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Abstract: This paper describes the study and experimental verification of sensorless control of
permanent magnet synchronous motors with a high precision drive using two novel estimation
methods. All the studies of the modified Luenberger observer, reference model, and unscented
Kalman filter are presented with algorithm details. The main part determines trials with a full range
of reference speeds with a special near-zero speed area taken into account. In order to compare the
estimation performances of the observers, both are designed for the same motor and control system
and run in the same environment. The experimental results indicate that the presented methods are
capable of tracking the actual values of speed and motor position with small deviation, sufficient for
precise control.

Keywords: PMSM; permanent magnet motors; sensorless control; observers; variable-speed drives;
Kalman filter

1. Introduction

Permanent magnet synchronous motors (PMSM) are commonly used in machining tools and
industrial power systems. PMSM-based drives are used in industry both in the drives with the highest
precision and those without. The basic advantages of the PMSM drive are high dynamics and high
energy efficiency. These attributes result from a small moment of inertia, a high torque to weight ratio,
and negligible electrical losses in the rotor. The disadvantage of the traditional PMSM drive is the need
to know the flux position. Information about the current position of the shaft flux is used to control the
transformation between the coordinate systems and to determine the rotational speed. Eliminating the
mechanical sensor that is used to measure the speed and position of the shaft will make it possible to
obtain low-cost solutions (the cost of the sensor and its installation) and more compact construction
(two-side shaft) and will increase the reliability of the drive [1].

Controlled electric drives without mechanical speed and position sensors at the motor shaft
are attractive because of low cost and high reliability. The adjective “sensorless” refers to the lack
of any mechanical sensors, but the presence of electrical transducers. Readers can consult [2–16],
current works on several developed methods, most of which are based on observer theory. One such
work, considered here, is based on back electromotive force (EMF) estimation [17–19]. Another is the
widely-known Kalman filter theory [20]. During all investigations, only terminal signals were used:
stator voltages and stator currents, both for simulation and laboratory experiment proof.

In order to control the drive systems for the non-zero speed range, different methods for estimating
the shaft position are used [21–27], including the Luenberger observer [17], the modified Luenberger
observer (with multiple integrator) [24], and the above-mentioned Kalman filter [25]. In the case of
sensorless drives in the low-speed range (assuming the following distinction for sensorless operation:
low speed, the speed of a single revolution per second; very low speed, the speed of a single revolution
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per minute), it is usually assumed that the methods based on estimating the electromotive forces do not
work properly [22,26,27]. This is explained by the small amplitude values of back EMF and a relatively
high noise level in this speed range, which has an impact on the accuracy and stability of the back
EMF estimator. Experimental tests have shown in [18] that even at the low speed, shaft position can be
estimated using the back EMF observer with satisfactory accuracy. The question of the (estimated)
speed calculation using common methods gives sufficient accuracy, for example the method based on
the length of the back EMF vector or the derivative of the position of the shaft, whereas this range of
speed usually does not give good results. The solution may be a new control structure, as presented in
this paper.

This article is organized as follows. First, the design considerations are presented, and some
problems in sensorless control are indicated. Next, the model of the PMSM oriented into observers’
structures is proposed. Then, the theoretical background of the unscented Kalman filter (UKF) and
Luenberger observer with novel correction models is described. Finally, the effectiveness of the proposed
sensorless control system is verified in the laboratory.

2. Sensorless Control

Achieving comparable speed control of an electrical machine with and without external shaft
sensors is possible. Sensorless control is based on rejecting any mechanical sensors placed on the
machine shaft during mechanical quantities’ control. As described in [2,28,29], that type of rejection
provides advantages such as: increased reliability of the drive, ability to work in adverse environmental
conditions, and a decrease in the cost of the drive system.

Field-oriented control can be called the classical method of PMSM control, where field orientation
determines the space vectors of magnetic flux, current, and voltage [2,30–32]. This simple control
scheme is presented in Figure 1. There is a two-axis flat space, perpendicular dq axes, where d is
rotor flux coordinated. Thus, its magnitude position can be obtained directly from the rotor shaft
by measuring the rotor angle. An optimally-efficient operation is achieved by the stator’s current
control, which ensures that it contains only a quadrature q axis component [28,30]. It is possible to set
up the coordinate system to decompose the vectors into electromagnetic field generation and torque
production [33]. Field-oriented control ensures the high dynamic performance of the electric drive with
PMSM and the PWM inverter.
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Figure 1. The proposed sensorless drive scheme.

2.1. Estimation Vector

In analyzing real motor and model behaviors, some variables should be specifically considered.
From the observer’s point of view, some variables should be estimated because they are an important
part of the state space model. Based on the analysis, complex mechanical structures of supplied electric
drives are noted; such generalized load torque Tl can be helpful during control. The problem of this
extended observation has often been noted in the literature [13,34,35]. The state space vector of the
proposed observer is:

x̂ =
[

id iq ωr γ Tl

]T
, (1)

where id and iq are the dq axis currents, ωr is the rotor speed, γ is the mechanical shaft (excitation flux
magnitude) position, and Tl is the generalized load torque.

2.2. Mathematical Model of PMSM

The classical control system statistical approach determines the state transition and measurement
probability model of the system with densities:

p (xt|xt−1, ut) (2)

p
(

y
t
|xt

)
(3)

where xt ∈ Rnx denotes the states (hidden variables and/or parameters) of the system in time t
and y

t
∈ Rny known observations. The states follow a first order Markov chain process, and the

observations are assumed to be independent given the states, so the model can be expressed as:

xt = f (xt−1, ut, vt−1) , (4)

zt = h (xt, nt) , (5)
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where ut ∈ Rnu denotes the input observations and vt ∈ Rnx and nt ∈ Rny are noises for the process
and measurements, respectively. State space representation can be presented as:

xt = Ft(xt−1)xt−1 + Bt(xt−1)ut + vt−1 , (6)

zt = Ht(xt)xt + nt , (7)

The mathematical model of the considered PMSM can be divided into three main parts: the
stator’s electrical circuit, electromechanical torque production, and the mechanical subsystem [36].
Some simplified assumptions should be introduced: saturation is neglected; inducted electromagnetic
force is sinusoidal; eddy currents and hysteresis losses are neglected; no dynamical dependencies
in the air-gap; no rotor cage. The rotor-oriented dq electrical network equations of PMSM can be
described as:

ud = Rsid + Ld
did
dt
− pωrLqiq , (8)

uq = Rsiq + Lq
diq
dt

+ pωrLdid + pωrΨm . (9)

where ud, uq are the dq axis voltages, id, iq are the dq axis currents, Ld, Lq are the dq axis inductances, Rs

is the stator resistance, and Ψm is magnetic flux produced by permanent magnets placed on the rotor.
The produced electromagnetic torque is given by the relationship:

Te =
3
2

p
[
Ψm −

(
Lq − Ld

)
id
]

iq , (10)

where p is the number of pole pairs, and fraction 3
2 stems from frame conversion: perpendicular

stator αβ into the rotor dq reference frame.
Drive dynamics can be described as:

Te − Tl = J
dωr

dt
, (11)

where Tl is load torque and J is the summary moment of inertia of the kinematic chain.
Based on (10) and (11), the movement equation is:

dωr

dt
=

p
J

[
3
2
(
Ψm −

(
Lq − Ld

)
id
)

iq

]
− Te

J
. (12)

Rotor position γ can be described by the derivative equation of the rotational speed:

dγ

dt
= p ωr . (13)

For the presented approach, the assumption that load torque Tl is invariable in a small interval
is true:

d
dt

Tl ≈ 0 . (14)

The model can be described as the classical discrete function model, with sample time Ts as the
state space model. The system parameters’ matrix Ft is:

Ft(x̂t) =


1− Ts

Rs
Ld

Ts ωr
Lq
Ld

0 0 0

−Ts ωr
Ld
Lq

1− Ts
Rs
Lq
−Ts

Ψm
Lq

0 0

0 T1 0 0 −Ts
1
J

0 0 Ts 1 0
0 0 0 0 1

 , (15)



Sensors 2019, 19, 3546 5 of 25

where:
T1 = Ts

3
2

p
J

[
Ψ f −

(
Lq − Ld

)
id

]
The output matrix Ht is a Clarke/Park transformation:

Ht(x̂t) =

[
cos γ − sin γ 0 0
sin γ cos γ 0 0

]
, (16)

and matrix Bt:

Bt(x̂t) =


Ts

1
Ld

cos γ Ts
1

Ld
sin γ

−Ts
1
Lq

sin γ Ts
1
Lq

cos γ

0 0
0 0
0 0

 . (17)

3. The Kalman Filter Sensorless Control

In control systems and statistics, the Kalman filter is a recursive algorithm with infinite impulse
response [20]. This means that the derivative of the known estimate d

dt x, called the system trend,
and the set of output measurements y

k
are sufficient to estimate the current state of the system xk at

each time t ∈ (0, ∞). For the Kalman filter, it is not necessary to know the history of observations.
Mathematically, the Kalman filter states can be described by two variables: d

dt x, a trend that is the
derivative of the current state estimate obtained based on knowledge of observation and Pk|k the
uncertainty of that, the error covariance matrix of the estimation process.

The Kalman filter estimation process is divided into two subsequent stages: prediction
and correction. The entire process filter’s computation is performed recursively to obtain the optimum
value of the corrector Kk with an assumed error that is as small as possible ε. Prediction performs
the state estimate x̂ based on the trend and input signal u. Correction leads to improvements in the
new estimate of the exact value x̂ based on the measured output y

k
and the value of the corrector Kk.

Prediction is also called time actualization and is based on knowing the derivative of the state d
dt x̂. It is

described as a relation in the presence of input u:

d
dt

x̂ = Fk x̂ + Bku . (18)

Innovation and some form of filtering at this stage cause updates with a vector of state variables x of
the system covariance P, based on state function (18):

Pk|k−1 = FkPk−1|k−1FT
k + Q . (19)

Correction, which is the actualization of the measurement, involves the introduction of the correction
signal based on the measured output zk. It is defined as the difference in response values of the
observer and the measured output signal, like a residual:

ỹ
k
= zk −Hk x̂k|k−1 . (20)

Additionally, the innovation covariance system is introduced, based on knowledge of the measurement
covariance R:

Sk = HkPk|k−1HT
k + R . (21)

Based on the above, the mathematical form of the corrector can be determined by:

Kk = Pk|k−1HT
k S−1

k , (22)
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which together with the calculated residual (20) corrects the state vector:

x̂k = x̂k−1 + Kk ỹ
k

. (23)

With this correction of the state vector x̂k, the covariance is also corrected:

Pk|k = (I −KkHk)Pk|k−1 . (24)

The above formula for the Kalman filter at optimal Kalman gain Kk is valid only for linear systems.
Based on the above assumptions, Pk|k and the Kalman gain Kk are constant and can be derived once
based on Fk, Bk, Hk. The calculation is usually carried out iteratively until there is a certain convergence
to a consistent result.

There are many developments of the above technical procedure to gain Kk, which very often
reduces the computational complexity. These are: extended Kalman filters (EKF) and the unscented
Kalman filters, both extended for non-linear systems, as described below.

Unscented Kalman Filter

A main noticeable problem during the estimation of non-linear systems’ behavior exists: it is
difficult to determine the probability distribution and the non-linear function of the state and output
[37–40]. This means that the non-linear transformation of the deviation and the Jacobians needed for an
extended Kalman filter do not determine the real covariances. An EKF is based on the classical Kalman
filter with the following main assumption: linearity of the object. It is in this way that the covariances
are calculated [20,38]. For the class of non-linear objects, the covariances should be associated with the
process, but cannot be coupled to setpoint the linearized models of the object. Based on the particular
analysis of non-linear systems, the covariance of the state should not be associated with a linearized
system and can even be far from them.

An unscented Kalman filter is an improvement over the extended Kalman filter algorithm. Simon Julier
and Julie Uhlman demonstrated in [39] a new context for the estimation of the theoretical problem based
on unscented transformations. This method is for calculating the statistics of a random variable, so it is
easier to approximate the Gaussian distribution associated with each proposed state vector variable,
rather than approximate the non-linear function of the described system behavior. It is possible to
simplify the algorithm by eliminating Jacobian calculations. The used approach is based on two
assumptions: the first is the determination of the non-linear transformation of the function at work
that does not apply to the whole range of the probability density distribution function. The second
point concerns the search for work in which this density corresponds to the actual decomposition
of the non-linear system. This filter is based on two cycles of procedures: prediction and correction,
like its predecessor.

Prediction can be used independently of the UKF update, in combination with the proposed
classical linear update. As assumed in the classical Kalman filter approach [20] and as is the case for
extended Kalman filter prediction, one proceeds in a similar way for each solution. In this case, however,
the estimation state vector of the value of disturbances is extended. Such a procedure makes it possible
to estimate the state vector and its distributed environment. Strictly speaking, this surrounding will
transform non-linear disturbances [39].

A new xa
k−1|k−1 vector is defined:

xa
k−1|k−1 = [x̂T

k−1|k−1 E〈wT
k 〉 E〈vT

k 〉 ]T . (25)
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Thus, it is natural to define its covariances, which are formed by taking the covariances of the
state vector Pk−1|k−1, the known process noise covariance Qk, and the distortion measurement Rk.
It therefore assumes the form:

Pa
k−1|k−1 =

 Pk−1|k−1 0 0
0 Qk 0
0 0 Rk

 . (26)

A set of 2L + 1 sigma points, χk−1|k−1, is derived from the augmented state and covariance,
where L is the dimension of the augmented state:

χ0
k−1|k−1 = xa

k−1|k−1 , (27)

χi
k−1|k−1 = xa

k−1|k−1 +
(√

(L + λ)Pa
k−1|k−1

)
i
, (28)

for i = 1..L ,

χi
k−1|k−1 = xa

k−1|k−1 −
(√

(L + λ)Pa
k−1|k−1

)
i−L

, (29)

for i = L + 1, . . . 2L ,

The matrix square root
(√

nPk
)

should be calculated using numerically-efficient and stable
methods, such as the Cholesky decomposition. The sigma points χi

k|k−1 are propagated through the
state space transition function (18):

χi
k|k−1 = Fkχi

k−1|k−1 + Bkuk, i = 0..2L . (30)

The weighted sigma points χi
k|k−1 are recombined to produce the predicted state x̂k|k−1 and

covariance Pk|k−1:

x̂k|k−1 =
2L

∑
i=0

Wi
sχi

k|k−1 , (31)

Pk|k−1 =
2L

∑
i=0

Wi
c [χ

i
k|k−1 − x̂k|k−1][χ

i
k|k−1 − x̂k|k−1]

T , (32)

where the weights Ws and Wc for the state and covariance are given by:

W0
s =

λ

L + λ
, (33)

W0
c =

λ

L + λ
+ (1− α2 + β) , (34)

Wi
s = Wi

c =
1

2(L + λ)
, (35)

where α, β, and κ are noise distribution parameters and λ is chosen arbitrarily. These are helpful during
filter tuning [40]. Typical values for α, β, and κ for the majority of applications in which the disturbance
is located in the Gaussian noise assumptions are, respectively, 10−3, 2, and 0. Any differences from
these values can only lead to easier tuning of the filter because they add additional degrees of freedom.

Correction is fitted strictly from the classical form. The proposed sigma points χi
k|k−1 are projected

through the known observation function Hk:

Υi
k = Hkχi

k|k−1 , i = 0..2L . (36)
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Based on weights Wi
s and Wi

c from (35) and the observation matrix Υi
k, it is possible by recombination

to obtain the output signal:

ẑk =
2L

∑
i=0

Wi
sΥi

k , (37)

and also the output covariance:

Pzkzk =
2L

∑
i=0

Wi
c [Υ

i
k − ẑk][Υ

i
k − ẑk]

T . (38)

The correction Kk depends on the obtained state Pk|k−1 and the innovation of the system Sk
covariances and so is similar to (38). Based on the Kalman correction definition:

Kk = Pxkzk P−1
zkzk

, (39)

where Pxkzk should be:

Pxkzk =
2L

∑
i=0

Wi
c [χ

i
k|k−1 − x̂k|k−1][γ

i
k − ẑk]

T . (40)

As in the classical Kalman filter, the output residual is:

ỹ
k
= zk − h(x̂k|k−1) . (41)

The correction of the state is done by:

x̂k|k = x̂k|k−1 + Kk(zk − ẑk) . (42)

The adjusted covariance matrix Pk|k is a prediction of Pk|k−1 corrected by weighted values:

Pk|k = Pk|k−1 −KkPzkzk KT
k . (43)

The algorithm is periodic, and the obtained data are shifted for future steps.
The main advantage of the unscented Kalman filter is the estimation of the state and output variables

with each natural noised environment described by sigma points χi
k|k−1. Each of the variables and

their environment are easily described by noise covariance, Qk and Rk, respectively for states xk
and outputs y

k
. During the estimation process, sigma points χi

k|k−1 change towards least squares
error minimization. Based on that, the operations Qk and Rk as part of Pk are under modification.
Consequently, it is important to choose properly the initial values of Q0 and R0.

4. Control Structure for Low-Speed Range Using the Reference Model

4.1. Position Observer

The choice of a position observer structure is not essential for the present mode of operation of
the speed control. The described control structure for the low-speed range, however, includes also the
observer (Figure 2, Module 12). The shaft position is determined on the basis of the estimated value of
the back EMF. In order to reconstruct the back electromotive forces in a stationary coordinate system
αβ associated with the stator, a modified structure of the Luenberger [17,41] observer was used, with
the proportional-integral correction function:

F [∆i] = Kp [∆i] + Ki

∫
[∆i] dt (44)

where Kp is a proportional gain, Ki is an integration gain, and ∆i is an estimation error of current.
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The used type of observer was thoroughly described in [11] and its potential for low speed
range in [18]. The sine and cosine values of the shaft position were determined based on simplified
trigonometric dependency:

sin (γ̂) = − êα

|ê| , (45)

cos (γ̂) =
êβ

|ê| , (46)

where êα and êβ are estimated in a stationary coordinate system. The back EMF values and modulus
|ê| were defined as:

|ê| =
√

ê2
α + ê2

β . (47)

Figure 2. Control structure for the low-speed range.

4.2. Modified Control Structure

The proposed sensorless control system was designed to work specifically at the low-speed range,
despite the fact that the system was based on an EMF estimation. This system has the ability to
start without the use of additional boot algorithm, and could also be used in other speed ranges.
The presented structure differs from the known form of control structures, such as MFC (model
following control) [42], MRAS (model reference adaptive system) [43], or MRAC (model reference
adaptive control) [44]. This system is characterized by the use of the source of reference voltage in
the control chain and the use of the correction loops, which are based on currents idiq in the rotor
reference frame.

The scheme of the new sensorless control structure for speed control of the PMSM drive is shown
in Figure 2. The structure components are as follows:

1. Adder for the reference speed modifier
2. Reference model of the drive
3. Reference modifying speed gain
4. Rotator
5. Inverse Clarke transformation unit
6. Inverter unit
7. Transformer
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8. Current sensors
9. Controlled motor

10. Clarke transformation unit
11. Park transformation unit
12. Position observer
13. Current id corrector
14. Adder for the correction circuit for current id

15. Load estimator
16. Adder for the load estimator
17. Rate limiter

You will notice a dedicated block for the shaft position observer and the block that is the source of
reference signals. The main elements of the control scheme are: the source of reference signals (Module
2), the position observer (Module 12), and the auxiliary systems: correction circuit for the current axis
d (Modules 3, 4, 13, 14), the load estimation (Modules 15, 16), and the correction of reference speed
(Modules 1, 3, 14, 17). The source of reference voltages is an appropriately-transformed model of the
PMSM drive, which is working in speed control mode (Figure 3).

Its inputs are the current value of the corrected reference speed ωre f 2 and estimated load torque T̂l .
Its outputs are: reference voltage uα−re f , uβ−re f , set in a stationary αβ coordinate system associated with
the stator, and the current reference id−re f and iq−re f in the dq reference frame rotating synchronously
with the rotor. The model of the speed control is determined on the basis of generally-known
relationships describing PMSM and the well-known vector control structure with speed and current
control. It includes the current control circuits in the dq coordinate system and also the outer speed
control loop. The inverter in the reference model is omitted. The shown structure of sensorless control
allows controlling the current (in a real machine) in the axes d and q, as in conventional systems of
vector control. The accuracy of modeling the drive with PMSM affects the accuracy of estimating
the operating point of the motor in the reference model, which affects the real motor operating point.
In the case of the presented structure, the type and structure of the position observer are not important
for the operation of the whole system. In the examined drive system, in order to reproduce the position
of the shaft, an observer of the electromotive force is used. These values are used to determine the sine
and cosine of the shaft position. Electromotive forces are estimated by generally-known dependencies,
and also, generally-known dependencies determine the sine and cosine of the estimated value of the
angle. The most important feature of the method is the possibility for the stable operation of the drive
at low speed, without a shaft position sensor and without calculation or determination of the speed
based on the reconstructed value of electromotive force or reconstituted position. Due to correction
feedbacks, the system works correctly even when the parameters of the reference model are estimated
with limited accuracy.

The sensorless speed control structure was launched in a laboratory setup, with lowered supply
voltage through the small transformer (Figure 2, Module 7). The control system operates as follows:
the PMSM drive reference model (Figure 2, Module 2) generates reference voltages uα−re f , uβ−re f ,
which depend on the current operating point. If the operating point of the PMSM reference model
and the operating point of real PMSM match, the module named the rotator (Module 4) leaves the
voltage vector unchanged. In the case of non-compliance involving the different values of reference
current id−re f (Module 2) and estimated current îd (with Observer 12 and Transform Block 11), this
error is integrated in the integrator (Module 13), whose output value is the correction angle ∆γ, whose
value forces the rotation of the input voltage uα−re f uβ−re f , creating a corrected reference voltage
uα−re f 2 uβ−re f 2 for the inverter (Module 6). The system uses three correction loops. First, the current id
correction loop, which is described above, adjusts the position (using the rotator) of the voltage vector
PMSM so as to minimize the error value of current id, while the reference value is maintained at a
value of zero in accordance with the control strategy used in the reference drive model. The second
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loop estimates a load torque using Module 15. The proportional-integral structure (Module 15) based
on the reference current iq−re f (output of Module 2) and estimated current îq (using Modules 12 and
11) estimates the value of the load T̂l . The third loop modifies the speed setpoint for Module 2, using
Modules 3 and 1. In the case of higher values of gain k, an additional block, the rate limiter (Module
17), may be used, which decreases the slope of the correcting speed value and increases the tolerance
range for the motor parameter estimation error. Correction of the reference speed is necessary in
a situation whereby the action of the rotator and the rotation speed of the voltage vector ure f 2 are
different than the speed of rotation of the voltage vector ure f . As a result of that correction, if a speed
error occurs, the reference model follows the operating point of the real object. Hence, the system
operates differently from the typical MFC, where if a difference in object output value and model
output occurs, the supplementary controller acts on the object.

Figure 3. Inner structure of the PMSM drive reference (Figure 2, Module 2) block.

5. Results

In order to verify experimentally the proposed estimation methods, a laboratory stand has
been designed and built. It consists of two similar PMSMs: the first is powered by the laboratory,
three phase power IGBT inverter, controlled by the digital signal processor (DSP). The second, which
acts as a controlled load, is powered by an industrial inverter. Both motors are coupled by a stiff shaft.
The voltages and currents are measured using 12-bit A/D converters. The shaft position is measured
using a precision incremental encoder. The general view of the mechanical setup (motors used in
experiments) is shown in Figure 4.

Figure 4. Mechanical setup: twin PMSM with a stiff shaft.
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All control algorithms were implemented in DSP by AnalogDevices (SHARC 21369) using the C
language. For the calculation period, both the speed and current control loops were equal to 50 µs in
the case where the estimation method was based on the Kalman filter. They were synchronized with a
10-bit PWM generator. In the case of the low-speed method, which was based on the reference model,
the calculation period was equal to 100 µs. The motor shaft position was measured by an incremental
encoder, and then, the raw signals were processed using FPGA and sent to DSP by parallel memory
fields. The PWM symmetrical generator operated with a carrier frequency equal to 20 kHz or 10 kHz,
dependent on the used sensorless control structure, and can be updated twice on pulse. The parameters
of the current controller were determined according to the modulus optimum [1] using the IPstructure.
The speed controller was prepared using the PI structure. The results presented in Section 5.1 were
obtained in a typical structure control system using the Kalman filter, the control system shown in
Figure 1. The results presented in Section 5.2 include tests of a control system containing a reference
model, the structure of which is shown in Figure 2.

5.1. Unscented Kalman Filter

The operation of the control system with unscented Kalman filter for laboratory verification on the
referenced setup from Figure 4 is presented below. There are two important references: first, changing
the desired speed in a wide range and, second, load torque acting during constant speed operation.

5.1.1. Speed Control

In order to test the behavior of observers under varying conditions of work, it was decided to
use tests involving a change of reference speed ω∗r . The first investigation was performed as a speed
reference in stages: start, constant speed region, reverse, and braking. The maximum modulus of
reference speed in this case was 1

3 of maximum speed: 1000 rev
min = 104.72 rad

s .
The operation for this speed range is shown in Figure 5. Estimated speed overlap measured

steady states, and a small difference is visible in transient states (Figure 5a). The process of estimating
the load torque is presented in Figure 5b. It can be seen that, at a constant speed, the estimated load
torque ceased to change its value. The error waveforms for the above test are shown in Figure 6. It
is visible that the most critical situation included a zero speed crossing (in time just above 0.3 s and
above 0.5 s, braking). An interesting point of the works control system with the observer is the work
during real speeds near zero. The same shape as above is presented in Figure 7, but the maximum
modulus is ω∗r = 5.28 rad

s . Errors obtained during the experiment are presented in: Figure 8.
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Figure 5. Unscented Kalman filter speed (a) and torque (b) response for reference speed ω∗r = 104.72 rad
s .
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Figure 6. Unscented Kalman filter estimation speed (a) and torque (b) errors for referenced speed
ω∗r = 104.72 rad

s .
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Figure 7. Unscented Kalman filter response speed (a) and torque (b) for referenced speed ω∗r = 5.28 rad
s .
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5.1.2. Load Torque

The presented formal approach of reference signals consisted of a few important stages of
operation like: zero speed with no initial (random) observer values, demand speed, positive and
negative steps, and external load torque step. The constant reference speed was equal to 104.72 rad

s and
disturbance; additional load torque was equal 3 Nm. The collected results are presented in Figure 9
with associated errors in Figure 10.
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Figure 9. Unscented Kalman filter speed (a) and torque (b) response for load torque Tl = 3 Nm.
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Figure 10. Unscented Kalman filter estimation speed (a), torque (b) and position (c) errors for load
torque Tl = 3 Nm.

5.2. Low-Speed Structure Using the Reference Model

Preliminary simulation studies were designed to determine the robustness of the analyzed control
structure on the inaccurate estimation of the parameters of the power circuit of the drive. The presented
selected waveforms showed the result of the following experiment: start-up to the speed of 4 rad

s ; at
time 0.1 s, the motor was loaded, and at time 0.25 s, the load Tl was turned off. All tests were performed
in a closed system, where the control chain used the position information, which was estimated by the
observer. The modeled system was powered directly, without considering the step-down transformer.
The real motor inverter was simplified to zero order hold, and the inverter in the reference module was
omitted (as in the reference model implemented in the real system).

5.2.1. Simulations Research

The waveforms of Figures 11–13 and 17 were obtained for gain k of the correction angle ∆γ

(Figure 2, Module 3) with the optimal value in terms of the dynamics of tracking the speed setpoint.
In Figures 15 and 16, gain k had twice reduced its value. In this way, the robustness of the drive
was increased in the case of incorrect estimation of the parameters of the motor. Waveforms of
Figures 11–13 show the essential waveforms for different values of resistance of the motor (altered only
in the machine), for an initial shaft position equal to 30◦ (electric angle).

Figures 11a, 12a and 13a show the reference results for correctly-determined resistance
(the optimum value is Ropt). Where the resistance value of the machine was increased by 50% of the
value used in the control loop, the stability did not deteriorate significantly. In the case of a lower value
by 25%, this clearly increased the oscillations. The figures show the waveforms of measured speed
ωr and adjusted reference speed ωre f 2. It is noticed that the speed was adjusted, depending on the
accuracy of the estimate, to a degree greater to or lesser than the set value. The compensation value was
associated with the load of the machine. The waveforms in Figure 12 show the high correspondence
of the current in the q-axis reference model (iq−re f ) and the measured current iq−real of the machine.
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The operation of the rotator is shown in Figure 13. Since the initial position of the shaft for this test was
30◦ (0.52 rad), after starting the drive, the correction angle value ∆γ quickly tended to approach this
value and then changed towards minimizing the d-axis component of the the current vector. The rate of
change ∆γ was related to the accuracy of estimation of the parameters and the value of the load of the
machine. Figure 14 shows the effect of changing the factor of correction angle ∆γ on the stability of the
sensorless operation: even in the case of a large error in the estimation of inductance, which caused an
oscillating course of the speed (Figure 14a), one can get a stable, non-oscillating operation of the drive.
The result of this, however, was the increase in the steady state error of speed (Figure 14b). The speed
waveforms shown in Figure 14b correspond to the current waveforms of Figure 15 and the waveform
of angle correction ∆γ of Figure 16. Finally, in Figure 17, the test sequence of reference speed response
is shown, which was verified in laboratory conditions (Figure 18). In this case, the PMSM model
was supplemented with additional non-linearity: in the function of the shaft position, a back EMF
was modified in a sinusoidal manner. It is visible that in both cases (simulation and experiment), the
waveforms were similar, especially in the case of (measured) speed waveforms (Figures 17a and 18a).
Only the differences in the waveform shape of the current iq (Figures 17b and 18b) are visible in the
moments of decreasing the reference speed (the minimum value of the current). Furthermore, the
general characteristics of the currents’ shapes of id were quite similar (Figures 17c and 18c).
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Figure 11. Measured ωr and corrected reference ωre f 2 speeds waveforms for different estimation
errors of motor resistance (the initial position equals 30◦) (a) Rmotor = Ropt, (b) Rmotor = 1.5 · Ropt, (c)
Rmotor = 0.75 · Ropt.
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Figure 12. Waveforms of reference (model) iq−re f , estimated îq−est, and measured iq−real currents for
different estimation errors of motor resistance (the initial position equals 30◦) (a) Rmotor = Ropt, (b)
Rmotor = 1.5 · Ropt, (c) Rmotor = 0.75 · Ropt.
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Figure 13. Waveforms of correction angle ∆γ for different estimation errors of motor resistance (the
initial position equals 30◦) (a) Rmotor = Ropt, (b) Rmotor = 1.5 · Ropt, (c) Rmotor = 0.75 · Ropt.
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Figure 14. Waveforms measured ωr and corrected reference ωre f 2 speed waveforms, for the wrong
estimation of motor inductance and for different values of gain k (amplification of correction angle
input); the initial position equals 0◦. (a) Lmotor = Lopt · 1.5, k = 240, (b) Lmotor = Lopt · 1.5, k = 120.
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Figure 15. Reference iq−re f , estimated îq−est, and measured iq−real current waveforms; wrong estimation
of the inductance of the motor, reduced the value of gain k; the initial position equals 0◦.
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Figure 16. Correction angle ∆γ; wrong estimation of the inductance of motor reduced the value of gain
k; the initial position equals 0◦.
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Figure 17. Simulation of low-speed control structure operation during speed changes ωre f = 8.8→
6.8 → 4.8 [ rad

s ], corresponding to the experiment shown in Figure 18. Values of motor speed ωr (a),
currents iq (b) and id (c) respectively.
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Figure 18. Experimental behavior of low-speed control structure operation during speed changes
ωre f = 8.8→ 6.8→ 4.8 [ rad

s ]. Values of motor speed ωr (a), currents iq (b) and id (c) respectively.
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5.2.2. Experimental Research

Figures 18 and 19 show experimental results for the control method with the reference model.
The system operates as fully sensorless; a position sensor was used only to evaluate the accuracy
of the estimation of the position of the shaft in the test control system. The first test compared the
behavior of the model and the real drive. It consisted of the sequence of step changes in the speed
command in the range ωre f = 8.8 → 6.8 → 4.8 [ rad

s ] (Figure 18). It proved the correct operation of
the drive in transient states. There were visible pulses of estimated current îd−est in times of reference
speed changes; however, the real value of current id−real was maintained near the referenced value
equal to zero. Figure 19 shows the waveforms obtained in the steady state, for a speed of 4.8 rad

s . One
may notice the effects of periodic electromagnetic interference in the measured speed waveforms
(Figure 19a) which, however, did not affect the reliability of the sensorless drive operation. One can
notice that the value of the position (sine of position angle; this observer did not estimate the position
angle) had a smooth path (also in the presence of external interference, it was visible in the course of
the measured velocity), although the error was not close to zero (Figure 19b). The error in estimating
the position was compensated by the action of the rotator, so that the measured current in the d-axis
was maintained with reasonable accuracy at the (zero) value (Figure 19c). In the case of a bigger error
value of a position estimation (as is visible in Figure 19), it was necessary to improve the accuracy of
the current id tracking by an additional compensation value ∆γ2, which in general is the function of
the load. This additional value ∆γ2 was added to the output of the current id corrector (the control
input of the rotator was given the value ∆γ + ∆γ2).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ω
r
[r
a
d s
]

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

s
in

[-
]

-1

-0.5

0

0.5

1
sin (γ)

sin (γ̂)

t [s]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

i d
[A

]

-0.1

-0.05

0

0.05

0.1

(a)

(b)

(c)

Figure 19. Low-speed control structure at steady state, ωre f = 4.8 rad
s . Values of motor speed ωr (a),

position sine—sin(γ) (b) and d axis currentid (c) respectively.

6. Conclusions

The paper showed the effects of the operation of the sensorless drive, using different control
structures. Both structures were compared in a range of low speeds. It was shown that the system
based on back EMF estimation can work properly in this speed range. All the results were obtained
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using sensorless operation with a closed-loop mode. This means that the sine and cosine of the motor
shaft position used in the control were produced by the observers. Two control structures were used
in the study. The first was a typical control structure with a UKF observer. The second was a new
control structure with the reference model. The position observer, which was based on the back
EMF estimation, turned out to be useful also at a low-speed range. In the case of the studied PMSM
laboratory set, the lowest speed that gave stable operation was about 4− 5 [ rad

s ].
The UKF observer of the mechanical quantities worked in every range of operation speed.

Such a system provides an interesting research object and may find its use in industrial applications.
The advantage of the sensorless structure with the Kalman filter is the possibility to estimate the speed
and also its sign correctly, even in the case of speed reversal. The wide development of an experimental
sensorless drive system is under way.

The presented new control structure, which used the drive model, was particularly effective in
the field of low speed. The module called the rotator (Figure 2, Module 4) allowed compensating for
the position error estimated by the observer. This allowed maintaining the zero (reference and real)
value of the current in the d-axis with good accuracy, also in transient states. The main advantage of
the sensorless structure with the reference model was that it reduced the need to estimate the speed,
despite the fact that it was a speed control system. This is an important feature because it eliminated
problems with speed estimation without the excitation of oscillations. The correct operation of the new
control structure was checked by comparing the simulation with the experiment.

It is worth noting that both the presented estimation and the control schemes detected load
torque. For the Kalman filter, this essential process was realized by including the load torque in the
estimated state vector, and for the structure with the reference model, the additional PI unit was
sufficient. These concepts were fully proven in different ways, which showed the good properties of
the presented methods. In the current state of research, it seems that the new control structure with
the reference model has reached a more advanced stage, because it provides more accurate control of
d-axis and q-axis currents and also provides satisfactory accuracy of speed control.
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Appendix A

Motor parameters: Basic parameters of the PMSM are presented in Table A1 below.

Table A1. Parameters of the PMSM.

Parameter Units Value

P kW 1.23
TN Nm 3.9
Rs Ω 1.15
Ld mH 6.8
Lq mH 6.8
Ψm Wb 0.254
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