 GHz, respectively.

Parameter pcTt is the packet counter of the current packet and pcTt−1 is the packet counter of the
previous packet. If pcTt − pcTt−1 > 1, we call it a PD event, and the count of lost packets is recorded as
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ct = pcTt − pcTt−1 − 1. The round-trip PDR can be expressed by the total number of packets drop per M
packets. Round-trip PDR can be easily calculated through

PDRround−trip = (
1
M

M∑
t=1

ct)·100%. (1)

The distance d between two vehicles can be calculated by GPS information:

a = sin2(∆ϕ/2) + cosϕ1 · cosϕ2 · sin2(∆λ/2)
c = 2a tan 2(

√
a,
√

1− a)
d = R · c

, (2)

where ϕ is latitude, λ is longitude, and R is earth’s radius (mean radius = 6371 km).Sensors 2019, July 23 FOR PEER REVIEW 5 of 22 
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Figure 2. DSRC on-board unit (OBU), GPS antenna, and additional micro-controller (Raspberry Pi) in
the DSRC network vehicle experiments.

The measurements were conducted in Mcity Ann Arbor, UM-D Campus, and cities such as
Ann Arbor, Dearborn, and Detroit. Weather conditions included rain, sun and showers. Most common
road scenarios were covered, including the following:

• Highways
• Local areas
• Residential areas
• State Park and rural areas

In order to simulate all the common traffic scenarios, two testing vehicles were driven in various
patterns throughout the experiments. These included following, overtaking, lane changing, opposite
driving, intersection scenarios with traffic lights, and stop signs. Multiple experiments were conducted
during both peak and off-peak hours with a maximum driving speed of 40 km/h in residential areas,
70 km/h in Mcity and local areas, and 120 km/h on highways. The distance between the two vehicles
was relatively close, ranging from 3 to 120 m. Apart from the speed differences, there were some
unique characteristics that came from those different environments. For instance, campus provided
the driving scenarios with pedestrians, state park and rural areas provided an open field environment,
and Detroit downtown represented the urban scenario with crowded traffic.

Figure 3 shows one of our experiments in Ann Arbor. The relative distance was calculated using
the GPS data for the two vehicles and the relative speed is the difference between two speed vectors.
In the following sections, we will use the dataset obtained from the experiments to build empirical
models and an NN model to predict channel parameters such as PL and PDR.
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3. A Novel Path Loss Prediction Model

This section proposes an NN-based PL prediction model trained by a BP algorithm, which
corresponds to our first contribution. In the second subsection, this paper expands the offline
prediction model to a real-time NN-based PL prediction model, which is our second contribution.

For wireless communications systems, PL prediction is fundamental for system planning and
optimization. A general PL model is usually specified to categorized environments, such as highways,
local areas, residential areas and rural areas, by assigning the maximum, minimum, median, mean and
standard deviation of PL, which are shown in Table 1.

Table 1. Channel fading varies greatly in different regions.

Maximum (dB) Minimum (dB) Median (dB) Mean (dB) Standard Deviation (dB)

Highways 112 72 90 90.7923 7.9492
Local Areas 112 72 95 94.5932 6.7879

Residential Areas 110 58 91 90.3498 6.3856
Rural Areas 116 70 85 87.6001 7.8370

DSRC channels are time-varying and highly environment independent, resulting in a great number
of channel parameters listed above. The NN-based PL model presented in this paper is general and
applicable to diverse scenarios without changing the configuration and weights of NN. Moreover,
simulation results indicate that it has lower root mean square error (RMSE) and higher accuracy than
conventional models, as shown in Figure 4.
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3.1. Typical Empirical Models for Path Loss Prediction

Compared to theoretical modes, empirical models are built upon measured data featuring flexible
and accurate prediction performance without requiring prior knowledge. Three empirical models are
discussed for comparison purposes in the following: (1) Dual-slope distance-breakpoint PL model;
(2) polynomial fitting model, and (3) GG shadowed fading model.

3.1.1. Dual-Slope Distance-Breakpoint Path Loss Model

In a large-scale propagation model, PL is only related to the distance between the transmitter
and receiver for a given frequency. Two PL indexes, n1 and n2, are adopted to described the fading
slopes in two distinguished regions separated by Fresnel distance. PL index and the variance of slow
fading or shadowing can be calculated from measured data using the MMSE criterion. The PL at d,
the distance between the Tx and Rx, can be expressed as

PLDS(d)[dB] = PL(d0) +

10n1 log 10( d
d0
) + Xσ1 d0 ≤ d ≤ db

10n1 log 10( db
d0
) + 10n2 log 10( d

db
) + Xσ2 d > db

, (3)

where Xσ1 and Xσ2 are the variances of slow fading, and PL(d0) the PL at the reference distance d0.

PL(d0) = 32.45 + 20 log10(d0) + 20 log10( f ) −Gt −Gr. (4)

Among them, d0 and f are normalized in km and MHz, respectively.
In conventional Line of sight (LoS) models, db is the Fresnel distance to the point where the first

Fresnel zone touches the ground, which can be calculated by db =
4hThR
λ , where hT and hR are antenna

heights of the transmitter and receiver, respectively, and λ is the wavelength [9].
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The PL model is built up through the steps described below.

(i) The relative distances in the training set are rounded to the nearest meter, denoted as dk,

k = {5, 6, · · · , 199}. The corresponding PLs are denoted as PL(dk) =
{
PL(dk)1, PL(dk)2, · · ·

}
.

(ii) Take d0 =
{
d01 , d02 , · · ·

}
into Equation (4) to calculate the PL at the reference distance PL(d0).

(iii) Calculate the average of PLs at each relative distance dk, denoted as E
{
PL(dk)

}
.

(iv) For each reference distance d0p , take n1 = {0, 0.01, 0.02, · · · , 10} into Equation (3) (subject to
d0 ≤ d ≤ db) to calculate the optimal nopt1 and Xσ1, which leads to the minimum RMSE of
E
{
PL(dk)

}
and PLDS(dk).

(v) For each reference distance d0p, take n2 = {0, 0.01, 0.02, · · · , 10} into Equation (3) (subject to d > db)
to calculate the optimal nopt2 and Xσ2, which leads to the minimum RMSE of E

{
PL(dk)

}
and

PLDS(dk).

In the PL prediction simulation using the FSPL-based model, six reference values d0 = {5, 6, · · · , 10}m
and corresponding PL indexes of n1 and n2 were calculated. The predicted MSE of the prediction
models using a training set, validation set, and test set were calculated. Simulation results show that,
regardless of the reference distance, the NN-based model outperforms the FSPL-based model in terms of
prediction accuracy.

3.1.2. Polynomial Fitting Model

Polynomial fitting model (PFM) is another commonly used model based on measured data
through the least-squares polynomial curve fitting. An approximate curve described by the function of
y = f (x) is drawn from the experimental data where the curve does not need to pass through modeling
data exactly. The expression of the approximate curve is

y = ϕ(x) =
k∑

j=0

a jx j, (5)

where k is the order of fitting curve, which is selected according to the loss function of the sum of the
squares of the errors. It is then adapted to the above polynomial equation. The sum of the distances
from each sample point to the fitted curve, representing the sum of squared deviation, is calculated by

E =
1
2

n∑
i=1

(yi −

k∑
j=0

a jx
j
i )

2

. (6)

The value of a j that minimizes E satisfies the condition that ∂E/∂a j = 0. After simplifying and
using the matrix representation, one can have

1 x1 · · · xk
1

1 x2 · · · xk
2

...
...

. . .
...

1 xn · · · xk
n




a0

a1
...

ak

 =


y1

y2
...

yn

. (7)

Equation (7) can be further abbreviated as XA = Y and the fitting curve can be acquired by
A = X−1Y.

The polynomial model was established through the following steps.

(i) The relative distances in the training set are rounded to the nearest meter, denoted as dk,

k = {5, 6, · · · , 199}, while corresponding PLs are denoted as PL(dk) =
{
PL(dk)1, PL(dk)2, · · ·

}
.

(ii) Calculate the average of PLs at each relative distance dk, denoted as E
{
PL(dk)

}
.
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(iii) Take k = {k1, k2, · · · } into Equation (5) to calculate the approximate curve for order kp.
(iv) Calculate the coefficient matrix of Ap = X−1Y using Equation (7) according to the order of kp.
(v) For each order kp, take Ap into Equation (5) to calculate the optimal kopt, which generates the

minimum RMSE of E
{
PL(dk)

}
and PLPF(dk).

In the simulation of the PFM, fitting orders of k = {1, 2, · · · , 24}were picked, where 24 was selected
by Monte Carlo simulation. The predicted MSE of the PFM and NN models based on a training set,
validation set, and test set was then calculated. Simulation results validate that for all orders tested,
the NN-based model has lower MSE, that is, more accuracy of prediction when compared with the
PFM-based model.

3.1.3. Generalized Gamma Shadowed Fading Model

Vehicular channels may experience fast fading as well as shadowing simultaneously. A model that
reflects the two types of fading is the GG distribution, of which the Probability Distribution Function
(PDF) and Cumulative Distribution Function (CDF) can be written as

fGG(pr) =
s

Γ(m)Pgm pr
ms−1e

−
prs
Pg

FGG(pr) =
s

Γ(m)Pgm

∫
pr

ms−1e
−

prs
Pg dpr

, (8)

where m is the fading parameter, s the shape parameter (typically restricted to 0 < s ≤ 1), and Γ(·) the
gamma function. The average power of GG channel, Pg, is expressed as

Pg =

 ωΓ(m)

Γ(m + 1
s )

s

, (9)

where ω is the time average of received power. A measurement study shows that m and s vary with
distance [3].

The GG PL model is built up through the steps described below.

(i) The relative distances in the training set are rounded to the nearest 5 m, denoted as dk,

k = {5, 10, · · · , 195}. The corresponding PLs are denoted as pr(dk) =
{
pr(dk)1, pr(dk)2, · · ·

}
.

(ii) Calculate PDF f (pr) at the relative distance dk of the received signal power.
(iii) Take m = {0.5, 0.6, · · · , 20} and s = {0.1, 0.2, · · · , 1} into Equation (8) to calculate the optimal

mopt(dk) and sopt(dk), which lead to the minimum RMSE of f (pr) and fGG(pr : m, s).
(iv) Putting mopt(dk) and sopt(dk) into Equation (8), we get the estimated PDF and CDF of the

received signal power at the relative distance dk, denoted as f̂GG(pr : mopt(dk)) and F̂GG(pr :
mopt(dk)), respectively.

(v) The estimated received signal power at the relative distance dk is p̂rGG(dk) =
∑

pr(dk) · F̂GG(pr :
mopt(dk), sopt(dk)).

3.2. A Novel Neural Network-Based Path Loss Prediction Model

In this subsection, an NN-based PL prediction model is discussed. The input of the NN is the
distance between Tx and Rx, gained from onboard GPS sensors, while the PL was calculated from RSSI
at Rx. All measurement data came from the above experiments.

The weight of the path from the ith input layer to the jth hidden layer is denoted as wi j and the
weight from the jth hidden layer to the kth output layer is w jk. The number of nodes in the input layer,
hidden layer, and output layer were N1, N2, and N3, respectively. Thus, we have i = {1, 2, . . . , N1},
j = {1, 2, . . . , N2}, and k = {1, 2, . . . , N3}. The weight vectors of each perceptron were optimized using
the back-propagation algorithm. We used the accumulated error BP algorithm and adjusted wi j and
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w jk to minimize the global error E. NN computations, starting from input data and going on to the
hidden/output layer weights computations, are shown in Table 2.

Table 2. Structure and computations of the neural network.

Input Data Hidden Layer Output Layer

xi: distance
yi: path loss H j = f (

N1∑
i=1

wi jxi + bH
j )

Ok =
N2∑
j=1

w jkH j + bO
k

Squared Error Function Hidden Layer Weights Hidden Layer Weights

E = 1
2 {

N2∑
j=1

ω jk f (
N1∑
i=1

ωi jxi) − yk}

2

δwi j =
N3∑

k=1
(Ok − yk)w jk(1−O2

k)xi δw jk = (Ok − yk)H j

Pseudo-code of NN development is presented as the following.

Algorithm 1 Developed of Neural Network

Input:
1: dataset = [train[dk, PL(dk)], validation[dk, PL(dk)], test[dk, PL(dk)]]

2: parahyper = [] // NN hyper-parameters including number of hidden layers, nodes of each hidden layers,
activation function, learning rate, epochs, training function, learning function, etc.
Output:
1: pred // Predict PLNN(dk) at each relative distance dk
2: rmse //RMSE of PL(dk) and PLNN(dk)

3: ACC // Accuracy of PL(dk) and PLNN(dk)

for parai
hyper in parahyper do

net = train_validation(train, validation, parai
hyper)

pred = net(test, parai
hyper)

E = RMSE(pred, test)
end for
paraopt

hyper = argmin(E)

predopt = net(test, paraopt
hyper)

rmseopt = RMSE(predopt, test)
ACCopt = Accuracy(predopt, test)
return predopt, rmseopt, ACCopt

With the NN developed in Algorithm 1, the prediction model is built up through the steps
described below.

(i) The relative distances in the training set are rounded to the nearest meter, denoted as dk,

k = {5, 6, · · · , 199}. The corresponding PLs are denoted as PL(dk) =
{
PL(dk)1, PL(dk)2, · · ·

}
.

(ii) Randomly divide the dataset into training set, validation set, and test set in proportions of 60%,
15%, and 25%, respectively.

(iii) Set NN parameters: number of nodes in each layer N1 = 1, N2 = 24, N3 = 1, activation function
tanh, learning rate η = 0.05, maximum number of epochs to train epochs = 60, sum-squared error
goal goal = 0.001, back-propagation weight/bias learning function learngdm, etc.

(iv) Train the NN model with the training set, and then tune the model’s hyper-parameters with the
validation set to reduce overfitting.

(v) Predict PLNN(dk) at each relative distance dk with the NN model from (iv) and then calculate the
RMSE of PL(dk) and PLNN(dk).

(vi) Repeat step (iii)–(v) when the scenario changes to obtain the optimal combination of parameters.
In the same scenario, the NN parameters are fixed after the optimal parameters are obtained.
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(vii) Estimate PLNN(dk) at each relative distance dk with The NN model from (vi) and then calculate
the RMSE of PL(dk) and PLNN(dk).

It can be seen clearly from Figure 4 that the NN model has the lowest MSE, that is, the best
accuracy among models. Simulations covered four road scenarios including rural areas, residential
areas, local areas, and highways.

The error bars in Figure 4 show the relationship between distance and PL, where distances were
rounded appropriately depending on the measured dataset. Figure 4 also illustrates the mean of µ and
the standard deviation of σ of PL at each distance. Tables 3–6 indicate statistical characteristics, such as
maximum, minimum, mean, and standard deviation, of the measurement data, that is, the dataset
used for PL prediction.

The orange dashed line was calculated from the dual-slope model. The breakpoint was set as
db = 171.4353 m. The minimum reference distance was set as d0min and d0 = {d0min, d0min + 1, · · · , d0min + 6}.
Among them, the smallest RMSE, distances and PL indexes are all shown in Figure 4. As one can see from
Figure 4, the prediction curve of the dual-slope model fits the average of the dataset and is always located
within [µ− σ,µ+ σ].

The yellow dash-dot line is gained from the PFM. Cases where the order was k = {1, 2 · · · , 24} are
simulated. Simulation results in Figure 3 show that, generally speaking, PFM performs better when
k = 1 or k = 2. The prediction curves were mostly distributed within the range of [µ+ σ,µ+ 2σ], which
is not centered around µ and is not able to predict the PL accurately.

The purple dotted line was calculated from the GG model. The prediction curve fluctuates,
reflecting the trend of PL but in smaller prediction values.

Table 3. Statistical characteristics of the dataset used for PL prediction in the residential area.

Distance (m)
Path Loss (dB)

Maximum Minimum Mean Standard Deviation

10 97 58 80.1250 8.0274
20 99 74 86.2434 4.0042
30 106 76 89.6890 5.4820
40 104 79 91.4143 4.7768
50 109 84 95.2534 4.2361
60 102 89 94.7170 3.4828
70 110 90 96.1111 6.4118
80 105 92 100.0000 5.5678

Table 4. Statistical characteristics of the dataset used for PL prediction in the local area.

Distance (m)
Path Loss (dB)

Maximum Minimum Mean Standard Deviation

10 95 72 87.3768 4.4295
20 106 79 88.2857 4.6142
30 102 81 88.8382 4.3174
40 106 80 93.0845 5.5978
50 104 82 95.8140 4.4468
60 102 86 95.7778 3.5261
70 106 85 97.6714 3.8475
80 111 82 96.0159 5.1334
90 111 89 99.7500 6.6114

100 109 89 100.6410 5.8915
110 112 91 101.0256 4.7099
120 109 91 101.0882 4.1514
130 105 91 98.0000 3.8730
140 111 90 98.3947 4.6646
150 109 90 102.0000 4.3028
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Table 5. Statistical characteristics of dataset used for PL prediction in the rural area.

Distance (m)
Path Loss (dB)

Maximum Minimum Mean Standard Deviation

10 96 70 83.0457 3.8613
20 100 76 86.2235 4.5544
30 100 78 88.1616 4.2047
40 104 81 89.4088 4.7390
50 100 84 92.9333 3.8857
60 100 85 91.4545 4.7616
70 108 85 95.2857 8.2606
80 107 84 96.4545 7.1044
90 113 85 104.1562 6.6338

100 111 85 101.8293 5.9745
110 110 92 104.3333 4.8866
120 116 85 101.3846 9.4122
130 111 92 103.0000 5.1547
140 115 97 107.3333 5.0513
150 114 93 105.2500 6.8772
160 108 95 101.0000 6.5574
170 105 98 102.2500 3.0957
180 110 99 105.0000 4.6904
190 116 102 109.5000 4.5056
200 113 104 107.0000 3.7417

Table 6. Statistical characteristics of dataset used for PL prediction on the highway.

Distance (m)
Path Loss (dB)

Maximum Minimum Mean Standard Deviation

10 96 74 84.9412 5.1898
20 94 72 82.9568 3.4555
30 97 76 84.9444 3.4816
40 98 76 87.8354 5.0656
50 104 80 91.2535 5.3068
60 102 80 94.5312 4.2151
70 106 80 95.9216 4.4670
80 111 82 97.2157 4.6173
90 111 81 99.8387 7.5012

100 109 78 101.1613 7.3986
110 112 80 100.4474 6.2545
120 109 81 100.3143 5.7944
130 105 79 96.9756 5.2321
140 111 82 97.8537 5.1940
150 109 90 101.6757 4.6789

The blue line labelled with triangles was gained from the NN prediction model. The results from
the NN model outperform those from the other three models. The prediction curve fits the average of
the dataset and always remains within in [µ− σ,µ+ σ]. For all road scenarios, it shows both the trend
and the details of PL. The peaks, such as at 80–90 m in the rural case and at 90–100 m in the local case,
etc., were likely caused by up fading, that is, multi-path conditions causing constructive summation of
several multi-path components.

For the four scenarios, the corresponding modeling parameters vary.

• In the Local case, the optimal parameters of the dual-slope model are d0 = 15 m, n1 = 1.34,
n2 = 1.36, and that of the PF model is order = 1.

• In the Residence case, the optimal parameters of the dual-slope model are d0 = 10 m, n1 = 1.22,
n2 = 1.48, and that of the PF model is order = 1.
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• In the Rural case, the optimal parameters of the dual-slope model are d0 = 12 m, n1 = 1.64, n2 = 2,
and that of the PF model is order = 2.

• In the Highway case, the optimal parameters of the dual-slope model are d0 = 54 m, n1 = 1.88,
n2 = 2.07, and that of the PF model is order = 1.

As shown above, the NN PL model achieves the best performance because the NN line is closer to
the real data than the other estimations.

The DS breakpoint model is limited by using log(·) to approximate the trend. High-order PFM
has an accuracy problem at the extremes of the range which results in reduced accuracy. The PF-based
model sacrifices accuracy slightly due to the continuity and smoothness of the mathematical model
adopted. Moreover, the PF-based model degraded extremely at the edge of the data range. The GG
model has more accurate predictions than those from the PF model based on a large dataset, which
is not suitable for the proposed real-time PL prediction. In addition, to find the optimal values of m
and s, all training sets are iterated repeatedly. The number of iterations is positively correlated with the
accuracies of m and s. Such processing takes time, which is not acceptable for real-time operation.

However, the NN-based PL prediction model uses a new way to explain relationships within the
dataset, which is more in line with the actual channel distribution. It can predict channel parameters
for hardware-in-the-loop simulations and modeling for vehicle networks, autonomous driving and
networked controlled robotics.

3.3. A Novel Real-Time Neural Network-Based Path Loss Prediction Model

For the applications of vehicle communications and autonomous driving, the channel is time-varying.
During the training phase, outdated data will be dropped as appropriate while updating the data.

The foremost task is to identify the number of packets to be used for a training set in a real-time
model. Simulation results showed that the number of packets is suggested to be no less than 900.
In each prediction period, 900 packets were therefore divided into training set, validation set, and test
set in proportions of 60%, 15%, and 25%, respectively.

Window factor, noted by s, is the percentage of the dataset that is updated. Datasets were updated
chronologically while the window factor was selected as s = 5%. The time window, noted by ts,
is given by

ts = ldata · s · tpacket, (10)

where, ldata is the number of packets of the dataset and tpacket the duration of the packet.
The time window can be reduced by shortening the time duration of the packet if necessary.
Figure 5 compares the offline and real-time PL prediction model based on the NN. In the offline

model, the whole dataset is used, while the real-time model only uses data that is within the coherent
window described above.

The coverage areas are different in each slot. The PL prediction for both offline (orange *) and
real-time models (colored lines) generated similar results. Figure 6 shows the correlation coefficients of
6 real-time PL prediction curves. The dataset adopted is from the rural areas, but can be applicable
to others as well. Different areas lead to individual PL curves, but all function well. For simplicity,
the following results are based on rural areas only.

The real-time PL prediction curves are defined as ˆPLi and ˆPL j in different slots, where i = {1, 2, . . . , 6}
and j = {1, 2, . . . , 6} in this case. The correlations of PL curves are meaningful and defined as ˆPL′i
and ˆPL′j. The correlation coefficient is used as a measure of the linear dependence between them.
If a variable has Ni j scalar observations, then the Pearson correlation coefficient is defined as

ρ( ˆPL′i ,
ˆPL′j) =

1
Ni j − 1

Ni j∑
p=1

(

ˆPL′i p − µi

σi
)

T

(

ˆPL′jp
− µ j

σ j
), (11)
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where µi and σi are the means and standard deviations of ˆPL′i , respectively, and µ j and σ j the means
and standard deviations of ˆPL′j.
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The cross-correlation matrix can be expressed as

ρPL =


ρ( ˆPL′1, ˆPL′1) ρ( ˆPL′1, ˆPL′2) · · · ρ( ˆPL′1, ˆPL′6)
ρ( ˆPL′2, ˆPL′1) ρ( ˆPL′2, ˆPL′2) · · · ρ( ˆPL′2, ˆPL′6)

...
...

. . .
...

ρ( ˆPL′6, ˆPL′1) ρ( ˆPL′6, ˆPL′2) · · · ρ( ˆPL′6, ˆPL′6)

. (12)

The theory of strict frames (rules) for correlation may be presented as follows:

• 0 ≤
∣∣∣ρ∣∣∣≤ 0.20 : the correlation is non-important;

• 0.20 <
∣∣∣ρ∣∣∣≤ 0.60 : the correlation is weak;
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• 0.60 <
∣∣∣ρ∣∣∣≤ 0.90 : the correlation is strong;

• 0.90 <
∣∣∣ρ∣∣∣≤ 1.00 : the correlation is very strong.

The correlation coefficients of two consecutive slots are close to one. This result is in line
with expectations:

• The updated dataset can effectively predict the trend of PL. The PL prediction curves at different
slots have coherent shapes and trends at the same distance.

• It also varies practically as the environment changes. In some cases, even though Tx and Rx take
the same distance, the PL shape predicted demonstrated variations. This is due to changes in the
environment where the two vehicles are located, such as obstacles and occlusion.

The real-time PL prediction model was proven to be able to predict not only the trend, but also
the local variations in real time.

4. A Real-Time Packet Drop Prediction Model

This section proposes a real-time NN based PDR prediction model which corresponds to our
third contribution. Besides PL, there is another parameter in wireless communication, that is, PD.
The proposed NN model for predicting channel parameters is applicable not only to PL but also to other
parameters. Therefore, in this section, we will present the performance of the proposed NN prediction
model for the channel parameters, that is, PD. It has been found that PD is partially relevant to relative
distance, relative speed, PL, and frequency. Many causes are hard to describe with a mathematic
model, let alone the real-time implementations. To this end, this section proposes a real-time prediction
model of PD probability based on NNs.

Packet drop series could be regarded as time series, which could be predicted by both the
NN-based method and statistical average method. The proposed model takes n1 packets to predict
PDR in following n2 packets. The model updates itself in every n3 packets. Usually, n3 < n2; thus,
the prediction window is able to cover transmission times of interest. The framework of the PDR
prediction is shown in Figure 7.Sensors 2019, July 23 FOR PEER REVIEW 16 of 22 
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In the simulation, the dataset is randomly selected from the above experiments. The dataset is
divided into training, validation and test sets according to the proportions of 60%, 15%, and 25%,
respectively. The input is either 0 or 1, representing whether the packet is received (input = 0) or
dropped (input = 1). The label is the round-trip PDR in the next n2 packets. The structure of the
PRD prediction neural network is shown in Figure 8. The activation function is f (·) = tanh(·) and
the learning rate is η = 0.05. The number of neurons in the hidden layers are N(1)

2 = 150, N(2)
2 = 100,

N(3)
2 = 50, and N(4)

2 = 25, respectively. The outputs of the four hidden layers are
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H(1)
j = f (

N1∑
i=1

wi jxi + b(1)j ) H(2)
m = f (

N(1)
2∑

j=1
w jmH(1)

j + b(2)m )

H(3)
n = f (

N(2)
2∑

m=1
wmnH(2)

m + b(3)n ) H(4)
p = f (

N(3)
2∑

n=1
wnpH(3)

n + b(4)p )

. (13)

Simulations were performed to validate the effectiveness of the real-time PD prediction model
under different values of n1, n2, and n3, with the criteria described as below:

• The value of n1 should be carefully chosen to balance between past data and prediction data.
In the model, n1 = {100, 120, · · · , 500}.

• The value of n2 should be selected in such a way that corresponding prediction time should be
within the channel coherent time. In the model, n2 = {2, 4, · · · , 30}.

• n3 is selected as to be equal or less than v resulting in a prediction window covering transmission
times of interest. In the model, n3 = 0.5 · n2, i.e. n3 = {1, 2, · · · , 15}.

• Several combinations of n1, n2, and n3 were adopted in the simulation to get a good prediction
accuracy. A comparison factor is defined as, α = accuracy/MSE2. The set of n1, n2, and n3

resulting in the largest α is optimized.

The simulation results are shown in Figure 9. It shows the values of MSE during the training,
validation, test, and overall set. MSE roughly reduces with the decrease of n1 or the increase of n2.
The set of n1 = 180, n2 = 20, and n3 = 10 achieve the maximum value of α.

Next, the performance of the proposed NN based model was compared with that of the statistical
average based model. The statistics-based model averages the values of PD in n1 data to predict the
probability of PD in the following n2 data. Predictions are updated with every n3 new data gained.
Similarly, the NN-based model is constantly trained by the dataset, consisting of the inputs n1 data,
and outputs probability of PD in next n2 data. With every n3 new data gained, the prediction updates.
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Tables 7–9 list the PDF of the training, validation and test set. The probability of PD can be
obtained through the softmax layer which are shown by bold style in Tables 7–9.

Table 7. PDF of the training set (partial).

PDR Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10

0 0.1010 0.5141 0.7770 0.1493 0.4073 0.1006 0.0272 0.1346 0.0031 0.0027
0.05 0.0091 0.1227 0.0306 0.0486 0.1841 0.4865 0.6315 0.2689 0.0258 0.0689
0.1 0.6214 0.1364 0.0469 0.6910 0.1469 0.0142 0.1043 0.0094 0.0448 0.0784

0.15 0.0802 0.0544 0.0372 0.0522 0.0814 0.1027 0.0756 0.2819 0.0890 0.0539
0.2 0.0066 0.0091 0.0085 0.0049 0.1055 0.1333 0.0397 0.0154 0.0794 0.0280

0.25 0.1133 0.0036 0.0013 0.0135 0.0253 0.0751 0.0161 0.0187 0.0942 0.0258
0.3 0.0335 0.1364 0.0840 0.0089 0.0085 0.0065 0.0232 0.0237 0.0009 0.0022

0.35 0.0076 0.0021 0.0018 0.0045 0.0035 0.0145 0.0044 0.1576 0.0084 0.0102
0.4 0.0043 0.0102 0.0054 0.0010 0.0123 0.0309 0.0243 0.0731 0.0602 0.0682

0.45 0.0008 0.0084 0.0064 0.0013 0.0013 0.0005 0.0077 0.0018 0.0002 0.0013
0.5 0.0159 0.0004 0.0001 0.0034 0.0042 0.0063 0.0113 0.0022 0.4935 0.5798

0.55 0.0011 0.0004 0.0002 0.0009 0.0121 0.0191 0.0249 0.0020 0.0940 0.0614
0.6 0.0052 0.0019 0.0005 0.0204 0.0077 0.0100 0.0100 0.0107 0.0065 0.0191

Table 8. PDF of the validation set (partial).

PDR Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10

0 0.4128 0.1069 0.0260 0.0297 0.9445 0.0196 0.6496 0.7081 0.7426 0.6915
0.05 0.1707 0.1433 0.0606 0.0776 0.0081 0.6812 0.2323 0.1752 0.1502 0.1875
0.1 0.0599 0.0090 0.7560 0.8014 0.0061 0.0258 0.0444 0.0248 0.0285 0.0190

0.15 0.1215 0.5091 0.0646 0.0125 0.0221 0.0615 0.0377 0.0593 0.0505 0.0532
0.2 0.0942 0.0042 0.0094 0.0092 0.0031 0.0233 0.0062 0.0051 0.0057 0.0050

0.25 0.0099 0.0031 0.0057 0.0044 0.0036 0.0461 0.0016 0.0011 0.0013 0.0009
0.3 0.0453 0.0406 0.0064 0.0216 0.0096 0.0566 0.0183 0.0150 0.0113 0.0271

0.35 0.0038 0.0183 0.0077 0.0038 0.0012 0.0352 0.0008 0.0014 0.0012 0.0012
0.4 0.0573 0.1572 0.0100 0.0031 0.0008 0.0119 0.0026 0.0038 0.0041 0.0074

0.45 0.0079 0.0040 0.0026 0.0129 0.0004 0.0113 0.0040 0.0041 0.0027 0.0063
0.5 0.0045 0.0011 0.0265 0.0058 0.0000 0.0046 0.0001 0.0001 0.0001 0.0001

0.55 0.0099 0.0013 0.0121 0.0008 0.0001 0.0056 0.0007 0.0007 0.0008 0.0004
0.6 0.0023 0.0019 0.0123 0.0173 0.0005 0.0173 0.0016 0.0013 0.0011 0.0005
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Table 9. PDF of the test set (partial).

PDR Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10

0 0.8990 0.3699 0.6171 0.0535 0.1934 0.0291 0.1063 0.1026 0.0574 0.0573
0.05 0.0325 0.1297 0.0892 0.1119 0.4130 0.7108 0.0794 0.0963 0.4116 0.2640
0.1 0.0207 0.0057 0.0294 0.6808 0.0185 0.0994 0.0338 0.0294 0.0202 0.0282

0.15 0.0283 0.3187 0.1835 0.0535 0.1708 0.0192 0.1682 0.0929 0.0987 0.1590
0.2 0.0076 0.0153 0.0198 0.0157 0.0994 0.0257 0.0026 0.0602 0.2247 0.1464

0.25 0.0024 0.0060 0.0088 0.0153 0.0154 0.0016 0.0321 0.5370 0.0301 0.0203
0.3 0.0043 0.0506 0.0180 0.0321 0.0113 0.0301 0.5369 0.0097 0.0161 0.0086

0.35 0.0017 0.0195 0.0104 0.0033 0.0174 0.0198 0.0111 0.0111 0.0119 0.0581
0.4 0.0011 0.0765 0.0168 0.0103 0.0421 0.0247 0.0144 0.0105 0.0783 0.1462

0.45 0.0006 0.0020 0.0012 0.0090 0.0011 0.0130 0.0089 0.0006 0.0065 0.0019
0.5 0.0001 0.0012 0.0007 0.0068 0.0018 0.0027 0.0015 0.0239 0.0136 0.0525

0.55 0.0005 0.0025 0.0017 0.0028 0.0105 0.0018 0.0011 0.0173 0.0238 0.0316
0.6 0.0013 0.0023 0.0034 0.0051 0.0052 0.0221 0.0037 0.0085 0.0069 0.0259

According to the measured data, the probability of PD in 20 packages is PPD = {0, 0.05, · · · , 0.6}.
In Tables 7–9, each column lists a slot and the number of slots is determined by the length of dataset. Ten
slots were selected to illustrate the results and principles of the PD prediction model. The probability
corresponding to the maximum value of PDF in each slot is the output of the prediction model.

A comparison of the real-time prediction performance of the two models is shown in Figure 10.
The prediction results are divided into four types: A indicates that the NN based model can predict the
probability of PD, while a statistics-based model does not; B indicates that both models can predict;
C implies that the statistics-based model can predict the probability of PD while the NN based model
fails; and D shows that neither model can predict it.
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The RMSE and accuracy of real-time prediction models using the two methods is shown in
Table 10. The accuracy of the NN-based model consists of case A and case B and the accuracy of
a statistics-based model contains case B and case C.

Simulation results show that the NN-based PD prediction model has a lower RMSE and higher
accuracy than those of a statistics-based model. RMSE was reduced by 18.73% while the accuracy was
increased by 85.19%. See Table 10 for more numerical comparisons.
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Table 10. Simulation result: RMSE and accuracy of two real-time prediction models.

NN Model Statistic Model Improvement

n1opt 140 100
n2opt 20 22
n3opt 10 11

RMSEtrain 0.0881 0.1050 16.10%
RMSEval 0.0722 0.0884 18.33%
RMSEtest 0.0814 0.1084 24.91%
RMSEall 0.0842 0.1036 18.73%

ACCtrain 0.7067 0.3634 94.47%
ACCval 0.6915 0.4186 65.19%
ACCtest 0.6943 0.3916 77.30%
ACCall 0.7013 0.3787 85.19%

α 13925 3288

The performance of the statistics-based model was not as good as the NN-based model because
the dataset is not large enough. There are two contradictory conditions that limit the performance of
the statistics-based model:

• Increasing the size of the dataset enhances the prediction accuracy of the statistics-based model.
• Adding more datasets requires more previous time data, which are less relevant to the present

and future slots. Furthermore, it reduces the accuracy of PD prediction.

The statistics-based model is, therefore, not applicable for wireless communications. In summary,
the NN-based PD prediction model outperforms the statistics-based model and can be used to provide
a good reference for the link status for wireless communications.

5. Conclusions

This paper proposes an NN-based PL and PD prediction model, working in either offline mode or
online mode. The functionality has been well addressed and validated through extensive simulations.
The NN-based channel prediction model is regarded as a new approach able to learn and predict both
long-term and short-term variations of PL, PD and latencies.

The proposed PL prediction model was carefully studied and compared with three typical PL
prediction models, namely, dual-slope distance-breakpoint PL model, polynomial fitting model, and
GG shadowed fading model. The study concludes that the proposed NN-based prediction model is
has better performance when balancing between large-scale averaging and small-scale fitting.

Moreover, the proposed model features real-time implementation through updating its training
dataset with the most recent measurements, while its transitional counterpart is incapable of doing this.

Furthermore, under the same conditions, the NN PD prediction model demonstrates better
prediction capability if the appropriate time window is selected with enough coherent training sets.

The next step of this effort is to present a novel channel prediction models based on long-short term
memory (LSTM) to addresses the impact of various environmental parameters on channel parameters.
LSTM could show more details among time series, compared with the BP algorithm utilized in this
paper, through capturing both long term memory to reflect categories of environment adaptively, and
short-term memory varying with consecutive channel prediction windows.
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