Cardio-Respiratory Monitoring in Archery Using a Smart Textile Based on Flexible Fiber Bragg Grating Sensors
Abstract
:1. Introduction
2. Principle of Work of the Custom Smart Textile
3. Feasibility Assessment of the Smart Textile on Healthy Volunteers
3.1. Population and Experimental Protocol
3.2. Experimental Set-Up
3.3. Data Analysis and Results
3.3.1. Respiratory Frequency Estimation During Quiet Breathing
3.3.2. Heart Rate Estimation During the Apnea.
4. Tests on Archers During Shooting Sessions
4.1. Population and Experimental Protocol
4.2. Experimental Set-Up
4.3. Data Analysis and Results
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, J.-M.; Hyun, G.-S.; Jee, Y.-S. Effects of Pilates core stability exercises on the balance abilities of archers. J. Exerc. Rehabil. 2016, 12, 553–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemente, F.; Couceiro, M.; Rocha, R.; Mendes, R. Study of the heart rate and accuracy performance of archers. J. Phys. Educ. Sport 2011, 11, 434–437. [Google Scholar]
- Davis, J.R.; Campbell, A.D.; Adkin, A.L.; Carpenter, M.G. The relationship between fear of falling and human postural control. Gait posture. 2009, 29, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Spratford, W.; Campbell, R. Postural stability, clicker reaction time and bow draw force predict performance in elite recurve archery. Eur. J. Sport Sci. 2017, 17, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Keast, D.; Elliott, B. Fine body movements and the cardiac cycle in archery. J. Sports Sci. 1990, 8, 203–213. [Google Scholar] [CrossRef]
- Robazza, C.; Bortoli, L. Nougier V Emotions, heart rate and performance in archery. A case study. J. Sport. Med. Phys. 1999, 39, 169–176. [Google Scholar]
- Mohamed, M.N.; Wan Norman, W.M.N.; Linoby, A.; Sariman, M.H.; Mohd Azam, M.Z. The Importance of Being Calm: The Impact of Heart Rate Towards Performance. In Proceedings of the International Business Management and Computing Research Colloquium (BMCRC), Raub, Malaysia, 25 May 2016. [Google Scholar]
- Lakie, M. The influence of muscle tremor on shooting performance. Exp. Physiol. Issue Rev. 2010, 95, 441–450. [Google Scholar] [CrossRef]
- Mohamed, M.N.; Wan Norman, W.M.N.; Linoby, A.; Sariman, M.H.; Mohd Azam, M.Z. Breathing Pattern Influence to the Shooting Performance. In Proceedings of the International Colloquium on Sports Science, Exercise, Engineering and Technology (ICoSSEET 2014); Springer: Singapore, 2014; pp. 321–333. [Google Scholar]
- Sorrells, B. Beginner’s Guide to Traditional Archery; Stackpole Books: Mechanicsburg, PA, USA, 2004; ISBN 0811731332. [Google Scholar]
- Konttinen, N.; Mets, T.; Lyytinen, H.; Paananen, M. Timing of triggering in relation to the cardiac cycle in nonelite rifle shooters. Res. Q. Exerc. Sport 2003, 74, 395–400. [Google Scholar] [CrossRef]
- MIYAMOTO, M. Changes of Heart Rate, Somatic Anxiety, and Performance of Japanese Archers during Practices and Matches. Jpn. J. Exp. Soc. Psychol. 2012, 33, 191–200. [Google Scholar] [CrossRef]
- Taylor, A. The contribution of the intercostal muscles to the effort of respiration in man. J. Physiol. 1960, 151, 390–402. [Google Scholar] [CrossRef]
- Lorenzi-Filho, G.; Dajani, H.R.; Leung, R.S.T.; Floras, J.S.; Bradley, T.D. Entrainment of blood pressure and heart rate oscillations by periodic breathing. Am. J. Respir. Crit. Care Med. 1999, 159, 1147–1154. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolò, A.; Lo Presti, D.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-Based Methods for Measuring Respiratory Rate. Sensors 2019, 19, 908. [Google Scholar] [CrossRef]
- Ernst, G. Heart Rate Variability; Springer: Berlin, Germany, 2014; ISBN 9781447143093. [Google Scholar]
- Düking, P.; Hotho, A.; Holmberg, H.C.; Fuss, F.K.; Sperlich, B. Comparison of non-invasive individual monitoring of the training and health of athletes with commercially available wearable technologies. Front. Physiol. 2016, 7, 71. [Google Scholar] [CrossRef]
- Lo Presti, D.; Massaroni, C.; Formica, D.; Giurazza, F.; Schena, E.; Saccomandi, P.; Caponero, M.A.; Muto, M. Respiratory and cardiac rates monitoring during MR examination by a sensorized smart textile. In Proceedings of the I2MTC 2017—2017 IEEE International Instrumentation and Measurement Technology Conference, Torino, Italy, 22–25 May 2017. [Google Scholar]
- Lo Presti, D.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.; Longo, U.G.; Formica, D.; Oddo, C.; Schena, E. Wearable system based on flexible FBG for respiratory and cardiac monitoring. IEEE Sens. J. 2019, 7391–7398. [Google Scholar] [CrossRef]
- Ferreira Da Silva, A.; Goncalves, A.F.; De Almeida Ferreira, L.A.; Araujo, F.M.M.; Mendes, P.M.; Correia, J.H.; Correia, J.H. A smart skin PVC foil based on FBG sensors for monitoring strain and temperature. IEEE Trans. Ind. Electron. 2011, 58, 2728–2735. [Google Scholar] [CrossRef]
- Nedoma, J.; Fajkus, M.; Martinek, R.; Nazeran, H. Vital sign monitoring and cardiac triggering at 1.5 tesla: A practical solution by an mr-ballistocardiography fiber-optic sensor. Sensors 2019, 19, 470. [Google Scholar] [CrossRef]
- Mendoza, E.A.; Esterkin, Y.; Kempen, C.; Sun, Z. Multi-channel monolithic integrated optic fiber bragg grating sensor interrogator. Photonic Sens. 2011, 1, 281–288. [Google Scholar] [CrossRef]
- Erdogan, T. Fiber grating spectra. J. Light. Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef] [Green Version]
- Lo Presti, D.; Massaroni, C.; Formica, D.; Saccomandi, P.; Giurazza, F.; Caponero, M.A.; Schena, E. Smart Textile Based on 12 Fiber Bragg Gratings Array for Vital Signs Monitoring. IEEE Sens. J. 2017, 17, 6037–6043. [Google Scholar] [CrossRef]
- Martin Bland, J.; Altman, D.G. Statistical Methods For Assessing Agreement Between Two Methods Of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Allsop, T.; Lloyd, G.; Bhamber, R.S.; Hadzievski, L.; Halliday, M.; Webb, D.J.; Bennion, I. Cardiac-induced localized thoracic motion detected by a fiber optic sensing scheme. J. Biomed. Opt. 2014, 19, 117006. [Google Scholar] [CrossRef] [Green Version]
- Nedoma, J.; Fajkus, M.; Novak, M.; Strbikova, N.; Vasinek, V.; Nazeran, H.; Vanus, J.; Perecar, F.; Martinek, R. Validation of a novel fiber-optic sensor system for monitoring cardiorespiratory activities during mri examinations. Adv. Electr. Electron. Eng. 2017, 15, 536–543. [Google Scholar] [CrossRef]
- Silva, A.F.; Carmo, J.P.; Mendes, P.M.; Correia, J.H. Simultaneous cardiac and respiratory frequency measurement based on a single fiber Bragg grating sensor. Meas. Sci. Technol. 2011, 22, 075801. [Google Scholar] [CrossRef]
Volunteer | Age (years) | Height (cm) | Weight (kg) | CT1 (cm) | CA1 (cm) |
---|---|---|---|---|---|
1 | 28 | 182 | 70 | 82 | 74 |
2 | 22 | 168 | 74 | 60 | 80 |
3 | 30 | 163 | 81 | 62 | 84 |
4 | 29 | 180 | 82 | 69 | 91 |
5 | 26 | 153 | 69 | 48 | 71 |
6 | 22 | 166 | 67 | 58 | 76 |
7 | 27 | 173 | 82 | 71 | 90 |
8 | 25 | 160 | 74 | 60 | 78 |
9 | 22 | 172 | 67 | 55 | 72 |
R2 | MOD (apm) | LOAs (apm) | MAPEfR (%) | |
---|---|---|---|---|
fRT | 0.99 | 0.014 | −0.804; 0.832 | 1.92 |
fRA | 0.98 | 0.004 | −0.811; 0.819 | 1.97 |
R2 | MOD (bpm) | LOAs (bpm) | MAPEHR (%) | |
---|---|---|---|---|
HRA | 0.76 | 0.059 | −22.54; +22.65 | 5.74 |
HRT | 0.91 | 0.664 | −11.15; +12.48 | 3.92 |
Age (years) | Height (cm) | Weight (kg) | CT (cm) | CA (cm) | Experience (years) | Training Frequency (days per week) | |
---|---|---|---|---|---|---|---|
Archer 1 | 20 | 167 | 65 | 97 | 80 | 3 | 3 |
Archer 2 | 33 | 165 | 64 | 75 | 60 | 2 | 6 |
Shooting Session #1 | Shooting Session #2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shot | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
fR (apm) | fR (apm) | |||||||||||
Archer 1 | 23.9 | 24.6 | 20.0 | 26.5 | 21.9 | 20.5 | 24.1 | 25.0 | 20.6 | 26.5 | 25.6 | 23.9 |
Archer 2 | 15.2 | 13.3 | 9.3 | 8.6 | 10.1 | 8.4 | 7.4 | 8.5 | 7.6 | 8.8 | 9.0 | 7.1 |
HR (bpm) | HR (bpm) | |||||||||||
Archer 1 | 101.8 | 101.3 | 97.3 | 96.7 | 100.0 | 94.9 | 116.4 | 113.7 | 108.9 | 104.7 | 120.5 | 115.9 |
Archer 2 | 87.6 | 89.2 | 94.3 | 89.3 | 97.3 | 94.1 | 97.2 | 88.3 | 92.0 | 92.3 | 82.1 | 90.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Presti, D.; Romano, C.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.A.; Oddo, C.M.; Formica, D.; Schena, E. Cardio-Respiratory Monitoring in Archery Using a Smart Textile Based on Flexible Fiber Bragg Grating Sensors. Sensors 2019, 19, 3581. https://doi.org/10.3390/s19163581
Lo Presti D, Romano C, Massaroni C, D’Abbraccio J, Massari L, Caponero MA, Oddo CM, Formica D, Schena E. Cardio-Respiratory Monitoring in Archery Using a Smart Textile Based on Flexible Fiber Bragg Grating Sensors. Sensors. 2019; 19(16):3581. https://doi.org/10.3390/s19163581
Chicago/Turabian StyleLo Presti, Daniela, Chiara Romano, Carlo Massaroni, Jessica D’Abbraccio, Luca Massari, Michele Arturo Caponero, Calogero Maria Oddo, Domenico Formica, and Emiliano Schena. 2019. "Cardio-Respiratory Monitoring in Archery Using a Smart Textile Based on Flexible Fiber Bragg Grating Sensors" Sensors 19, no. 16: 3581. https://doi.org/10.3390/s19163581
APA StyleLo Presti, D., Romano, C., Massaroni, C., D’Abbraccio, J., Massari, L., Caponero, M. A., Oddo, C. M., Formica, D., & Schena, E. (2019). Cardio-Respiratory Monitoring in Archery Using a Smart Textile Based on Flexible Fiber Bragg Grating Sensors. Sensors, 19(16), 3581. https://doi.org/10.3390/s19163581