
sensors

Article

Bin-Picking for Planar Objects Based on a Deep
Learning Network: A Case Study of USB Packs

Tuan-Tang Le 1 and Chyi-Yeu Lin 1,2,3,*
1 Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106,

Taiwan
2 Taiwan Building Technology Center, National Taiwan University of Science and Technology, Taipei 106,

Taiwan
3 Center for Cyber-Physical System, National Taiwan University of Science and Technology, Taipei 106, Taiwan
* Correspondence: jerrylin@mail.ntust.edu.tw

Received: 2 July 2019; Accepted: 16 August 2019; Published: 19 August 2019
����������
�������

Abstract: Random bin-picking is a prominent, useful, and challenging industrial robotics application.
However, many industrial and real-world objects are planar and have oriented surface points that are
not sufficiently compact and discriminative for those methods using geometry information, especially
depth discontinuities. This study solves the above-mentioned problems by proposing a novel and
robust solution for random bin-picking for planar objects in a cluttered environment. Different
from other research that has mainly focused on 3D information, this study first applies an instance
segmentation-based deep learning approach using 2D image data for classifying and localizing the
target object while generating a mask for each instance. The presented approach, moreover, serves
as a pioneering method to extract 3D point cloud data based on 2D pixel values for building the
appropriate coordinate system on the planar object plane. The experimental results showed that the
proposed method reached an accuracy rate of 100% for classifying two-sided objects in the unseen
dataset, and 3D appropriate pose prediction was highly effective, with average translation and
rotation errors less than 0.23 cm and 2.26◦, respectively. Finally, the system success rate for picking up
objects was over 99% at an average processing time of 0.9 s per step, fast enough for continuous robotic
operation without interruption. This showed a promising higher successful pickup rate compared to
previous approaches to random bin-picking problems. Successful implementation of the proposed
approach for USB packs provides a solid basis for other planar objects in a cluttered environment.
With remarkable precision and efficiency, this study shows significant commercialization potential.

Keywords: random bin-picking; instance segmentation; object detection; pose estimation; artificial
intelligence; neural network

1. Introduction

Industrial automation technology has been evolving for a long time and is constantly being
improved to increase productivity and gradually reduce the need for direct human intervention. One
of the fundamental goals of robotic research is to build a system that is smarter and more flexible and
has the ability to work independently. Such a system would be able to completely replace people in
the implementation of certain tasks, including those in the field of automated manufacturing. One
of the main tasks in the production line that still requires human execution is random bin-picking,
which includes observing and computing object poses [1]. A smart system can replace the manual
labor required to interact with the surrounding environment. This means possessing the ability
to understand the environment and address uncertain situations by taking appropriate action [2].
However, achieving satisfactory perceptual ability for a complete and optimal robot bin-picking system

Sensors 2019, 19, 3602; doi:10.3390/s19163602 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8094-4399
https://orcid.org/0000-0001-8931-7650
http://www.mdpi.com/1424-8220/19/16/3602?type=check_update&version=1
http://dx.doi.org/10.3390/s19163602
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3602 2 of 31

remains a challenging and complex issue because most parts come in randomly located boxes or
bins and there are vast differences in the geometric shape, color, texture, and surface of objects to be
processed on different production lines. It is also important to note that the system must be able to
work in situations in which objects are randomly located in an unstructured and poorly constrained
occlusion in a heavily cluttered environment. Random bin-picking has been the focus of research
for many years because of its necessity and high applicability in the industry, and it remains a core
topic for improvement in the field of image processing and automated manufacturing. However,
because studies have either been based on a simplistic hypothesis or have been insufficiently robust for
industries with strict requirements for stability and speed, most research results have been somewhat
limited [3]. It is therefore necessary to continue to develop algorithms and build a complete system to
overcome challenges in industrial bin-picking.

Although an increasing number of robots are being designed to help people perform labor-intensive
tasks that need to be performed repeatedly and accurately or in dangerous environments, there are
still several daily challenges that robots face [4]. Because random bin-picking is the final target system,
one of the most challenging tasks overall is grasping the object in the right position with the correct
orientation in an unbounded environment once it has been located in 3D space. Given the importance
of the module in the overall process, so-called pose estimation is a key function, not only for efficient
and flexible object inspection but also for the grasping or manipulation system [5]. Pose estimation,
which originated in the early 1960s, is a mainstream component of the latest two directions pursued
in modern computer vision research. This research, which has been developing for more than 50
years, has passed through each stage of development to gradually achieve four corresponding levels
of computer vision: detection, localization, recognition, and scene understanding [6]. Thanks to an
increase in computational power and the development of 3D sensor technologies [7], object recognition
has demonstrated remarkable achievements and has created new approaches and research directions
that can solve complex problems that have had no effective solution in the past. The most well-known
lines of research in the field of object pose estimation are feature-based, template matching, and
machine learning or deep learning methods.

The most extensive solution to the problem of object recognition is employing feature-based
methods that utilize three-dimensional data [5]: 3D information can easily be retrieved using
inexpensive contact-free sensors (such as cameras) that are essential for continuous and fast
calculation [2]. There are two approaches based on feature-based methods: local and global. Local
feature-based methods [8] usually extract information around selected key points based on matching
descriptors of local surface features, whereas global feature-based methods employ a different pipeline
for which a single or small set of descriptors describes the entire surface of the object (e.g., Refs. [9–12]).

Template matching techniques are the second most common solution, and these directly use
RGB images or extend from two-dimensional computer vision to RGB-D data to predict object poses.
Image gradients [13,14] are the key to this approach and have yielded relatively good results due
to changes in occlusion, clutter, and illumination in 2D images. Based on previous research results,
Hinterstoisser et al. [15] proposed extending the template matching technique to RGB-D data as a new
approach to quantized surface normal as a depth cue. In the same fashion, Ulrich et al. [16] only used
an image for fast 3D object recognition by combining scale space and similarity-based aspect graphs. A
3D CAD model of the object with geometry information helped to generate a hierarchical model for the
approach without relying on texture or reflectance information. Ye et al. [17] proposed a real-time pose
estimation of texture-less objects using hierarchical search strategy-based template matching through a
template pyramid, which was 44 times faster than the original search method. Another hierarchical
detection method using template matching in combination with the physical characteristics of the
object was proposed by Su et al. [18]. This allowed the pose of the object to be estimated in an occluding
situation. Muñoz et al. [19] developed a 6D pose estimation algorithm using a single RGB image that
combined template matching and a part-based method called cascaded forests templates.

Sensors 2019, 19, 3602 3 of 31

Supervised machine learning [20,21] and recent techniques based on deep neural networks [22]
have also been used for pattern recognition and pose estimation. RGB-D data are the common input
in computer vision, including in machine learning techniques. Blum et al. [23] introduced a learned
feature descriptor for object recognition using RGB-D images based on advances in the machine
learning technique known as the convolutional k-means descriptor. One of the popular types of
geometric data structures is the point cloud. In a recent study by Qi et al. [24], their neural network
could directly use point cloud data without transforming them into regular 3D voxel grids or image
collections. This neural network is called PointNet and serves as the pioneer in this direction. However,
PointNet lacks the ability to capture local structure information, leading to difficulties in recognizing
fine-grained patterns and generalizability in complex scenes. An improved version of PointNet, which
is known as PointNet++ [25], solves the above bottleneck with the ability to learn deep point set
features efficiently and robustly. Brachmann et al. [26] proposed an object pose estimation method for
both textured and texture-less objects based on random forests. This method classifies each pixel as a
continuous coordinate on a canonical body in a canonical pose before applying geometric refinement
in the next stage. Brachmann et al. [27] continued to advance the 3D pose estimation technique to
a new level using only a single RGB image. Employing the same approach, Do et al. [28] recently
predicted object poses by extending instance segmentation networks with a novel pose estimation
branch to directly regress 6D object poses without any postrefinements. This is sufficiently accurate
and quick for robotics applications.

In addition to studies focusing on estimating object poses, a few studies have also focused
on complete random bin-picking systems. CAD-based pose estimation is one of the most popular
approaches to solving random bin-picking problems. Liu et al. [2] proposed a CAD-based method
for successfully creating a practical vision-based bin-picking robotic system capable of detecting and
estimating the pose of an object before performing error detection and pose correction while the part is
in the gripper. In this approach, a multiflash camera is used to extract robust depth edges. The overall
detection rate was reported to be 95% with a grasping success rate of 94% and a processing time of
approximately 1.9 s per object. The CAD model with an RGB-D camera is a strong combination for
solving random bin-picking problems [29,30] in which multiple objects are presented in a cluttered
environment. Wu et al. [29] proposed a system using a Kinect RGB-D sensor that achieved a 93.9%
average recognition rate of three different types of objects and could pick up the object with a success
rate of 89.7%. This is a method used to reduce the number of 3D point cloud candidates, while another
filter was designed to remove less accurate matching and occluded poses to increase the success of the
picking rate. Chen et al. [30] used two depth cameras to acquire all of the necessary features of the
objects and proposed a CAD-based multiview pose estimation algorithm with noise removal and an
object segmentation module. A complete system was designed for the pick-and-place task based on
structured light cameras, 3D pose estimation, and robot arm control.

As an alternative to the CAD-based model, 3D reconstruction can also be used for pose estimation.
For instance, a vision system consisting of a camera and a laser projector placed on the arm to
reconstruct the target object’s 3D point cloud was introduced by Chang et al. [1]. This has potential
applications in production lines. Few studies have utilized physical information concerning the object
and surface as the main feature to create a robust system that can execute random bin-picking tasks.
Martinez et al. [3] developed an automatic bin-picking system that provides a complete and robust
solution. In their study, useful edge information was used for the recognition part, and 3D surface
information was used to calculate the location of the object in the scene.

Among the existing model-based approaches, one of the most successful 6D pose estimation
methods is the point pair feature [31], an integrated and compromised alternative to traditional local
and global pipelines [32]. Vidal et al. [32] presented an improved method based on point pair features
and an extension [5] for free-form rigid 6D pose estimation. A method based on a voting-based
approach for pose estimation was proposed by Choi et al. [33]. This work extended the PPF for applying
planar objects by using boundary points with directions and boundary line segments besides oriented

Sensors 2019, 19, 3602 4 of 31

surface points. Feature-based template matching has also been combined with machine learning and
deep learning techniques. These approaches have produced encouraging results and have become a
key research trend in recent years. Spenrath et al. [34] developed a method comprising several neural
networks for heuristic search algorithms to reduce the calculation time and allow networks to learn
from the properties of objects, increasing the likelihood of finding a good position from which to grasp
the object. Lin et al. [4] recently published impressive results on visual object recognition and pose
estimation based on deep semantic segmentation networks.

Given its crucial role in the fields of industrial manipulation, logistics classification, and household
cleaning, random object picking that provides flexibility and high efficiency has attracted considerable
attention [3]. However, it is difficult to find systems that can implement random bin-picking tasks for
planar objects in a cluttered environment, especially thin objects. Regarding the physical structure
of objects, planar objects seem to be considered simpler for random bin-picking tasks than free-form
objects. Nevertheless, many industrial and real-world objects are planar items whose oriented surface
points are not sufficiently compact and discriminative [33]. Thus, the methods that mainly use geometry
information, especially depth discontinuities, cannot work well for planar objects.

Over the past few years, deep learning-based object recognition algorithms have shown very
promising results in the field of robotic vision applications. Therefore, in this study, we utilized the
pick-and-place task for planar objects in a cluttered environment, especially thin ones, by combining an
instance segmentation-based deep learning approach with a novel method to predict the appropriate
pose for picking up objects. This paper presents details of the entire system structure, along with its
implementation and verification.

The paper presents a novel and robust random bin-picking system for planar objects, especially
thin objects, which lack geometry information, in a cluttered environment. The complete system
fully integrates a state-of-the-art instance segmentation network with a new method for building the
appropriate coordinate system on the target object. In detail, the contribution of this work is a novel
approach to a planar objects random bin-picking system. The proposed system inherits powerful
object recognition from the initial stage. This method is a global solution with high efficiency to
overcome the challenge of oriented surface points on planar objects, as above mentioned. In contrast to
another approach, the proposed system initiates from 2D image data instead of 3D information. This
approach does not mainly rely on depth discontinuities, which is crucial in other methods (e.g., the
point pair feature approach [5,31,32] or CAD-based pose estimation approach [2,29,30]). The successful
implementation also demonstrated an effective technique to find correspondence between the RGB and
depth image of the Kinect v2. In addition, the technique for taking the ground truth of the object with
respect to the robot base serves as a pioneer method for evaluating the overall rotation and rotation
accuracy of the whole system. To the best of our knowledge, the highest successful pick-up rate in the
previous works for random bin-picking tasks was 98%. Our proposed system, nonetheless, achieved
an overall successful pickup rate of over 99% at an average processing time of 0.9 s per step. This is fast
enough for robotic continuous operation without interruption. This research thus shows impressive
results in term of accuracy.

The remainder of this paper is organized as follows. Section 2 provides an overview of the vision
equipment used in the research. It also presents a brief introduction to the image processing part and
the prediction of six poses of the target objects before going on to consider the industrial manipulator
for object picking. The proposed deep learning algorithm, including data creation, data augmentation,
training, and testing, is introduced in Section 3. Section 4 discusses the proper 3D pose prediction in
detail, and the experimental results for each module are presented and discussed in Section 5. Finally,
conclusions and future work are discussed in Section 6.

2. System Architecture

One of the most intriguing and challenging industrial robotics applications is random bin-picking
in a cluttered environment. This system is complicated because it is an autonomous system that

Sensors 2019, 19, 3602 5 of 31

encompasses all integration and interactions among the visual perception system, robot operation, and
control system. An independent system such as this that controls every situation can replace people in
simple and complex tasks. A system performing such tasks requires a visual ability to observe objects
in the scene before bringing this information to the processor. The information is processed in a manner
that is similar to the analytical processing of the human brain, which orders limbs to perform tasks.
Instead of people using limbs, this system uses different actuators to perform tasks depending on their
complexity, such as simple mechanical mechanisms, parallel robots, or industrial manipulators.

In this novel automated system for a planar object approach, a depth sensor (Kinect v2, Microsoft
Corporation, Redmond, WA, USA) is used to retrieve 2D information used for image processing
and extract 3D information used to perform picking tasks at the final stage of each cycle. Here, 2D
information is processed by a deep learning network to detect and locate the objects in a heavily
cluttered environment before it is sent to the next module to predict the 3D pose of the objects. Finally,
an industrial manipulator (Denso 6556, Denso Corporation, Kariya, Japan) is used to perform the
actual task of picking up objects. The architecture of the proposed system is presented in Figure 1.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 31

to observe objects in the scene before bringing this information to the processor. The information is
processed in a manner that is similar to the analytical processing of the human brain, which orders
limbs to perform tasks. Instead of people using limbs, this system uses different actuators to perform
tasks depending on their complexity, such as simple mechanical mechanisms, parallel robots, or
industrial manipulators.

In this novel automated system for a planar object approach, a depth sensor (Kinect v2,
Microsoft Corporation, Redmond, WA, USA) is used to retrieve 2D information used for image
processing and extract 3D information used to perform picking tasks at the final stage of each cycle.
Here, 2D information is processed by a deep learning network to detect and locate the objects in a
heavily cluttered environment before it is sent to the next module to predict the 3D pose of the objects.
Finally, an industrial manipulator (Denso 6556, Denso Corporation, Kariya, Japan) is used to perform
the actual task of picking up objects. The architecture of the proposed system is presented in Figure
1.

Figure 1. Architecture of the proposed system.

2.1. Kinect Sensor

Kinect is an RGB-D sensor capable of simultaneously providing both an RGB color image and a
depth image. Microsoft introduced the first version in 2010 as a game device for the Xbox 360
platform (Microsoft Corporation, Redmond, WA, USA). In 2012, a second version called “Kinect for
Windows” or “Kinect v2” was released, not only for gaming but also for commercial use (primarily
in the field of computer vision). Although the first version of the Kinect (v1) (Microsoft Corporation,
Redmond, WA, USA) had poor RGB color image resolution (640 × 480 pixels), the new version (Kinect
v2) provides very high RGB color image resolution (1920 × 1080 pixels). Table 1 shows details of the
image resolution for both versions of the Kinect. This feature is extremely beneficial in enabling color
image information to be used to implement image processing. Recently, Amit et al. [35] showed that

Figure 1. Architecture of the proposed system.

2.1. Kinect Sensor

Kinect is an RGB-D sensor capable of simultaneously providing both an RGB color image and a
depth image. Microsoft introduced the first version in 2010 as a game device for the Xbox 360 platform
(Microsoft Corporation, Redmond, WA, USA). In 2012, a second version called “Kinect for Windows”
or “Kinect v2” was released, not only for gaming but also for commercial use (primarily in the field of
computer vision). Although the first version of the Kinect (v1) (Microsoft Corporation, Redmond, WA,
USA) had poor RGB color image resolution (640 × 480 pixels), the new version (Kinect v2) provides
very high RGB color image resolution (1920 × 1080 pixels). Table 1 shows details of the image resolution

Sensors 2019, 19, 3602 6 of 31

for both versions of the Kinect. This feature is extremely beneficial in enabling color image information
to be used to implement image processing. Recently, Amit et al. [35] showed that the Kinect v1 can
be used for highly demanding precision operations and complex manufacturing tasks. In addition,
many studies have also indicated that the second generation of Kinect sensors has advantages over
the first version in terms of performance, accuracy, and a wider field of view (FOV) [36,37]. These
characteristics made the Kinect v2 sensor a good choice for the proposed method. However, any type
of 3D camera with similar or better characteristics can be used. Any industrial 3D sensors that meet
the initial conditions can replace Kinect v2 for better results. In this research, Kinect v2 was handily
chosen to fulfill our overall approach.

Table 1. Specification for resolution and frame rate of pictures captured by Kinect v1 and Kinect v2.

Kinect v1 Kinect v2

Resolution
Pixel × Pixel

Frame Rate
(Hz)

Resolution
Pixel × Pixel

Frame Rate
(Hz)

Color 640 × 480 30 1920 × 1080 30
Depth 320 × 240 30 512 × 424 30

Infrared 320 × 240 30 512 × 424 30

2.2. Recognition and Appropriate Pose Estimation

The proposed vision-based object detection and pose estimation algorithm consists of four main
modules: data augmentation to create a common object in context (COCO) style dataset, visual
perception, 3D pose estimation, and a target picking controller and actuator. The visual perception
module, a deep neural network known as a semantic segmentation algorithm, is used to recognize the
objects in a heavily cluttered environment. The quality of input training data used to optimize deep
learning models is one of the major determinants of model quality. To build a model that works well in
a cluttered environment with uncertain randomness, a module was added to the offline section so that
it can easily create training data with the right format and enrich data under the control of a small
dataset without creating any noise. Details of the proposed visual perception and data augmentation
methods are presented in the implementation section.

Forcing the network to learn how to detect only the best objects-of-interest (OOIs) in a scene
means the trained visual perception module is used in the online section to detect and recognize only
the best OOIs at the pixel level. Another module, OOI data handling (OOI-DH), is used to handle all
random and coarse data from the object recognition module. One of the challenges in this approach is
mapping between 2D pixels in an RGB image to the same position in a depth image. We proposed
that this could be achieved using a linear regression model: 3D information is then easily extracted
using the libfreenect2 library. This 3D information is the basis for the next module, which estimates the
appropriate 3D pose to pick up objects. In this estimation, a module takes the next step by determining
the best target object handling (BTOH): this handles the entire procedure, selects only the best target,
and prepares all of the information needed to predict the proper 3D pose for further steps. The final
3D pose prediction contains two parts, translation and rotation, which are estimated and optimized
using two different approaches. The details of the proposed 3D pose estimation are discussed in
Section 4. The final module is a six degrees of freedom industrial robot arm used to pick up objects in
real scenarios based on the predicted object 3D pose. The aim of this study was to provide a complete
bin-picking solution for industrial problems on planar objects: we discuss this in detail as follows and
discuss its actual performance on our target picking controller.

2.3. Object Picking Controller

An industrial manipulator (Denso 6556) was used to operate the final step of the proposed
autonomous system by picking up objects. This industrial manipulator is a small-sized, vertical
articulated model with six degrees of freedom that drives the arms to assemble and transport

Sensors 2019, 19, 3602 7 of 31

workpieces with the motors. The end effector was unavailable. Therefore, for the picking task, a
vacuum suction-type end effector was implemented. To achieve acceptable and smooth performance,
the path planning step focused on checking the work area and the posture of the robot to ensure that
all parameters were optimal before operation was planned in conjunction with safety handling.

3. Proposed Deep Learning Algorithm

3.1. Surpervised Learning Approach

One of the most popular directions in deep learning research is supervised learning, an algorithm
that analyzes the training data and produces an inferred function that maps an input to an output
based on example input–output pairs.

The deep learning system consists of two main processes: offline and online. The system is trained
in the offline section to build a complete model. The online process further utilizes this model to
predict outputs. In this paper, the instance segmentation network is used for image processing, in
which networks that show “perception” and “recognition” eventually give the system the ability to
understand the environment and make inferences, thus allowing the manipulator to take appropriate
action. In this study, due to the limited amount of data and hardware, we proposed using transfer
learning [38], which is a machine learning technique in which a model developed for a task is reused
as the starting point for a new model for a different task.

3.2. Materials and Methods

This section describes the function of the data argument module used to create training and
additional data and focuses specifically on the image processing part used to recognize the target object
in each scene.

3.2.1. Dataset

One popular type of USB flash drive pack served as the target object of this research. Figure 2
shows both the front and back sides of the target object. The situation we hypothesized was similar to
actual situations encountered in which there is only one type of object in the scene and the environment
is random. Figure 3 presents the three different cases, all of which are similar to cases occurring
in reality.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 31

the path planning step focused on checking the work area and the posture of the robot to ensure that
all parameters were optimal before operation was planned in conjunction with safety handling.

3. Proposed Deep Learning Algorithm

3.1. Surpervised Learning Approach

One of the most popular directions in deep learning research is supervised learning, an
algorithm that analyzes the training data and produces an inferred function that maps an input to an
output based on example input–output pairs.

The deep learning system consists of two main processes: offline and online. The system is
trained in the offline section to build a complete model. The online process further utilizes this model
to predict outputs. In this paper, the instance segmentation network is used for image processing, in
which networks that show “perception” and “recognition” eventually give the system the ability to
understand the environment and make inferences, thus allowing the manipulator to take appropriate
action. In this study, due to the limited amount of data and hardware, we proposed using transfer
learning [38], which is a machine learning technique in which a model developed for a task is reused
as the starting point for a new model for a different task.

3.2. Materials and Methods

This section describes the function of the data argument module used to create training and
additional data and focuses specifically on the image processing part used to recognize the target
object in each scene.

3.2.1. Dataset

One popular type of USB flash drive pack served as the target object of this research. Figure 2
shows both the front and back sides of the target object. The situation we hypothesized was similar
to actual situations encountered in which there is only one type of object in the scene and the
environment is random. Figure 3 presents the three different cases, all of which are similar to cases
occurring in reality.

Figure 2. Both front and back sides of the object.

Figure 3. Three examples of actual scenarios.

Figure 2. Both front and back sides of the object.

The first step in the procedure was to create the training section dataset. In 2014, Microsoft created
a dataset called COCO [39] to help advance research on object recognition and scene understanding.
COCO is one of the first large datasets to annotate objects with more than just square or rectangular
boundary boxes, making it a useful benchmark to use when testing new object recognition models.
Since then, the COCO format has been used to store annotations and has become standard. We
therefore converted our dataset to follow this standard so that future research can easily replicate our

Sensors 2019, 19, 3602 8 of 31

work. We now introduce the proposed method of data augmentation, which aims to create training
data and enrich data under the control of a small dataset without creating noise.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 31

the path planning step focused on checking the work area and the posture of the robot to ensure that
all parameters were optimal before operation was planned in conjunction with safety handling.

3. Proposed Deep Learning Algorithm

3.1. Surpervised Learning Approach

One of the most popular directions in deep learning research is supervised learning, an
algorithm that analyzes the training data and produces an inferred function that maps an input to an
output based on example input–output pairs.

The deep learning system consists of two main processes: offline and online. The system is
trained in the offline section to build a complete model. The online process further utilizes this model
to predict outputs. In this paper, the instance segmentation network is used for image processing, in
which networks that show “perception” and “recognition” eventually give the system the ability to
understand the environment and make inferences, thus allowing the manipulator to take appropriate
action. In this study, due to the limited amount of data and hardware, we proposed using transfer
learning [38], which is a machine learning technique in which a model developed for a task is reused
as the starting point for a new model for a different task.

3.2. Materials and Methods

This section describes the function of the data argument module used to create training and
additional data and focuses specifically on the image processing part used to recognize the target
object in each scene.

3.2.1. Dataset

One popular type of USB flash drive pack served as the target object of this research. Figure 2
shows both the front and back sides of the target object. The situation we hypothesized was similar
to actual situations encountered in which there is only one type of object in the scene and the
environment is random. Figure 3 presents the three different cases, all of which are similar to cases
occurring in reality.

Figure 2. Both front and back sides of the object.

Figure 3. Three examples of actual scenarios. Figure 3. Three examples of actual scenarios.

To generate the dataset properly with the correct format, the first step was to write a Python
script that would annotate the object inside the image. Although each object in the image created an
annotated binary image, these were combined to show the similarities between the annotated image
and the original image. Once all data were annotated, another Python script was used to handle all
annotation formatting details and convert our data into a JavaScript Object Notation format. This kept
all image IDs, category IDs, bounding boxes, areas, and image segmentation information in image
pixel coordinates. A total of 153 real scenarios were considered and subsequently divided by the ratio
6:2:2 for training, validation, and testing, respectively. In consideration of the limitations of the dataset
and to ensure reliable performance, sampling cross-validation was used as k-fold stratified random
sampling with k = 5. The average performance was considered later. To enrich this dataset, the data
augmentation module was added to make the training and validation set four times larger than the
original dataset. Figure 4 shows the original image and three other versions after they had passed
through the augmentation module.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 31

The first step in the procedure was to create the training section dataset. In 2014, Microsoft
created a dataset called COCO [39] to help advance research on object recognition and scene
understanding. COCO is one of the first large datasets to annotate objects with more than just square
or rectangular boundary boxes, making it a useful benchmark to use when testing new object
recognition models. Since then, the COCO format has been used to store annotations and has become
standard. We therefore converted our dataset to follow this standard so that future research can easily
replicate our work. We now introduce the proposed method of data augmentation, which aims to
create training data and enrich data under the control of a small dataset without creating noise.

To generate the dataset properly with the correct format, the first step was to write a Python
script that would annotate the object inside the image. Although each object in the image created an
annotated binary image, these were combined to show the similarities between the annotated image
and the original image. Once all data were annotated, another Python script was used to handle all
annotation formatting details and convert our data into a JavaScript Object Notation format. This
kept all image IDs, category IDs, bounding boxes, areas, and image segmentation information in
image pixel coordinates. A total of 153 real scenarios were considered and subsequently divided by
the ratio 6:2:2 for training, validation, and testing, respectively. In consideration of the limitations of
the dataset and to ensure reliable performance, sampling cross-validation was used as k-fold stratified
random sampling with k = 5. The average performance was considered later. To enrich this dataset,
the data augmentation module was added to make the training and validation set four times larger
than the original dataset. Figure 4 shows the original image and three other versions after they had
passed through the augmentation module.

Figure 4. Top: Original image and three other versions after the original data passed through the
augmentation module. Bottom: Corresponding binary image.

With this amount of data, readers can refer to Table 2 to see how many objects were extracted
and annotated based on the original images. The aim of this research was to help solve practical
problems in the industry: therefore, the network must learn to detect the best OOIs in the scene. For
this reason, the augmentation module was designed to enrich the data source but does not generate
instances for both original images and annotated images without a full object in the scene.

Table 2. Number of front and back side instances in the dataset.

 Front Back Total
No. of Instances 458 387 845

Figure 4. Top: Original image and three other versions after the original data passed through the
augmentation module. Bottom: Corresponding binary image.

With this amount of data, readers can refer to Table 2 to see how many objects were extracted and
annotated based on the original images. The aim of this research was to help solve practical problems
in the industry: therefore, the network must learn to detect the best OOIs in the scene. For this reason,

Sensors 2019, 19, 3602 9 of 31

the augmentation module was designed to enrich the data source but does not generate instances for
both original images and annotated images without a full object in the scene.

Table 2. Number of front and back side instances in the dataset.

Front Back Total

No. of Instances 458 387 845

3.2.2. Deep Learning Networks

CNNs (convolutional neural networks) have been the gold standard for image classification ever
since Alex Krizhevsky, Geoff Hinton, and Ilya Sutskever won the ImageNet challenge in 2012. CNNs
have now been improved to the point where they can outperform human beings on the ImageNet
challenge [40].

Although these results are impressive, the classification of images is much simpler than the
complexity and diversity of true human visual understanding. Thus, the goal is to improve CNNs so
that they not only conduct classification but also localize and create the mask for each instance. When
exploring computer vision, learners may come across highly similar terms such as “object recognition”,
“class segmentation”, and “object detection”. This may be confusing at first; however, observing the
functions that it can perform provides clarity. Figure 5 presents examples of the output information
that the network can provide, with increasing task difficulty from left to right. The most difficult task,
defined as “object instance segmentation”, is for the network to automatically label all the shapes in an
image and identify their location down to the pixel level. In this study, our approach was to select and
use the most advantageous network that could perform “object instance segmentation” and output a
high-quality segmentation mask for each instance in a heavily cluttered environment.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 31

3.2.2. Deep Learning Networks

CNNs (convolutional neural networks) have been the gold standard for image classification ever
since Alex Krizhevsky, Geoff Hinton, and Ilya Sutskever won the ImageNet challenge in 2012. CNNs
have now been improved to the point where they can outperform human beings on the ImageNet
challenge [40].

Although these results are impressive, the classification of images is much simpler than the
complexity and diversity of true human visual understanding. Thus, the goal is to improve CNNs so
that they not only conduct classification but also localize and create the mask for each instance. When
exploring computer vision, learners may come across highly similar terms such as “object
recognition”, “class segmentation”, and “object detection”. This may be confusing at first; however,
observing the functions that it can perform provides clarity. Figure 5 presents examples of the output
information that the network can provide, with increasing task difficulty from left to right. The most
difficult task, defined as “object instance segmentation”, is for the network to automatically label all
the shapes in an image and identify their location down to the pixel level. In this study, our approach
was to select and use the most advantageous network that could perform “object instance
segmentation” and output a high-quality segmentation mask for each instance in a heavily cluttered
environment.

Figure 5. Typical image processing task.

He et al. [41] presented their work as Mask R-CNN, which is considered state-of-the-art in
instance segmentation. With some modifications, this was used in the visual perception module to
realize the CNN-based semantic segmentation function to fit our problem. The capabilities of Mask
R-CNN developed from the initial use of the CNN to detect objects in an early application known as
R-CNN [42]. Later, Fast R-CNN [43] and Faster R-CNN [44] were developed to lift the ability of the
neural network to a new level. From R-CNN to Faster R-CNN, CNNs play an important role in
effectively locating different objects in an image with bounding boxes. Beyond this, Kaiming He and
other researchers, including Girshick, expanded the techniques used in Faster R-CNN to steps that
could locate the exact pixels of each object instead of bounding boxes. This was the aforementioned
Mask R-CNN, the main foundation of our visual perception module. The only difference between
Mask R-CNN and Faster R-CNN is that Mask R-CNN was expanded by adding a branch to predict
an object mask in parallel with the existing bounding box recognition branch. This difference led to
changes in the objective function: moreover, this object mask has been found to be critical in obtaining
good results [45]. Mask R-CNN is also a two-stage deep object detector inherited from Faster R-CNN.

Figure 6 illustrates the overall procedure and implementation of Mask R-CNN architecture in
the current study. In the first state, known as a region proposal network (RPN), candidate bounding
boxes within the input image are proposed. A small model within the overall network is responsible
for proposing the bounding box candidate and needs to be trained by optimizing the parameters to
minimize the cost function. Whenever the network contains these areas, a series of subsequent steps
helps the system to select the best areas with the highest likelihood of containing the object while
refining the candidate’s boundary boxes to fit the object as much as possible. These selected areas are
used as the input for the second stage. The system once again calculates the overlap between the

Figure 5. Typical image processing task.

He et al. [41] presented their work as Mask R-CNN, which is considered state-of-the-art in instance
segmentation. With some modifications, this was used in the visual perception module to realize
the CNN-based semantic segmentation function to fit our problem. The capabilities of Mask R-CNN
developed from the initial use of the CNN to detect objects in an early application known as R-CNN [42].
Later, Fast R-CNN [43] and Faster R-CNN [44] were developed to lift the ability of the neural network
to a new level. From R-CNN to Faster R-CNN, CNNs play an important role in effectively locating
different objects in an image with bounding boxes. Beyond this, Kaiming He and other researchers,
including Girshick, expanded the techniques used in Faster R-CNN to steps that could locate the exact
pixels of each object instead of bounding boxes. This was the aforementioned Mask R-CNN, the main
foundation of our visual perception module. The only difference between Mask R-CNN and Faster
R-CNN is that Mask R-CNN was expanded by adding a branch to predict an object mask in parallel
with the existing bounding box recognition branch. This difference led to changes in the objective
function: moreover, this object mask has been found to be critical in obtaining good results [45]. Mask
R-CNN is also a two-stage deep object detector inherited from Faster R-CNN.

Figure 6 illustrates the overall procedure and implementation of Mask R-CNN architecture in
the current study. In the first state, known as a region proposal network (RPN), candidate bounding

Sensors 2019, 19, 3602 10 of 31

boxes within the input image are proposed. A small model within the overall network is responsible
for proposing the bounding box candidate and needs to be trained by optimizing the parameters to
minimize the cost function. Whenever the network contains these areas, a series of subsequent steps
helps the system to select the best areas with the highest likelihood of containing the object while
refining the candidate’s boundary boxes to fit the object as much as possible. These selected areas
are used as the input for the second stage. The system once again calculates the overlap between the
proposal areas and the bounding box of ground truth. At this point, the system requires a metric to
evaluate how good the overlap values are in general cases, which are independent of the size of the
objects in pixel coordinates. Intersection over union (IoU) [46] is a standard metric that can be used
in such a case. The IoU metric was used to evaluate the accuracy of the proposed visual perception
module. The region of interest (RoI) areas, which have the highest IoU values and the lowest values
to be selected with a fixed ratio between them, are the input for the next step. The network ignores
the neutral values. Based on the IoU values, the network easily separates the selected RoI into two
groups: positive RoI and negative RoI. Target class IDs, bounding box deltas, and masks are then
selected based on the RoI threshold of 0.5. Together with the output from the previous step, these
RoIs are used to train another network containing two graphs that output the final predicted class,
bounding box refinement, and masks for each instance. However, RoiPool, which is not designed
for pixel-to-pixel alignment between network inputs and outputs, can only perform coarse spatial
quantization for extraction of features. It was therefore replaced by RoiAlign. Optimizing the final
three predictions corresponding to the ground truth helped to improve the accuracy of the network
during the training time. Based on the number of classes in the dataset and its size, a fixed number of
epochs and steps per epoch were set before the training was defined. The network converged after the
fixed number of epochs, and the best model was selected as the final model for the inference mode.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 31

proposal areas and the bounding box of ground truth. At this point, the system requires a metric to
evaluate how good the overlap values are in general cases, which are independent of the size of the
objects in pixel coordinates. Intersection over union (IoU) [46] is a standard metric that can be used
in such a case. The IoU metric was used to evaluate the accuracy of the proposed visual perception
module. The region of interest (RoI) areas, which have the highest IoU values and the lowest values
to be selected with a fixed ratio between them, are the input for the next step. The network ignores
the neutral values. Based on the IoU values, the network easily separates the selected RoI into two
groups: positive RoI and negative RoI. Target class IDs, bounding box deltas, and masks are then
selected based on the RoI threshold of 0.5. Together with the output from the previous step, these
RoIs are used to train another network containing two graphs that output the final predicted class,
bounding box refinement, and masks for each instance. However, RoiPool, which is not designed for
pixel-to-pixel alignment between network inputs and outputs, can only perform coarse spatial
quantization for extraction of features. It was therefore replaced by RoiAlign. Optimizing the final
three predictions corresponding to the ground truth helped to improve the accuracy of the network
during the training time. Based on the number of classes in the dataset and its size, a fixed number
of epochs and steps per epoch were set before the training was defined. The network converged after
the fixed number of epochs, and the best model was selected as the final model for the inference
mode.

Figure 6. Implementation of deep learning for image processing.

4. Appropriate 3D Pose Estimation

In this section, we describe in detail how to predict the appropriate 3D pose for picking up the
target in the scene. The results were later used to control an industrial robot arm responsible for
picking the object. The output from the visual perception that contains information regarding all of

Figure 6. Implementation of deep learning for image processing.

Sensors 2019, 19, 3602 11 of 31

4. Appropriate 3D Pose Estimation

In this section, we describe in detail how to predict the appropriate 3D pose for picking up the
target in the scene. The results were later used to control an industrial robot arm responsible for
picking the object. The output from the visual perception that contains information regarding all of
the best OOIs in the scene was used as the input for this module. Figure 7 presents a flowchart of the
proposed 3D pose estimation, which comprises two main parts: OOI-DH and 3D pose estimation.
Data preprocessing is performed in the first step of OOI-DH and ultimately returns the center points of
the objects. The next step is to map point to image depth coordinates from RGB image coordinates.
These values are used to construct a 3D point, thereby allowing the system to determine the relative
distance of the object from the camera.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 31

the best OOIs in the scene was used as the input for this module. Figure 7 presents a flowchart of the
proposed 3D pose estimation, which comprises two main parts: OOI-DH and 3D pose estimation.
Data preprocessing is performed in the first step of OOI-DH and ultimately returns the center points
of the objects. The next step is to map point to image depth coordinates from RGB image coordinates.
These values are used to construct a 3D point, thereby allowing the system to determine the relative
distance of the object from the camera.

Figure 7. Flowchart of the proposed 3D object pose prediction method.

The next step comprises processing to select the final target and collecting the required
information on this target before estimating the appropriate 3D pose for picking the target object.
Since the translation values can be reused from the previous step, only an appropriate coordinate
system needs to be built. The system first collects sufficient points that are relatively close to the target
point in 2D before mapping to the 3D environment. Based on the 3D information, a predicted plane
is constructed using the plane segmentation method. Finally, an appropriate coordinate system is
built based on the built plane. We enhanced the accuracy of the final translation results by using a
linear regression model as a refinement method. It is sufficient to only determine the normal vector
for the highest contact probability of the suction pad to pick up the object at the target point on the
object’s surface. Figure 8 describes an example of two possible coordinate systems on the target plane
where the x’–y’–z’ coordinate system is created by rotating the x–y–z coordinate system along the z
axis at an α angle (α > 0). For picking up the object, both the coordinate systems are acceptable for
calculating the final pose. A simple technique is used to simply define an appropriate rotation matrix.
All translation and rotation information is transformed corresponding to the robot base’s
coordination. At this stage, the program is able to send execution commands to the robot to pick up
objects.

Figure 8. Example of two acceptable coordinate systems on the target plane.

4.1. OOI Data Handling

Based on the results of the deep learning network, the system can easily determine the total
number of instances in the prediction. It then needs to know exactly how many classes there are in
the scene before separating this information into the same group if it belongs to the same class. The
network only needs to retain the best results: therefore, the next step is to remove the bad objects and
retain good objects that have a mask area that is higher than the lower threshold but lower than the

Figure 7. Flowchart of the proposed 3D object pose prediction method.

The next step comprises processing to select the final target and collecting the required information
on this target before estimating the appropriate 3D pose for picking the target object. Since the
translation values can be reused from the previous step, only an appropriate coordinate system needs
to be built. The system first collects sufficient points that are relatively close to the target point in 2D
before mapping to the 3D environment. Based on the 3D information, a predicted plane is constructed
using the plane segmentation method. Finally, an appropriate coordinate system is built based on
the built plane. We enhanced the accuracy of the final translation results by using a linear regression
model as a refinement method. It is sufficient to only determine the normal vector for the highest
contact probability of the suction pad to pick up the object at the target point on the object’s surface.
Figure 8 describes an example of two possible coordinate systems on the target plane where the x’–y’–z’
coordinate system is created by rotating the x–y–z coordinate system along the z axis at an α angle (α
> 0). For picking up the object, both the coordinate systems are acceptable for calculating the final
pose. A simple technique is used to simply define an appropriate rotation matrix. All translation and
rotation information is transformed corresponding to the robot base’s coordination. At this stage, the
program is able to send execution commands to the robot to pick up objects.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 31

the best OOIs in the scene was used as the input for this module. Figure 7 presents a flowchart of the
proposed 3D pose estimation, which comprises two main parts: OOI-DH and 3D pose estimation.
Data preprocessing is performed in the first step of OOI-DH and ultimately returns the center points
of the objects. The next step is to map point to image depth coordinates from RGB image coordinates.
These values are used to construct a 3D point, thereby allowing the system to determine the relative
distance of the object from the camera.

Figure 7. Flowchart of the proposed 3D object pose prediction method.

The next step comprises processing to select the final target and collecting the required
information on this target before estimating the appropriate 3D pose for picking the target object.
Since the translation values can be reused from the previous step, only an appropriate coordinate
system needs to be built. The system first collects sufficient points that are relatively close to the target
point in 2D before mapping to the 3D environment. Based on the 3D information, a predicted plane
is constructed using the plane segmentation method. Finally, an appropriate coordinate system is
built based on the built plane. We enhanced the accuracy of the final translation results by using a
linear regression model as a refinement method. It is sufficient to only determine the normal vector
for the highest contact probability of the suction pad to pick up the object at the target point on the
object’s surface. Figure 8 describes an example of two possible coordinate systems on the target plane
where the x’–y’–z’ coordinate system is created by rotating the x–y–z coordinate system along the z
axis at an α angle (α > 0). For picking up the object, both the coordinate systems are acceptable for
calculating the final pose. A simple technique is used to simply define an appropriate rotation matrix.
All translation and rotation information is transformed corresponding to the robot base’s
coordination. At this stage, the program is able to send execution commands to the robot to pick up
objects.

Figure 8. Example of two acceptable coordinate systems on the target plane.

4.1. OOI Data Handling

Based on the results of the deep learning network, the system can easily determine the total
number of instances in the prediction. It then needs to know exactly how many classes there are in
the scene before separating this information into the same group if it belongs to the same class. The
network only needs to retain the best results: therefore, the next step is to remove the bad objects and
retain good objects that have a mask area that is higher than the lower threshold but lower than the

Figure 8. Example of two acceptable coordinate systems on the target plane.

Sensors 2019, 19, 3602 12 of 31

4.1. OOI Data Handling

Based on the results of the deep learning network, the system can easily determine the total
number of instances in the prediction. It then needs to know exactly how many classes there are in
the scene before separating this information into the same group if it belongs to the same class. The
network only needs to retain the best results: therefore, the next step is to remove the bad objects and
retain good objects that have a mask area that is higher than the lower threshold but lower than the
upper threshold. Another filter is then set up to remove all components that have a confidence score
lower than a fixed threshold before the system calculates the center of the remaining object.

Having obtained the object center information in the RGB color image coordinate, the next step is
to find corresponding points in the depth image coordinates so that the system can later query the 3D
information. As mentioned, Kinect v2 was selected as the 3D camera in this study. A recent study
compared both versions of Kinect in terms of the RGB and IR FOV, which is not mentioned in the
official product specifications [47]. In Figure 9, the overlap between two types of Kinects in relation to
the RGB view and IR view is presented. The difference between color image resolution and depth
image resolution indicates that the calibration methods designed for Kinect v1 cannot be applied to
Kinect v2. This is a common problem; however, very few studies have mentioned this issue, and we
found only one study that focused on solving this problem [48]. In the aforementioned study, the
authors corrected the radial distortion of the RGB camera and determined the transformation matrix
for the correspondence between the RGB image and the Kinect v2 depth image. However, a rigorous
analysis of the projection matrix in this study revealed that it is correct in certain cases and cannot be
generalized when x ∈ [0, 1920] and y ∈ [0, 1080], where x and y denote the pixel values in the RGB color
image coordinate. To overcome this limitation, we first verified the effect of the differences between the
RGB view and the IR view. Figure 10 shows the results of an experiment in which we used libfreenect2
library on Kinect v2. The bottom-left image is the raw RGB color image, and the top-right image
presents the results after registration and cropping (RGB with depth). Clearly, the RGB with depth
images is the intersection between the raw RGB colors and IR images. Because the FOV is different
between the color image and IR image, the color image is cropped on both sides to fit the FOV of the
IR image. Readers can verify this easily by looking at Figure 10b,c. Only the information inside the
red box in the RGB color image appears inside the RGB image, with depth in the green box area. The
upper and lower part of the RGB with depth is black, which means that there are no data because the
FOV of the color image is smaller than the FOV of the IR image. After the calibration and cropping
process, the real size of the RGB with a depth image was changed to 512 × 360 [48]. The original size
of the color image was 1920 × 1080 and that of the IR image was 512 × 424. Because the FOV was
different, we determined that the bottleneck of our entire system was a method for mapping from a
point in the color image to the point that has the same relative position in the depth image. A new
method was proposed to find the correspondence between the RGB and depth image of the Kinect v2
to solve this bottleneck.

Figure 11 will make it easier to explain the mapping process. The red area represents the
overlapped area between the FOV of the RGB camera and the FOV of the IR view. The color image is
cut on the left and right side, while the height remains the same at 1080. The scaling ratio must be the
same for both height and width. From all of these arguments, it is easy to figure out the scaling value:

k =
h1

h2
=

1080
360

= 3, (1)

where k denotes for the scaling value, h1 denotes the height of the overlap view between the RGB and
IR view (before scaling), and h2 denotes the height of the RGB with depth (after scaling).

Sensors 2019, 19, 3602 13 of 31

Sensors 2019, 19, x FOR PEER REVIEW 12 of 31

upper threshold. Another filter is then set up to remove all components that have a confidence score
lower than a fixed threshold before the system calculates the center of the remaining object.

Having obtained the object center information in the RGB color image coordinate, the next step
is to find corresponding points in the depth image coordinates so that the system can later query the
3D information. As mentioned, Kinect v2 was selected as the 3D camera in this study. A recent study
compared both versions of Kinect in terms of the RGB and IR FOV, which is not mentioned in the
official product specifications [47]. In Figure 9, the overlap between two types of Kinects in relation
to the RGB view and IR view is presented. The difference between color image resolution and depth
image resolution indicates that the calibration methods designed for Kinect v1 cannot be applied to
Kinect v2. This is a common problem; however, very few studies have mentioned this issue, and we
found only one study that focused on solving this problem [48]. In the aforementioned study, the
authors corrected the radial distortion of the RGB camera and determined the transformation matrix
for the correspondence between the RGB image and the Kinect v2 depth image. However, a rigorous
analysis of the projection matrix in this study revealed that it is correct in certain cases and cannot be
generalized when x ∈ [0, 1920] and y ∈ [0, 1080], where x and y denote the pixel values in the RGB
color image coordinate. To overcome this limitation, we first verified the effect of the differences
between the RGB view and the IR view. Figure 10 shows the results of an experiment in which we
used libfreenect2 library on Kinect v2. The bottom-left image is the raw RGB color image, and the
top-right image presents the results after registration and cropping (RGB with depth). Clearly, the
RGB with depth images is the intersection between the raw RGB colors and IR images. Because the
FOV is different between the color image and IR image, the color image is cropped on both sides to
fit the FOV of the IR image. Readers can verify this easily by looking at Figure 10b,c. Only the
information inside the red box in the RGB color image appears inside the RGB image, with depth in
the green box area. The upper and lower part of the RGB with depth is black, which means that there
are no data because the FOV of the color image is smaller than the FOV of the IR image. After the
calibration and cropping process, the real size of the RGB with a depth image was changed to 512 ×
360 [48]. The original size of the color image was 1920 × 1080 and that of the IR image was 512 × 424.
Because the FOV was different, we determined that the bottleneck of our entire system was a method
for mapping from a point in the color image to the point that has the same relative position in the
depth image. A new method was proposed to find the correspondence between the RGB and depth
image of the Kinect v2 to solve this bottleneck.

Figure 9. Kinect v1 and v2 overlap regions in the captured scene. The green rectangle represents the
RGB view, and the red rectangle represents the IR view [47].
Figure 9. Kinect v1 and v2 overlap regions in the captured scene. The green rectangle represents the
RGB view, and the red rectangle represents the IR view [47].Sensors 2019, 19, x FOR PEER REVIEW 13 of 31

Figure 10. (a) IR image, (b) original image, (c) registered color image and IR obtained from
transformation and cropping, (d) depth image.

Figure 11 will make it easier to explain the mapping process. The red area represents the
overlapped area between the FOV of the RGB camera and the FOV of the IR view. The color image is
cut on the left and right side, while the height remains the same at 1080. The scaling ratio must be the
same for both height and width. From all of these arguments, it is easy to figure out the scaling value: 𝑘 = భమ = ଵ଼ଷ = 3, (1)

where k denotes for the scaling value, ℎଵdenotes the height of the overlap view between the RGB and
IR view (before scaling), and ℎଶ denotes the height of the RGB with depth (after scaling).

Figure 10. (a) IR image, (b) original image, (c) registered color image and IR obtained from
transformation and cropping, (d) depth image.

Sensors 2019, 19, 3602 14 of 31
Sensors 2019, 19, x FOR PEER REVIEW 14 of 31

Figure 11. Demonstration of mapping methodology for Kinect v2.

Suppose that the point A (𝑥ଵ, 𝑦ଵ) in the RGB image coordinates corresponds to the point A’ (𝑥ଶ, 𝑦ଶ) in the depth image. From Equation (2), the mapping function between the RGB color view and
the IR view (depth image) presents as 𝑥ଶ = 𝑥ଵ − ∆ଵ3 𝑦ଶ = ௬భଷ + ∆ଶ.

(2)

As mentioned, a linear regression model was used to improve the mapping results. The ∆ଵand ∆ଶ are affected by the values of 𝑥ଵ and 𝑦ଵ in the RGB color pixel coordinate. Thus, a model to predict
the offset pixel values of ∆ଵ and ∆ଶ was built using a sufficient amount of data as the input for
training. The final results are shown in Equation (3) below: ∆ଵ = −0.02814 × 𝑥ଵ − 0.00704 × 𝑦ଵ + 298.656 ∆ଶ = −0.00190 × 𝑥ଵ + 0.00971 × 𝑦ଵ + 26.427. (3)

The mapping values in the depth image coordinate form the basis for the BTOH module before
the system starts to estimate the 3D pose of the object with respect to the coordinate of the camera.
The first step taken by the BTOH is to extract the 3D information using the libfreenect2 library [49],
an open source for Kinect v2. Based on the depth value of each object, the system keeps the one with
the shortest distance as the only target. In our study, the reference point for the back side of the object
was in the middle. However, for the front, the target point in an asymmetrical image is the point with
a fixed scale. To address this problem, we used a technique called feature matching and then found
the perspective transformation to figure out the four corners of the objects, shown as points A, B, C,

Figure 11. Demonstration of mapping methodology for Kinect v2.

Suppose that the point A (x1, y1) in the RGB image coordinates corresponds to the point A’ (x2, y2)
in the depth image. From Equation (2), the mapping function between the RGB color view and the IR
view (depth image) presents as

x2 =
x1 − ∆1

3
y2 =

y1

3
+ ∆2. (2)

As mentioned, a linear regression model was used to improve the mapping results. The ∆1 and
∆2 are affected by the values of x1 and y1 in the RGB color pixel coordinate. Thus, a model to predict
the offset pixel values of ∆1 and ∆2 was built using a sufficient amount of data as the input for training.
The final results are shown in Equation (3) below:

∆1 = −0.02814 × x1 − 0.00704 × y1 + 298.656∆2 = −0.00190 × x1 + 0.00971 × y1 + 26.427. (3)

The mapping values in the depth image coordinate form the basis for the BTOH module before
the system starts to estimate the 3D pose of the object with respect to the coordinate of the camera. The
first step taken by the BTOH is to extract the 3D information using the libfreenect2 library [49], an
open source for Kinect v2. Based on the depth value of each object, the system keeps the one with the
shortest distance as the only target. In our study, the reference point for the back side of the object was
in the middle. However, for the front, the target point in an asymmetrical image is the point with a
fixed scale. To address this problem, we used a technique called feature matching and then found the
perspective transformation to figure out the four corners of the objects, shown as points A, B, C, and D
in Figure 12. An image called a query image containing the object of interest is prepared to use the

Sensors 2019, 19, 3602 15 of 31

feature matching technique. The algorithm identifies the features inside the query image and the best
matches of these features inside the target image. Two sets of points from both images are used to find
the perspective transformation of the query image in the target one. In our setting, the four corners of
the query image match the four corners of the object. From this, the orientation of the object in a 2D
image coordinate can be observed. Finally, with a fixed ratio as a constant that can be calculated on the
basis of the predefined position on the target object, we determined the final target position based on
basic geometry and vector knowledge. For the final target in the RGB color coordinate, the system
only maps and acquires 3D information (x, y, z) for the front side case. This procedure does not need to
be repeated for the back side.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 31

and D in Figure 12. An image called a query image containing the object of interest is prepared to use
the feature matching technique. The algorithm identifies the features inside the query image and the
best matches of these features inside the target image. Two sets of points from both images are used
to find the perspective transformation of the query image in the target one. In our setting, the four
corners of the query image match the four corners of the object. From this, the orientation of the object
in a 2D image coordinate can be observed. Finally, with a fixed ratio as a constant that can be
calculated on the basis of the predefined position on the target object, we determined the final target
position based on basic geometry and vector knowledge. For the final target in the RGB color
coordinate, the system only maps and acquires 3D information (x, y, z) for the front side case. This
procedure does not need to be repeated for the back side.

Figure 12. Method of calculating the final target for the front side case.

This technique also works for objects with a nonrectangular shape under a proper set-up. Figure
13 shows an example of a query image in an “L shape”, with the red color point being the target
position. Any destination point in the query image can be represented using vectors with fixed
modules and directions starting from one of the four corner points (A or B or C or D). To represent
the target point in Figure 13, the two reference vectors (𝐵𝐴ሬሬሬሬሬ⃗ and 𝐴𝐷ሬሬሬሬሬ⃗) are first created from the original
three corner points of the query image. Based on the reference vectors, 𝐵𝐴′ሬሬሬሬሬሬሬ⃗ and 𝐴′𝐷′ሬሬሬሬሬሬሬሬ⃗ are identified.
The ratios between the modules of 𝐵𝐴′ሬሬሬሬሬሬሬ⃗ and 𝐵𝐴ሬሬሬሬሬ⃗ and 𝐴′𝐷′ሬሬሬሬሬሬሬሬ⃗ and 𝐴𝐷ሬሬሬሬሬ⃗ are calculated for further location of
the target points in the target image. Figure 14 shows the overall results of the proposed technique.
The small image in the upper-left corner is the query image, while the large image is the target. The
technique exactly matched some of the features in the query image to those of the target one, as shown
by the green lines. These features in the target image in combination with the relative positions (as
illustrated by the blue box) of the four corners of the query image help to identify the final target.

Figure 13. Example of the nonrectangular object with background used as the query image with
reference vectors to locate the destination point.

Figure 12. Method of calculating the final target for the front side case.

This technique also works for objects with a nonrectangular shape under a proper set-up. Figure 13
shows an example of a query image in an “L shape”, with the red color point being the target position.
Any destination point in the query image can be represented using vectors with fixed modules and
directions starting from one of the four corner points (A or B or C or D). To represent the target point in

Figure 13, the two reference vectors (
→

BA and
→

AD) are first created from the original three corner points

of the query image. Based on the reference vectors,
→

BA′ and
→

A′D′ are identified. The ratios between

the modules of
→

BA′ and
→

BA and
→

A′D′ and
→

AD are calculated for further location of the target points in
the target image. Figure 14 shows the overall results of the proposed technique. The small image in
the upper-left corner is the query image, while the large image is the target. The technique exactly
matched some of the features in the query image to those of the target one, as shown by the green lines.
These features in the target image in combination with the relative positions (as illustrated by the blue
box) of the four corners of the query image help to identify the final target.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 31

and D in Figure 12. An image called a query image containing the object of interest is prepared to use
the feature matching technique. The algorithm identifies the features inside the query image and the
best matches of these features inside the target image. Two sets of points from both images are used
to find the perspective transformation of the query image in the target one. In our setting, the four
corners of the query image match the four corners of the object. From this, the orientation of the object
in a 2D image coordinate can be observed. Finally, with a fixed ratio as a constant that can be
calculated on the basis of the predefined position on the target object, we determined the final target
position based on basic geometry and vector knowledge. For the final target in the RGB color
coordinate, the system only maps and acquires 3D information (x, y, z) for the front side case. This
procedure does not need to be repeated for the back side.

Figure 12. Method of calculating the final target for the front side case.

This technique also works for objects with a nonrectangular shape under a proper set-up. Figure
13 shows an example of a query image in an “L shape”, with the red color point being the target
position. Any destination point in the query image can be represented using vectors with fixed
modules and directions starting from one of the four corner points (A or B or C or D). To represent
the target point in Figure 13, the two reference vectors (𝐵𝐴ሬሬሬሬሬ⃗ and 𝐴𝐷ሬሬሬሬሬ⃗) are first created from the original
three corner points of the query image. Based on the reference vectors, 𝐵𝐴′ሬሬሬሬሬሬሬ⃗ and 𝐴′𝐷′ሬሬሬሬሬሬሬሬ⃗ are identified.
The ratios between the modules of 𝐵𝐴′ሬሬሬሬሬሬሬ⃗ and 𝐵𝐴ሬሬሬሬሬ⃗ and 𝐴′𝐷′ሬሬሬሬሬሬሬሬ⃗ and 𝐴𝐷ሬሬሬሬሬ⃗ are calculated for further location of
the target points in the target image. Figure 14 shows the overall results of the proposed technique.
The small image in the upper-left corner is the query image, while the large image is the target. The
technique exactly matched some of the features in the query image to those of the target one, as shown
by the green lines. These features in the target image in combination with the relative positions (as
illustrated by the blue box) of the four corners of the query image help to identify the final target.

Figure 13. Example of the nonrectangular object with background used as the query image with
reference vectors to locate the destination point.
Figure 13. Example of the nonrectangular object with background used as the query image with
reference vectors to locate the destination point.

Sensors 2019, 19, 3602 16 of 31

Sensors 2019, 19, x FOR PEER REVIEW 16 of 31

Figure 14. Overall results of the proposed technique on a nonrectangular object.

4.2. The Appropriate 3D Pose Estimation

To conduct the appropriate 3D pose estimation for picking up the objects, our approach was to
find a method for building a proper coordinate system on the predicted plane. Because we had
already obtained the translation values of the target point in the first step, the task was to create a
rotation matrix at that point with respect to the coordinate of the camera. The linear regression model
was used to refine this translation result, which later demonstrated impressive accuracy.

The depth error of the two versions of the Kinect sensors is described as a function of the distance
between the device and the object [50]. Here, the x coordinate and y coordinate corresponding to the
image coordinates of a pixel are calculated based on the z coordinate [51]. Therefore, the final
translation values are related to the image coordinates of pixel values. In this research, a linear
regression model is used directly on the output of OOI-DH as a refinement technique. The final
translation prediction results (𝑥, 𝑦, 𝑧) in millimeters are shown in Equation (4) below: 𝑥 = 0.98966 × x − 0.01493 × y − 0.04134 × z + 12.07 𝑦 = 0.02155 × x + 0.99117 × y + 0.02561 × z + 16.69 . 𝑧 = 0.02105 × x + 0.01863 × y + 0.90290 × z + 5.30 (4)

To predict a rotation matrix for picking up objects, the system first builds a predicted plane using
plane segmentation [52,53]. After that, an appropriate coordination system is built on that predicted
plane. Figure 15 shows the whole procedure step by step as follows:

• Step 1. Determine the target point in the 2D RGB image. This step is done by OOI-DH module;
• Step 2. Collect sufficient relative points based on the target point in the 2D RGB image and

choose the three key points, i.e., B, C, and D. B, C, and D are used to build the appropriate
coordination system;

• Step 3. Map and acquire 3D information from the three sample points (B, C, and D) to create B’,
C’, and D’, respectively;

Figure 14. Overall results of the proposed technique on a nonrectangular object.

4.2. The Appropriate 3D Pose Estimation

To conduct the appropriate 3D pose estimation for picking up the objects, our approach was to
find a method for building a proper coordinate system on the predicted plane. Because we had already
obtained the translation values of the target point in the first step, the task was to create a rotation
matrix at that point with respect to the coordinate of the camera. The linear regression model was used
to refine this translation result, which later demonstrated impressive accuracy.

The depth error of the two versions of the Kinect sensors is described as a function of the distance
between the device and the object [50]. Here, the x coordinate and y coordinate corresponding to the
image coordinates of a pixel are calculated based on the z coordinate [51]. Therefore, the final translation
values are related to the image coordinates of pixel values. In this research, a linear regression model is
used directly on the output of OOI-DH as a refinement technique. The final translation prediction
results (xpr, ypr, zpr) in millimeters are shown in Equation (4) below:

xpr = 0.98966 × x − 0.01493 × y − 0.04134 × z + 12.07
ypr = 0.02155 × x + 0.99117 × y + 0.02561 × z + 16.69.
zpr = 0.02105 × x + 0.01863 × y + 0.90290 × z + 5.30

(4)

To predict a rotation matrix for picking up objects, the system first builds a predicted plane using
plane segmentation [52,53]. After that, an appropriate coordination system is built on that predicted
plane. Figure 15 shows the whole procedure step by step as follows:

• Step 1. Determine the target point in the 2D RGB image. This step is done by OOI-DH module;
• Step 2. Collect sufficient relative points based on the target point in the 2D RGB image and

choose the three key points, i.e., B, C, and D. B, C, and D are used to build the appropriate
coordination system;

Sensors 2019, 19, 3602 17 of 31

• Step 3. Map and acquire 3D information from the three sample points (B, C, and D) to create B’,
C’, and D’, respectively;

• Step 4. Create the predicted plane in 3D based on B’, C’, and D’ using the plane
segmentation method;

• Step 5. Use B’, C’, and D’ to create the three new respective points B”, C”, and D” on the predicted
plane by finding new z values while keeping the x coordinate and y coordinate unchanged;

• Step 6. Create two vectors,
−→

B′′C′′ and
−→

B′′D′′ ;

• Step 7. Generate a vector product
−→

B′′M from
−→

B′′C′′ and
−→

B′′D′′ . The direction of the vector product
must be considered for the robot motion to pick up objects;

• Step 8. Generate an additional vector product either using
−→

B′′M and
−→

B′′C′′ or
−→

B′′M and
−→

B′′D′′ to
create a coordination system. The output system of this step can be either the Cartesian coordinate
system (NC′′M) or (D′′LM);

• Step 9. Project the built coordination system on the camera coordination system to define the
rotation matrix.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 31

• Step 4. Create the predicted plane in 3D based on B’, C’, and D’ using the plane segmentation
method;

• Step 5. Use B’, C’, and D’ to create the three new respective points B’’, C’’, and D’’ on the
predicted plane by finding new z values while keeping the x coordinate and y coordinate
unchanged;

• Step 6. Create two vectors, 𝐵ᇱᇱ𝐶ᇱᇱሬሬሬሬሬሬሬሬሬሬሬ⃗ and 𝐵ᇱᇱ𝐷ᇱᇱሬሬሬሬሬሬሬሬሬሬሬ⃗ ;
• Step 7. Generate a vector product 𝐵ᇱᇱ𝑀ሬሬሬሬሬሬሬሬሬ⃗ from 𝐵ᇱᇱ𝐶ᇱᇱሬሬሬሬሬሬሬሬሬሬሬ⃗ and 𝐵ᇱᇱ𝐷ᇱᇱሬሬሬሬሬሬሬሬሬሬሬ⃗ . The direction of the vector

product must be considered for the robot motion to pick up objects;
• Step 8. Generate an additional vector product either using 𝐵ᇱᇱ𝑀ሬሬሬሬሬሬሬሬሬ⃗ and 𝐵ᇱᇱ𝐶ᇱᇱሬሬሬሬሬሬሬሬሬሬሬ⃗ or 𝐵ᇱᇱ𝑀ሬሬሬሬሬሬሬሬሬ⃗ and 𝐵ᇱᇱ𝐷ᇱᇱሬሬሬሬሬሬሬሬሬሬሬ⃗ to

create a coordination system. The output system of this step can be either the Cartesian
coordinate system (𝑁𝐶ᇱᇱ𝑀) or (𝐷ᇱᇱ𝐿𝑀);

• Step 9. Project the built coordination system on the camera coordination system to define the
rotation matrix.

Figure 15. Procedure for building an appropriate coordinate system on the target object to create a
rotation matrix with respect to the camera.

Finally, precise information on the pose of the object with respect to the camera’s coordinate is
obtained. This transformation of the object to the camera frame is presented as the homogeneous
matrix 𝑇 ை ∈ 𝑆𝐸ሺ3).

Another transformation, 𝑇ோ ∈ 𝑆𝐸ሺ3), which specifies the relative position and rotation of the
camera with respect to the robot pose, remains constant when the relative position of the camera is
fixed with the industrial manipulator. This camera-to-robot transformation can be obtained by
performing a calibration procedure known as hand–eye calibration, as described in References [54–
57].

Figure 16 shows all the relationships and matrix of the corresponding transformation. Once all
of the relationships have been established, the final target, camera-to-robot transformation 𝑇ோ ை ∈𝑆𝐸ሺ3), can be calculated using Equation (5): 𝑇ோ ை = 𝑇ோ 𝑇 ை. (5)

Figure 15. Procedure for building an appropriate coordinate system on the target object to create a
rotation matrix with respect to the camera.

Finally, precise information on the pose of the object with respect to the camera’s coordinate is
obtained. This transformation of the object to the camera frame is presented as the homogeneous
matrix CTO ∈ SE(3).

Another transformation, RTC ∈ SE(3), which specifies the relative position and rotation of the
camera with respect to the robot pose, remains constant when the relative position of the camera
is fixed with the industrial manipulator. This camera-to-robot transformation can be obtained by
performing a calibration procedure known as hand–eye calibration, as described in References [54–57].

Figure 16 shows all the relationships and matrix of the corresponding transformation. Once all of
the relationships have been established, the final target, camera-to-robot transformation RTO ∈ SE(3),
can be calculated using Equation (5):

RTO = RTC
CTO. (5)

Sensors 2019, 19, 3602 18 of 31

Sensors 2019, 19, x FOR PEER REVIEW 18 of 31

Figure 16. Camera and object position with respect to the robot base.

However, readers are recommended to follow the method [58] for obtaining a simple solution
by computing Euler angles from a rotation matrix for robot operation.

4.3. Performance Evaluation of the Appropriate 3D Pose Estimation

The ground truth of the object with respect to the robot base is one of the most important
elements used to evaluate the accuracy of the 3D pose estimation module. It is challenging to observe
the absolute pose of the objects. We used an indirect way of obtaining the ground truth of a planar
object in the 3D environment on our own target object. Since we start from the beginning, the
proposed method was chosen to return the pose of the object with respect to the robot’s base. This
way can help to achieve a more objective result by eliminating the errors that are hard to measure
during the process to obtain the ground truth using the transformation from the camera to the robot’s
base. This indirect way was used to show that the pose error attained with our method is small
enough for a bin-picking system. Figure 17 illustrates the proposed platform to obtain the ground
truth information. The original coordination of this platform, located at the center of the base,
provides translation values and appropriate rotation information with respect to the robot base.

Figure 17. (a) Kinematic model, (b) a supportive platform to capture the object’s ground truth with
respect to the robot (for both the front and back sides).

The platform can rotate 360 degrees in the x–y plane, and the upper part can rotate from −85° to
85° in the z–x plane. Based on this design, the ground truth with respect to the robot is identified
using the end effector as a tool to define the relative position between the base of the platform and
the robot base. Because the equation can be established using forward kinematics equations, it is easy
to calculate the respective six poses at the point on the plane where the target object is placed.
Equation (6) shows the translation and rotation estimation errors of the proposed method, which are
determined using a basic and effective method for measuring estimated errors: 𝛿𝑇 = 𝑇 − 𝑇 ∧ 𝛿𝑅 = 𝑅 − 𝑅. (6)

Figure 16. Camera and object position with respect to the robot base.

However, readers are recommended to follow the method [58] for obtaining a simple solution by
computing Euler angles from a rotation matrix for robot operation.

4.3. Performance Evaluation of the Appropriate 3D Pose Estimation

The ground truth of the object with respect to the robot base is one of the most important elements
used to evaluate the accuracy of the 3D pose estimation module. It is challenging to observe the
absolute pose of the objects. We used an indirect way of obtaining the ground truth of a planar object
in the 3D environment on our own target object. Since we start from the beginning, the proposed
method was chosen to return the pose of the object with respect to the robot’s base. This way can
help to achieve a more objective result by eliminating the errors that are hard to measure during the
process to obtain the ground truth using the transformation from the camera to the robot’s base. This
indirect way was used to show that the pose error attained with our method is small enough for a
bin-picking system. Figure 17 illustrates the proposed platform to obtain the ground truth information.
The original coordination of this platform, located at the center of the base, provides translation values
and appropriate rotation information with respect to the robot base.

Sensors 2019, 19, x FOR PEER REVIEW 18 of 31

Figure 16. Camera and object position with respect to the robot base.

However, readers are recommended to follow the method [58] for obtaining a simple solution
by computing Euler angles from a rotation matrix for robot operation.

4.3. Performance Evaluation of the Appropriate 3D Pose Estimation

The ground truth of the object with respect to the robot base is one of the most important
elements used to evaluate the accuracy of the 3D pose estimation module. It is challenging to observe
the absolute pose of the objects. We used an indirect way of obtaining the ground truth of a planar
object in the 3D environment on our own target object. Since we start from the beginning, the
proposed method was chosen to return the pose of the object with respect to the robot’s base. This
way can help to achieve a more objective result by eliminating the errors that are hard to measure
during the process to obtain the ground truth using the transformation from the camera to the robot’s
base. This indirect way was used to show that the pose error attained with our method is small
enough for a bin-picking system. Figure 17 illustrates the proposed platform to obtain the ground
truth information. The original coordination of this platform, located at the center of the base,
provides translation values and appropriate rotation information with respect to the robot base.

Figure 17. (a) Kinematic model, (b) a supportive platform to capture the object’s ground truth with
respect to the robot (for both the front and back sides).

The platform can rotate 360 degrees in the x–y plane, and the upper part can rotate from −85° to
85° in the z–x plane. Based on this design, the ground truth with respect to the robot is identified
using the end effector as a tool to define the relative position between the base of the platform and
the robot base. Because the equation can be established using forward kinematics equations, it is easy
to calculate the respective six poses at the point on the plane where the target object is placed.
Equation (6) shows the translation and rotation estimation errors of the proposed method, which are
determined using a basic and effective method for measuring estimated errors: 𝛿𝑇 = 𝑇 − 𝑇 ∧ 𝛿𝑅 = 𝑅 − 𝑅. (6)

Figure 17. (a) Kinematic model, (b) a supportive platform to capture the object’s ground truth with
respect to the robot (for both the front and back sides).

The platform can rotate 360 degrees in the x–y plane, and the upper part can rotate from −85◦

to 85◦ in the z–x plane. Based on this design, the ground truth with respect to the robot is identified
using the end effector as a tool to define the relative position between the base of the platform and the
robot base. Because the equation can be established using forward kinematics equations, it is easy to
calculate the respective six poses at the point on the plane where the target object is placed. Equation

Sensors 2019, 19, 3602 19 of 31

(6) shows the translation and rotation estimation errors of the proposed method, which are determined
using a basic and effective method for measuring estimated errors:

δTA = TA − T̂A ∧ δRA = RA − R̂A. (6)

In Equation (6), A =
{
x, y, z

}
denotes one of the three axes of the 3D Cartesian coordinate system.

TA and RA represent the ground truth of the object’s translation and rotation, and T̂A and R̂A represent
the prediction of translation and rotation, respectively. Performance is evaluated on the basis of the
mean absolute error (MAE) metric used by Lin et al. [4], as presented in Equation (7):

MAE(δEA) =
1
N

∑
|δEA|, (7)

where N represents the total test number and E = {T, R} denotes either the translation or
rotation variable.

5. Experimental Results and Discussion

5.1. Image Processing Results

The network can fully train from scratch using a large number of datasets and strong hardware
with a good minibatch image. Because we had a small dataset and mediocre hardware performance,
we used the pretrained model. This model provided the initial values for all of the weights within the
network, which was trained on the large COCO dataset in a synchronized 8-GPU implementation
(0.72 s per 16-image minibatch) [41].

Our model was trained on a single GTX1080Ti with only one image per GPU. The training was
divided into two small parts with a total of 25 epochs. In the first 10 epochs, RPNs, the first step in
the overall training process, were trained separately with an initial learning rate of 0.001 and without
the use of MS COCO pretrained weights. At this stage, all of the layers of the backbone were frozen,
and only the randomly initialized layers were trained. Because this was a small network and our own
objects did not appear in the COCO dataset in the 80 total classes, we needed to retrain our model.
Using pretrained weights as initialized values with the same learning rates, we trained all layers of the
networks in subsequent stages after finishing training on the RPN. The training stopped after the 25th
epoch had finished. Figure 18, which provides basic information regarding the learning performance
of the overall process, shows the loss graph for the training and validation process. This shows that
the training loss decreased very rapidly in the first few epochs and continued to decrease until the last
epoch. During this training time, the amount of loss in the validation set also decreased and almost
converged after the 12th epoch until the training finished with a small fluctuation. After five runs, it
was clear that there was no significant variation in training and testing performance. The difference
between training and testing was almost constant, and the models all converged at epoch = 25. Thus,
increasing the number of epochs led to an overfitting problem. This problem could be expressed as the
training loss continuing to decrease while the testing loss began to increase with strong variation.

The model was then used in inference mode to run on the test dataset to check the accuracy of
the model on the unseen data. Figure 19a,c shows the ground truth of two cases, and the results
of correspondence detection are shown in Figure 19b,d, respectively. As shown in Figure 20, the
normalized confusion matrix further showed the model’s classification accuracy on the test set. The
result indicates that the model could successfully classify all objects. Figure 21 shows another successful
prediction and creation of the mask for each instance. The final prediction gave us six instances,
whereas the ground truth had only five instances, because we forced the network to only detect the full
objects. The network still gave us the correct classification, and the final prediction for that instance
was the front side of the object marked in the black box. The system could then be improved by using
filters to remove less accurate predictions.

Sensors 2019, 19, 3602 20 of 31
Sensors 2019, 19, x FOR PEER REVIEW 20 of 31

Figure 18. Loss graph for the deep learning model.

The model was then used in inference mode to run on the test dataset to check the accuracy of
the model on the unseen data. Figure 19a,c shows the ground truth of two cases, and the results of
correspondence detection are shown in Figure 19b,d, respectively. As shown in Figure 20, the
normalized confusion matrix further showed the model’s classification accuracy on the test set. The
result indicates that the model could successfully classify all objects. Figure 21 shows another
successful prediction and creation of the mask for each instance. The final prediction gave us six
instances, whereas the ground truth had only five instances, because we forced the network to only
detect the full objects. The network still gave us the correct classification, and the final prediction for
that instance was the front side of the object marked in the black box. The system could then be
improved by using filters to remove less accurate predictions.

Figure 18. Loss graph for the deep learning model.

Sensors 2019, 19, x FOR PEER REVIEW 20 of 31

Figure 18. Loss graph for the deep learning model.

The model was then used in inference mode to run on the test dataset to check the accuracy of
the model on the unseen data. Figure 19a,c shows the ground truth of two cases, and the results of
correspondence detection are shown in Figure 19b,d, respectively. As shown in Figure 20, the
normalized confusion matrix further showed the model’s classification accuracy on the test set. The
result indicates that the model could successfully classify all objects. Figure 21 shows another
successful prediction and creation of the mask for each instance. The final prediction gave us six
instances, whereas the ground truth had only five instances, because we forced the network to only
detect the full objects. The network still gave us the correct classification, and the final prediction for
that instance was the front side of the object marked in the black box. The system could then be
improved by using filters to remove less accurate predictions.

Figure 19. (a,c) Ground truth of two test cases; (b,d) the results of the prediction corresponded to two
ground truths.

Sensors 2019, 19, 3602 21 of 31

Sensors 2019, 19, x FOR PEER REVIEW 21 of 31

Figure 19. (a,c) Ground truth of two test cases; (b,d) the results of the prediction corresponded to two
ground truths.

Figure 20. Confusion matrix of the classification results from the model.

Figure 21. Another case in the test set – (a) ground truth; (b) the results of the prediction.

In this study, both the accuracy of classification and locating the object’s position in the image
strongly affected the final result. For an overall assessment, the model was used to run the test set,
the results of which are shown in Table 3. It is evident that with typical IoU thresholds of 50% and
75%, identical results were obtained over five runs with 100% accuracy. In addition, the mean average
accuracy with a threshold value from 0.5 to 0.95 at step size 0.05 demonstrated that the overall
accuracy was 91.18%. This surpassed the state-of-the-art segmentation method. These reliable results
provide a firm basis for implementing the next steps of the proposed method.

Table 3. Average precision (AP) of the final detection result (%).

Threshold Intersection
Over Union (IoU)

Average Precision (%)
Run Run Run Run Run Average

AP@0.5 100 100 100 100 100 100
AP@0.75 100 100 100 100 100 100

AP@0.5:0.95 91.94 90.28 91.21 90.37 92.13 91.18

5.2. The Appropriate Pose Estimation Performance

To make the entire process easy to follow, the real implementation is shown from the beginning.
The process began with capturing the image using Kinect v2 as the first step in the inference mode.
Figure 22a is an image captured by Kinect v2 that was later subjected to preprocessing to remove all

Figure 20. Confusion matrix of the classification results from the model.

Sensors 2019, 19, x FOR PEER REVIEW 21 of 31

Figure 19. (a,c) Ground truth of two test cases; (b,d) the results of the prediction corresponded to two
ground truths.

Figure 20. Confusion matrix of the classification results from the model.

Figure 21. Another case in the test set – (a) ground truth; (b) the results of the prediction.

In this study, both the accuracy of classification and locating the object’s position in the image
strongly affected the final result. For an overall assessment, the model was used to run the test set,
the results of which are shown in Table 3. It is evident that with typical IoU thresholds of 50% and
75%, identical results were obtained over five runs with 100% accuracy. In addition, the mean average
accuracy with a threshold value from 0.5 to 0.95 at step size 0.05 demonstrated that the overall
accuracy was 91.18%. This surpassed the state-of-the-art segmentation method. These reliable results
provide a firm basis for implementing the next steps of the proposed method.

Table 3. Average precision (AP) of the final detection result (%).

Threshold Intersection
Over Union (IoU)

Average Precision (%)
Run Run Run Run Run Average

AP@0.5 100 100 100 100 100 100
AP@0.75 100 100 100 100 100 100

AP@0.5:0.95 91.94 90.28 91.21 90.37 92.13 91.18

5.2. The Appropriate Pose Estimation Performance

To make the entire process easy to follow, the real implementation is shown from the beginning.
The process began with capturing the image using Kinect v2 as the first step in the inference mode.
Figure 22a is an image captured by Kinect v2 that was later subjected to preprocessing to remove all

Figure 21. Another case in the test set—(a) ground truth; (b) the results of the prediction.

In this study, both the accuracy of classification and locating the object’s position in the image
strongly affected the final result. For an overall assessment, the model was used to run the test set,
the results of which are shown in Table 3. It is evident that with typical IoU thresholds of 50% and
75%, identical results were obtained over five runs with 100% accuracy. In addition, the mean average
accuracy with a threshold value from 0.5 to 0.95 at step size 0.05 demonstrated that the overall accuracy
was 91.18%. This surpassed the state-of-the-art segmentation method. These reliable results provide a
firm basis for implementing the next steps of the proposed method.

Table 3. Average precision (AP) of the final detection result (%).

Threshold Intersection
over Union (IoU)

Average Precision (%)

Run Run Run Run Run Average

AP@0.5 100 100 100 100 100 100
AP@0.75 100 100 100 100 100 100

AP@0.5:0.95 91.94 90.28 91.21 90.37 92.13 91.18

5.2. The Appropriate Pose Estimation Performance

To make the entire process easy to follow, the real implementation is shown from the beginning.
The process began with capturing the image using Kinect v2 as the first step in the inference mode.
Figure 22a is an image captured by Kinect v2 that was later subjected to preprocessing to remove
all unnecessary information, as shown in Figure 22b. Although the results in the test set during the
training process indicated that the model functioned extremely well, the results from the deep learning
network were raw results that needed to be processed to achieve the highest efficiency.

Sensors 2019, 19, 3602 22 of 31

Sensors 2019, 19, x FOR PEER REVIEW 22 of 31

unnecessary information, as shown in Figure 22b. Although the results in the test set during the
training process indicated that the model functioned extremely well, the results from the deep
learning network were raw results that needed to be processed to achieve the highest efficiency.

Figure 23 presents raw output from the deep learning network. The network still detected the
object with partial object occlusions. To tackle this problem, we calculated the mask area by counting
the number of pixels belonging to one mask before dividing by the reference value what was
supposed to be the value if it were a full object for calculating the percentage. Later, the system
removed the output with a percentage value less than a predefined threshold. In the following
discussion, the predefined threshold was set to be either 90% or 95%. Figure 24 further illustrates the
results after removing unexpected outputs below the two aforementioned thresholds. In Figure 24a,
five objects were retained for the following stages, whereas the results in Figure 24b retained only
three objects.

Figure 22. Image preprocessing to remove unnecessary information – (a) the original RGB image
captured by the camera; (b) the result after removing the unnecessary information.

Figure 23. Raw output from the deep learning network.

Following this stage, each center point was calculated on the basis of the object’s bounding box.
The five red points in Figure 25 denote the center points of the objects. In this case, the object with
the larger blue point was the final target after considering the relative distance with respect to the
camera. This result corresponded with Figure 24a.

The next step was to map from the final target point on the RGB color image coordinate to the
RGB with a depth image. The black point in the RGB with a depth image, shown in Figure 26, was
the result of blue point mapping, as displayed in Figure 25. With normal vision, the mapping
accuracy was determined to be favorable. The result indicated that the final target in this case was
the back side. In Figure 27, another example is presented in which the front side was the final target.
The whole procedure in this case followed the method using a feature matching algorithm. Clearly,
the mapping method worked in this case. Its performance is evaluated in the following section.

Figure 22. Image preprocessing to remove unnecessary information—(a) the original RGB image
captured by the camera; (b) the result after removing the unnecessary information.

Figure 23 presents raw output from the deep learning network. The network still detected the
object with partial object occlusions. To tackle this problem, we calculated the mask area by counting
the number of pixels belonging to one mask before dividing by the reference value what was supposed
to be the value if it were a full object for calculating the percentage. Later, the system removed the
output with a percentage value less than a predefined threshold. In the following discussion, the
predefined threshold was set to be either 90% or 95%. Figure 24 further illustrates the results after
removing unexpected outputs below the two aforementioned thresholds. In Figure 24a, five objects
were retained for the following stages, whereas the results in Figure 24b retained only three objects.

Sensors 2019, 19, x FOR PEER REVIEW 22 of 31

unnecessary information, as shown in Figure 22b. Although the results in the test set during the
training process indicated that the model functioned extremely well, the results from the deep
learning network were raw results that needed to be processed to achieve the highest efficiency.

Figure 23 presents raw output from the deep learning network. The network still detected the
object with partial object occlusions. To tackle this problem, we calculated the mask area by counting
the number of pixels belonging to one mask before dividing by the reference value what was
supposed to be the value if it were a full object for calculating the percentage. Later, the system
removed the output with a percentage value less than a predefined threshold. In the following
discussion, the predefined threshold was set to be either 90% or 95%. Figure 24 further illustrates the
results after removing unexpected outputs below the two aforementioned thresholds. In Figure 24a,
five objects were retained for the following stages, whereas the results in Figure 24b retained only
three objects.

Figure 22. Image preprocessing to remove unnecessary information – (a) the original RGB image
captured by the camera; (b) the result after removing the unnecessary information.

Figure 23. Raw output from the deep learning network.

Following this stage, each center point was calculated on the basis of the object’s bounding box.
The five red points in Figure 25 denote the center points of the objects. In this case, the object with
the larger blue point was the final target after considering the relative distance with respect to the
camera. This result corresponded with Figure 24a.

The next step was to map from the final target point on the RGB color image coordinate to the
RGB with a depth image. The black point in the RGB with a depth image, shown in Figure 26, was
the result of blue point mapping, as displayed in Figure 25. With normal vision, the mapping
accuracy was determined to be favorable. The result indicated that the final target in this case was
the back side. In Figure 27, another example is presented in which the front side was the final target.
The whole procedure in this case followed the method using a feature matching algorithm. Clearly,
the mapping method worked in this case. Its performance is evaluated in the following section.

Figure 23. Raw output from the deep learning network.

Following this stage, each center point was calculated on the basis of the object’s bounding box.
The five red points in Figure 25 denote the center points of the objects. In this case, the object with the
larger blue point was the final target after considering the relative distance with respect to the camera.
This result corresponded with Figure 24a.

The next step was to map from the final target point on the RGB color image coordinate to the
RGB with a depth image. The black point in the RGB with a depth image, shown in Figure 26, was the
result of blue point mapping, as displayed in Figure 25. With normal vision, the mapping accuracy
was determined to be favorable. The result indicated that the final target in this case was the back
side. In Figure 27, another example is presented in which the front side was the final target. The whole
procedure in this case followed the method using a feature matching algorithm. Clearly, the mapping
method worked in this case. Its performance is evaluated in the following section.

Sensors 2019, 19, 3602 23 of 31

Sensors 2019, 19, x FOR PEER REVIEW 23 of 31

Figure 24. Result after passing through the filter at a fixed area threshold percentage criteria: (a) 90%,
(b) 95%.

Figure 25. Result after calculating the center points (red points) and deciding the final target (blue
point).

Figure 26. Result of mapping from a point in the color image to a point that had the same relative
position in the depth image.

Figure 24. Result after passing through the filter at a fixed area threshold percentage criteria: (a) 90%,
(b) 95%.

Sensors 2019, 19, x FOR PEER REVIEW 23 of 31

Figure 24. Result after passing through the filter at a fixed area threshold percentage criteria: (a) 90%,
(b) 95%.

Figure 25. Result after calculating the center points (red points) and deciding the final target (blue
point).

Figure 26. Result of mapping from a point in the color image to a point that had the same relative
position in the depth image.

Figure 25. Result after calculating the center points (red points) and deciding the final target (blue point).

Sensors 2019, 19, x FOR PEER REVIEW 23 of 31

Figure 24. Result after passing through the filter at a fixed area threshold percentage criteria: (a) 90%,
(b) 95%.

Figure 25. Result after calculating the center points (red points) and deciding the final target (blue
point).

Figure 26. Result of mapping from a point in the color image to a point that had the same relative
position in the depth image.
Figure 26. Result of mapping from a point in the color image to a point that had the same relative
position in the depth image.

Sensors 2019, 19, 3602 24 of 31

Sensors 2019, 19, x FOR PEER REVIEW 24 of 31

Figure 27. (a) Final target as the blue point, and (b) mapping result as the black point.

To evaluate the accuracy of the proposed 3D pose estimation, the object was placed on the
platform at a fixed position with respect to the robot, as shown in Figure 28. The real two degrees of
freedom platform was designed to totally fit with both the front and back sides. In line with the
original intention, this platform could rotate 360° at the first joint and also rotate on the upper part.
It was flexible enough to represent all possible situations for a single object in this scenario. The
ground truth was easily calculated because the relative position between the platform and the base
of the robot was fixed and observed using the teach pendant. By giving two joint angles of the
platform, the relative position and the rotation of the target plane and target point were retrieved as
the ground truth of the object with respect to the robot base. In our experiment, the performance was
tested on a total of 25 cases for one side. The first joint rotated from 0° to 360° with a step size of 45
(eight cases in total). The second joint rotated 10°, 20°, and 30° relative to the ground surface at each
position after the first joint had moved. The final case was a special one in which the second joint was
equal to zero, which meant that the target plane was parallel to the ground surface.

Figure 28. Support platform to take the ground truth of objects in the working area.

The results obtained for both the back and front sides are presented in Tables 4 and 5,
respectively. The mean average errors for all poses are listed in Table 6. In addition, the system
demonstrated stable performance with an overall mean translation error of less than 2.3 mm in all
directions and a mean rotation error of less than 2.26° on all axes. Lin et al. [4] presented their results
on the same target, where average translation and rotation errors in the three axes were less than 5.2

Figure 27. (a) Final target as the blue point, and (b) mapping result as the black point.

To evaluate the accuracy of the proposed 3D pose estimation, the object was placed on the platform
at a fixed position with respect to the robot, as shown in Figure 28. The real two degrees of freedom
platform was designed to totally fit with both the front and back sides. In line with the original
intention, this platform could rotate 360◦ at the first joint and also rotate on the upper part. It was
flexible enough to represent all possible situations for a single object in this scenario. The ground truth
was easily calculated because the relative position between the platform and the base of the robot was
fixed and observed using the teach pendant. By giving two joint angles of the platform, the relative
position and the rotation of the target plane and target point were retrieved as the ground truth of the
object with respect to the robot base. In our experiment, the performance was tested on a total of 25
cases for one side. The first joint rotated from 0◦ to 360◦ with a step size of 45 (eight cases in total). The
second joint rotated 10◦, 20◦, and 30◦ relative to the ground surface at each position after the first joint
had moved. The final case was a special one in which the second joint was equal to zero, which meant
that the target plane was parallel to the ground surface.

Sensors 2019, 19, x FOR PEER REVIEW 24 of 31

Figure 27. (a) Final target as the blue point, and (b) mapping result as the black point.

To evaluate the accuracy of the proposed 3D pose estimation, the object was placed on the
platform at a fixed position with respect to the robot, as shown in Figure 28. The real two degrees of
freedom platform was designed to totally fit with both the front and back sides. In line with the
original intention, this platform could rotate 360° at the first joint and also rotate on the upper part.
It was flexible enough to represent all possible situations for a single object in this scenario. The
ground truth was easily calculated because the relative position between the platform and the base
of the robot was fixed and observed using the teach pendant. By giving two joint angles of the
platform, the relative position and the rotation of the target plane and target point were retrieved as
the ground truth of the object with respect to the robot base. In our experiment, the performance was
tested on a total of 25 cases for one side. The first joint rotated from 0° to 360° with a step size of 45
(eight cases in total). The second joint rotated 10°, 20°, and 30° relative to the ground surface at each
position after the first joint had moved. The final case was a special one in which the second joint was
equal to zero, which meant that the target plane was parallel to the ground surface.

Figure 28. Support platform to take the ground truth of objects in the working area.

The results obtained for both the back and front sides are presented in Tables 4 and 5,
respectively. The mean average errors for all poses are listed in Table 6. In addition, the system
demonstrated stable performance with an overall mean translation error of less than 2.3 mm in all
directions and a mean rotation error of less than 2.26° on all axes. Lin et al. [4] presented their results
on the same target, where average translation and rotation errors in the three axes were less than 5.2

Figure 28. Support platform to take the ground truth of objects in the working area.

Sensors 2019, 19, 3602 25 of 31

The results obtained for both the back and front sides are presented in Tables 4 and 5, respectively.
The mean average errors for all poses are listed in Table 6. In addition, the system demonstrated
stable performance with an overall mean translation error of less than 2.3 mm in all directions and
a mean rotation error of less than 2.26◦ on all axes. Lin et al. [4] presented their results on the same
target, where average translation and rotation errors in the three axes were less than 5.2 mm and 3.95◦,
respectively. In comparison, our average error improved by reducing average translation errors and
rotation errors by 2.9 mm and 1.69◦, respectively. The real dimensions of the object used in the entire
system are presented in Table 7. For planar objects, the deviation on the x and y axes determines
whether the system is good enough to perform random object picking tasks, whereas deviation on
the z axis is less important because the suction pad can easily change within a certain range in the z
direction. The maximum average percentage error in the result of the translation estimate was 2.15%
along the x and y axes. This level of error ensured that the proposed method worked well on the planar
object in the cluttered environment for random bin-picking tasks. These results demonstrated the
validity of the proposed system’s pose estimation module.

Table 4. Absolute error per pose, with 20 tests per pose for the back side. Results in mm for translation
error and in degrees for rotation error.

Pose
Mean Error

δTx δTy δTz δRx δRy δRz

1 1.208 1.971 2.893 2.277 3.119 1.621
2 0.724 2.319 2.206 2.416 2.870 1.658
3 2.308 2.238 2.094 2.579 2.445 1.114
4 2.852 2.118 2.812 3.164 2.536 1.020
5 0.480 3.506 0.834 2.203 3.744 1.003
6 1.116 4.025 1.431 2.252 2.831 0.689
7 2.583 3.102 4.634 2.187 3.292 0.818
8 0.743 0.813 0.879 1.569 3.548 1.000
9 0.476 1.208 1.490 1.429 4.043 0.744
10 0.791 3.284 2.779 1.557 4.269 0.885
11 3.193 1.106 4.359 1.724 1.178 0.337
12 2.185 2.850 0.888 1.621 1.841 0.759
13 0.734 1.335 1.228 1.641 2.497 1.178
14 2.709 1.025 3.538 1.253 1.437 0.765
15 1.067 0.824 3.534 3.374 1.148 0.707
16 1.981 0.863 3.759 1.276 1.218 0.725
17 0.614 2.337 3.576 1.645 1.571 2.494
18 2.344 1.499 4.968 1.497 0.915 3.522
19 1.318 2.057 2.273 2.219 1.176 4.529
20 1.583 0.701 0.684 2.389 1.221 3.088
21 2.264 1.696 0.615 1.484 1.537 3.904
22 0.909 4.171 0.969 2.551 1.946 4.427
23 3.160 4.061 0.999 2.848 2.023 0.502
24 3.698 3.511 0.881 2.314 2.433 2.101
25 3.941 1.465 1.437 1.733 2.100 2.851

Average 1.799 2.164 2.230 2.048 2.278 1.698

Sensors 2019, 19, 3602 26 of 31

Table 5. Absolute error per pose, with 20 tests per pose for the front side. Results in mm for translation
error and in degrees for rotation error.

Pose
Mean Error

δTx δTy δTz δRx δRy δRz

1 0.164 2.150 3.294 2.065 1.223 1.312
2 0.719 1.093 1.451 2.403 1.781 1.059
3 1.878 1.207 1.738 2.335 1.674 1.121
4 1.145 0.405 1.869 3.792 1.314 1.127
5 2.496 1.085 1.140 4.638 2.372 0.691
6 1.050 0.792 1.092 2.000 2.098 0.738
7 0.872 0.126 1.713 3.018 2.883 1.334
8 2.287 1.263 1.211 2.827 2.731 0.878
9 1.101 0.208 1.362 3.006 2.480 0.564
10 0.422 0.829 2.494 2.707 2.992 0.812
11 1.417 0.092 1.873 2.515 3.098 0.387
12 0.465 0.923 2.026 2.095 2.712 1.225
13 0.961 0.346 1.239 2.279 2.866 1.342
14 0.899 0.431 2.266 1.891 1.879 1.867
15 0.224 0.619 1.635 0.703 0.858 0.695
16 0.521 1.185 3.899 1.730 1.342 1.613
17 1.517 0.948 3.520 2.738 1.839 2.549
18 0.430 1.297 3.118 2.602 1.348 3.363
19 1.100 1.257 3.185 2.788 1.660 4.581
20 1.333 0.704 3.707 2.055 1.523 2.772
21 0.972 0.640 2.879 2.150 1.793 3.337
22 1.110 1.654 1.641 2.906 1.457 4.432
23 0.593 0.760 0.900 1.763 1.719 0.527
24 1.509 1.224 1.904 1.869 1.616 2.692
25 2.129 1.158 0.755 2.743 1.650 2.622

Average 1.093 0.896 2.076 2.465 1.956 1.746

Table 6. Mean absolute error (MAE) measure for both front and back sides.

MAE Value
Translation Error (mm) Rotation Error (degrees) Total Test Number

δTx δTy δTz δRx δRy δRz N

Back 1.799 2.164 2.230 2.048 2.278 1.698 25
Front 1.093 0.896 2.076 2.465 1.956 1.746 25

Average 1.446 1.530 2.153 2.256 2.117 1.722 50

Table 7. Real dimensions of the target object.

Object Length Width Depth

USB Flash Drive Pack 101 mm 115 mm 2 mm

In light of the above discussion, feature matching plays an important role if the target object is
on the front side. Therefore, in the case of feature matching being mandatorily used, the proposed
method for building the appropriate pose may not work correctly on planar objects with insufficient or
no texture. In the future, to ensure that the system can robustly tackle textureless planar objects, a
solution to replace the feature matching technique should be further investigated.

5.3. Computational Efficiency and Picking Performance

The entire system ran on an Ubuntu 16.04 platform equipped with an Intel®CoreTM i7-8700 CPU
@ 3.20GHz x 12 (Intel Corporation, Santa Clara, CA, USA), 16-GB DDR4 system memory. Our graphics
card was NVIDIA GeForce GTX 1080Ti (NVIDIA Corporation Santa Clara, CA, USA) with an 11-GB

Sensors 2019, 19, 3602 27 of 31

frame buffer memory. As indicated in Table 8, the average total processing time was approximately
0.997 s for the front side and 0.727 s for the back side. The deep learning part clearly takes up more than
half of the entire processing time: therefore, with higher computational efficiency, the total processing
time would be shorter than the value given in this study.

Table 8. Average processing time in each step of the proposed method.

Subfunction Front Back Average

Visual Perception
Preprocessing 0.074 0.074 0.074

Instance Segmentation 0.532 0.532 0.532

Object Pose Estimation
Feature Matching 0.270 0 0.135

Pose Estimation 0.121 0.121 0.121

Total Processing Time
0.997 0.727 0.862(In Seconds)

Finally, the accuracy of the random bin-picking system was verified to demonstrate the performance
of the proposed system. The set-up for the experiment in which the task was to pick up objects in a
cluttered environment and put them in different target positions for each side is shown in Figure 29:
the final success rate is provided in Table 9.

Sensors 2019, 19, x FOR PEER REVIEW 27 of 31

5.3. Computational Efficiency and Picking Performance

The entire system ran on an Ubuntu 16.04 platform equipped with an Intel®CoreTM i7-8700 CPU
@ 3.20GHz x 12 (Intel Corporation, Santa Clara, CA, USA), 16-GB DDR4 system memory. Our
graphics card was NVIDIA GeForce GTX 1080Ti (NVIDIA Corporation Santa Clara, CA, USA) with
an 11-GB frame buffer memory. As indicated in Table 8, the average total processing time was
approximately 0.997 s for the front side and 0.727 s for the back side. The deep learning part clearly
takes up more than half of the entire processing time: therefore, with higher computational efficiency,
the total processing time would be shorter than the value given in this study.

Finally, the accuracy of the random bin-picking system was verified to demonstrate the
performance of the proposed system. The set-up for the experiment in which the task was to pick up
objects in a cluttered environment and put them in different target positions for each side is shown
in Figure 29: the final success rate is provided in Table 9.

Figure 29. Set-up for evaluating the final pickup success rate.

All of the failures were because the objects slipped away to a random direction from original
positions right before the robot touched them. The probabilities of failures could be reduced if a
bigger container were to be used.

Table 8. Average processing time in each step of the proposed method.

 Subfunction Front Back Average

Visual Perception
Preprocessing 0.074 0.074 0.074

Instance Segmentation 0.532 0.532 0.532

Object Pose Estimation
Feature Matching 0.270 0 0.135
Pose Estimation 0.121 0.121 0.121

Total Processing Time
0.997 0.727 0.862

(In Seconds)

Table 9. Pickup success rate.

Total Trials Success Failed Success Rate
843 840 3 99.64%

Figure 29. Set-up for evaluating the final pickup success rate.

Table 9. Pickup success rate.

Total Trials Success Failed Success Rate

843 840 3 99.64%

All of the failures were because the objects slipped away to a random direction from original
positions right before the robot touched them. The probabilities of failures could be reduced if a bigger
container were to be used.

Sensors 2019, 19, 3602 28 of 31

6. Conclusions

A completed random bin-picking system for USB packs was proposed and implemented. In
particular, this research introduced a robust method that can be used to perform random object picking
tasks for planar objects, especially thin objects. The system also serves as a solid basis for random
bin-picking tasks with other planar objects in a cluttered environment. The proposed method integrates
an instance segmentation-based deep learning approach to classify and locate objects in a scene with a
new approach to pick up planar objects by building an appropriate coordination system at the target
point of the target object from a single target point in 2D image coordination. Impressive performance
was demonstrated using the feature matching technique and the plane segmentation method when
handling proper 3D pose estimation. The experimental results showed that the deep learning model
could segment each instance in the scene with an average precision of 91.18% while successfully
classifying two sides of the object with 100% accuracy. This was a favorable result demonstrating
impressive overall accuracy. Furthermore, the proposed appropriate 3D pose estimation achieved
accurate results with low average translation and rotation errors. Finally, the pickup success rate
exceeded 99%, and the average processing time in each step was less than 0.9 s. Overall, the proposed
method provided a stable and reliable solution for managing labor-intensive tasks, otherwise known
as random bin-picking tasks, that require repetitiveness and pinpoint accuracy for unstructured and
poorly constrained occlusions in heavily cluttered environments.

Author Contributions: Conceptualization, C.-Y.L.; data curation, T.-T.L.; formal analysis, T.-T.L.; funding
acquisition, C.-Y.L.; investigation, T.-T.L.; methodology, T.-T.L.; supervision, C.-Y.L.; visualization, T.-T.L.;
writing—original draft, T.-T.L.; writing—review and editing, C.-Y.L.

Funding: This work was financially supported by both the Taiwan Building Technology Center and the Center for
Cyber-Physical System Innovation from the Featured Areas Research Center Program within the framework of
the Higher Education Sprout Project of the Ministry of Education in Taiwan.

Acknowledgments: The authors wish to thank Joel Vidal Verdaguer, a member of AIRLab, for providing useful
information and the code for communicating with the robot, which served as the foundation for the improved
method. In addition, many thanks to ADATA Technology Co., Ltd., for donating the materials used for the
experiments. This research was financially supported by the Ministry of Science and Technology, Republic of
China, under grant 105-2221-E-011 -088 -MY2.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chang, W.C.; Wu, C.H. Eye-in-hand vision-based robotic bin-picking with active laser projection. Int. J. Adv.
Manuf. Technol. 2016, 85, 2873–2885. [CrossRef]

2. Liu, M.Y.; Tuzel, O.; Veeraraghavan, A.; Taguchi, Y.; Marks, T.K.; Chellappa, R. Fast object localization and
pose estimation in heavy clutter for robotic bin picking. Int. J. Robot. Res. 2012, 31, 951–973. [CrossRef]

3. Martinez, C.; Chen, H.; Boca, R. Automated 3D vision guided bin picking process for randomly located
industrial parts. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT),
Seville, Spain, 17–19 March 2015; pp. 3172–3177.

4. Lin, C.M.; Tsai, C.Y.; Lai, Y.C.; Li, S.A.; Wong, C.C. Visual object recognition and pose estimation based on a
deep semantic segmentation network. IEEE Sens. J. 2018, 18, 9370–9381. [CrossRef]

5. Vidal Verdaguer, J.; Lin, C.Y.; Lladó Bardera, X.; Martí Marly, R. A method for 6D pose estimation of free-form
rigid objects using point pair features on range data. Sensors 2018, 18, 2678. [CrossRef] [PubMed]

6. Andreopoulos, A.; Tsotsos, J.K. 50 years of object recognition: Directions forward. Comput. Vis. Image
Underst. 2013, 117, 827–891. [CrossRef]

7. Sansoni, G.; Trebeschi, M.; Docchio, F. State-of-the-art and applications of 3D imaging sensors in industry,
cultural heritage, medicine, and criminal investigation. Sensors 2009, 9, 568–601. [CrossRef] [PubMed]

8. Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J. 3D object recognition in cluttered scenes with local surface
features: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2270–2287.

9. Horn, B.K.P. Extended gaussian images. Proc. IEEE 1984, 72, 1671–1686. [CrossRef]

http://dx.doi.org/10.1007/s00170-015-8120-0
http://dx.doi.org/10.1177/0278364911436018
http://dx.doi.org/10.1109/JSEN.2018.2870957
http://dx.doi.org/10.3390/s18082678
http://www.ncbi.nlm.nih.gov/pubmed/30111697
http://dx.doi.org/10.1016/j.cviu.2013.04.005
http://dx.doi.org/10.3390/s90100568
http://www.ncbi.nlm.nih.gov/pubmed/22389618
http://dx.doi.org/10.1109/PROC.1984.13073

Sensors 2019, 19, 3602 29 of 31

10. Rusu, R.B.; Bradski, G.; Thibaux, R.; Hsu, J. Fast 3d recognition and pose using the viewpoint feature
histogram. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Taipei, Taiwan, 18–22 October 2010; pp. 2155–2162.

11. Wohlkinger, W.; Vincze, M. Ensemble of shape functions for 3d object classification. In Proceedings of the
2011 IEEE International Conference on Robotics and Biomimetics, Phuket Island, Thailand, 7–11 December
2011; pp. 2987–2992.

12. Aldoma, A.; Vincze, M.; Blodow, N.; Gossow, D.; Gedikli, S.; Rusu, R.B.; Bradski, G. CAD-model recognition
and 6DOF pose estimation using 3D cues. In Proceedings of the 2011 IEEE International Conference on
Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 585–592.

13. Steger, C. Occlusion, clutter, and illumination invariant object recognition. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 2002, 34, 345–350.

14. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Fua, P.; Navab, N. Dominant orientation templates for real-time detection
of texture-less objects. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2257–2264.

15. Hinterstoisser, S.; Holzer, S.; Cagniart, C.; Ilic, S.; Konolige, K.; Navab, N.; Lepetit, V. Multimodal templates for
real-time detection of texture-less objects in heavily cluttered scenes. In Proceedings of the 2011 International
Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 858–865.

16. Ulrich, M.; Wiedemann, C.; Steger, C. Combining scale-space and similarity-based aspect graphs for fast 3D
object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1902–1914. [CrossRef]

17. Ye, C.; Li, K.; Jia, L.; Zhuang, C.; Xiong, Z. Fast Hierarchical Template Matching Strategy for Real-Time Pose
Estimation of Texture-Less Objects. In Proceedings of the International Conference on Intelligent Robotics
and Applications, Hachioji, Japan, 22–24 August 2016; pp. 225–236.

18. Su, J.; Liu, Z.; Yang, G. Pose estimation of occluded objects with an improved template matching method. In
Proceedings of the First International Workshop on Pattern Recognition International Society for Optics and
Photonics, Tokyo, Japan, 11–13 May 2016.

19. Muñoz, E.; Konishi, Y.; Beltran, C.; Murino, V.; Del Bue, A. Fast 6D pose from a single RGB image using
Cascaded Forests Templates. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4062–4069.

20. Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques.
Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24.

21. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
22. Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural

Netw. Learn. Syst. 2019, 7, 68281–68289. [CrossRef] [PubMed]
23. Blum, M.; Springenberg, J.T.; Wülfing, J.; Riedmiller, M. A learned feature descriptor for object recognition in

rgb-d data. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St. Paul,
MN, USA, 14–18 May 2012; pp. 1298–1303.

24. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

25. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric
space. In Proceedings of the Thirty-first Annual Conference on Neural Information Processing Systems,
Long Beach, CA, USA, 4–9 December 2017.

26. Brachmann, E.; Krull, A.; Michel, F.; Gumhold, S.; Shotton, J.; Rother, C. Learning 6d object pose estimation
using 3d object coordinates. In Proceedings of the European Conference on Computer Vision, Zurich,
Switzerland, 6–12 September 2014; pp. 536–551.

27. Brachmann, E.; Michel, F.; Krull, A.; Ying Yang, M.; Gumhold, S. Uncertainty-driven 6d pose estimation of
objects and scenes from a single rgb image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3364–3372.

28. Do, T.T.; Cai, M.; Pham, T.; Reid, I. Deep-6d pose: Recovering 6D object pose from a single RGB image. arXiv
2018, arXiv:1802.10367.

29. Wu, C.H.; Jiang, S.Y.; Song, K.T. CAD-based pose estimation for random bin-picking of multiple objects
using a RGB-D camera. In Proceedings of the 2015 15th International Conference on Control, Automation
and Systems (ICCAS), Busan, Korea, 13–16 October 2015; pp. 1645–1649.

http://dx.doi.org/10.1109/TPAMI.2011.266
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://www.ncbi.nlm.nih.gov/pubmed/30703038

Sensors 2019, 19, 3602 30 of 31

30. Chen, Y.K.; Sun, G.J.; Lin, H.Y.; Chen, S.L. Random Bin Picking with Multi-view Image Acquisition and
CAD-Based Pose Estimation. In Proceedings of the 2018 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 2218–2223.

31. Drost, B.; Ulrich, M.; Navab, N.; Ilic, S. Model globally, match locally: Efficient and robust 3D object
recognition. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 998–1005.

32. Vidal, J.; Lin, C.Y.; Martí, R. 6D pose estimation using an improved method based on point pair features.
In Proceedings of the 2018 4th International Conference on Control, Automation and Robotics (ICCAR),
Auckland, New Zealand, 20–23 April 2018; pp. 405–409.

33. Choi, C.; Taguchi, Y.; Tuzel, O.; Liu, M.Y.; Ramalingam, S. Voting-based pose estimation for robotic assembly
using a 3D sensor. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
Saint Paul, MN, USA, 14–18 May 2012; pp. 1724–1731.

34. Spenrath, F.; Pott, A. Using Neural Networks for Heuristic Grasp Planning in Random Bin Picking. In
Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE),
Munich, Germany, 20–24 August 2018; pp. 258–263.

35. Bedaka, A.K.; Vidal, J.; Lin, C.Y. Automatic robot path integration using three-dimensional vision andoffline
programming. Int. J. Adv. Manuf. Technol. 2019, 102, 1935–1950. [CrossRef]

36. Samir, M.; Golkar, E.; Rahni, A.A.A. Comparison between the KinectTM V1 and KinectTM V2 for respiratory
motion tracking. In Proceedings of the 2015 IEEE International Conference on Signal and Image Processing
Applications (ICSIPA), Kuala Lumpur, Malaysia, 19–21 October 2015; pp. 150–155.

37. Sarbolandi, H.; Lefloch, D.; Kolb, A. Kinect range sensing: Structured-light versus time-of flight kinect.
Comput. Vis. Image Underst. 2015, 139, 1–20. [CrossRef]

38. Khan, M.; Jan, B.; Farman, H. Deep Learning: Convergence to Big Data Analytics; Springer: Singapore, 2019.
39. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft

coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich,
Switzerland, 6–12 September 2014; pp. 740–755.

40. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8
December 2012; pp. 1097–1105.

41. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 770–778.

42. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

43. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

44. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada,
7–12 December 2015; pp. 91–99.

45. Le, T.T.; Lin, C.Y. Deep learning for noninvasive classification of clustered horticultural crops–A case for
banana fruit tiers. Postharvest Biol. Technol. 2019, 156, 110922. [CrossRef]

46. Everingham, M.; Eslami, S.A.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object
classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]

47. Pagliari, D.; Pinto, L. Calibration of kinect for xbox one and comparison between the two generations of
microsoft sensors. Sensors 2015, 15, 27569–27589. [CrossRef]

48. Lachat, E.; Macher, H.; Mittet, M.; Landes, T.; Grussenmeyer, P. First experiences with Kinect v2 sensor for
close range 3D modelling. In Proceedings of the 6th International Workshop 3D-ARCH, Avila, Spain, 25–27
February 2015.

49. Hong, S.; Saavedra, G.; Martinez-Corral, M. Full parallax three-dimensional display from Kinect v1 and v2.
Opt. Eng. 2016, 56, 041305. [CrossRef]

50. Kim, C.; Yun, S.; Jung, S.W.; Won, C.S. Color and depth image correspondence for Kinect v2. In Advanced
Multimedia and Ubiquitous Engineering; Springer: Berlin/Heidelberg, Germany, 2015; pp. 111–116.

http://dx.doi.org/10.1007/s00170-018-03282-w
http://dx.doi.org/10.1016/j.cviu.2015.05.006
http://dx.doi.org/10.1016/j.postharvbio.2019.05.023
http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.3390/s151127569
http://dx.doi.org/10.1117/1.OE.56.4.041305

Sensors 2019, 19, 3602 31 of 31

51. Xiang, L.; Echtler, F.; Kerl, C.; Wiedemeyer, T.; Lars, H.; Gordon, R.; Facioni, F.; Wareham, R.; Goldhoorn, M.;
Fuchs, S.; et al. Libfreenect2: Release 0.2. Available online: https://zenodo.org/record/50641#.W5o99FIXccU
(accessed on 17 August 2019).

52. Holz, D.; Holzer, S.; Rusu, R.B.; Behnke, S. Real-time plane segmentation using RGB-D cameras. In
Proceedings of the Robot Soccer World Cup, Istanbul, Turkey, 5–11 July 2011; pp. 306–317.

53. Kurban, R.; Skuka, F.; Bozpolat, H. Plane segmentation of kinect point clouds using RANSAC. In Proceedings
of the 7th international conference on information technology, Amman, Jordan, 12–15 May 2015; pp. 545–551.

54. Tsai, R.Y.; Lenz, R.K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration.
IEEE Trans. Robot. Autom. 1989, 5, 345–358. [CrossRef]

55. Shiu, Y.C.; Ahmad, S. Calibration of wrist-mounted robotic sensors by solving homogeneous transform
equations of the form AX = XB. IEEE Trans. Robot. Autom. 1989, 5, 16–29. [CrossRef]

56. Horaud, R.; Dornaika, F. Hand-eye calibration. Int. J. Robot. Res. 1995, 14, 195–210. [CrossRef]
57. Daniilidis, K. Hand-eye calibration using dual quaternions. Int. J. Robot. Res. 1999, 18, 286–298. [CrossRef]
58. Slabaugh, G.G. Computing Euler Angles from a Rotation Matrix. Available online: http://www.close-range.

com/docs/Computing_Euler_angles_from_a_rotation_matrix.pdf (accessed on 17 August 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://zenodo.org/record/50641#.W5o99FIXccU
http://dx.doi.org/10.1109/70.34770
http://dx.doi.org/10.1109/70.88014
http://dx.doi.org/10.1177/027836499501400301
http://dx.doi.org/10.1177/02783649922066213
http://www.close-range.com/docs/Computing_Euler_angles_from_a_rotation_matrix.pdf
http://www.close-range.com/docs/Computing_Euler_angles_from_a_rotation_matrix.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Architecture
	Kinect Sensor
	Recognition and Appropriate Pose Estimation
	Object Picking Controller

	Proposed Deep Learning Algorithm
	Surpervised Learning Approach
	Materials and Methods
	Dataset
	Deep Learning Networks

	Appropriate 3D Pose Estimation
	OOI Data Handling
	The Appropriate 3D Pose Estimation
	Performance Evaluation of the Appropriate 3D Pose Estimation

	Experimental Results and Discussion
	Image Processing Results
	The Appropriate Pose Estimation Performance
	Computational Efficiency and Picking Performance

	Conclusions
	References

