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Abstract: The demand for extensive data rates in dense-traffic wireless networks has expanded
and needs proper controlling schemes. The fifth generation of mobile communications (5G) will
accommodate these massive communications, such as massive Machine Type Communications
(mMTC), which is considered to be one of its top services. To achieve optimal throughput, which is
considered a mandatory quality of service (QoS) metric, the carrier sense multiple access (CSMA)
transmission attempt rate needs optimization. As the gradient descent algorithms consume a long
time to converge, an approximation technique that distributes a dense global network into local
neighborhoods that are less complex than the global ones is presented in this paper. Newton’s method
of optimization was used to achieve fast convergence rates, thus, obtaining optimal throughput.
The convergence rate depended only on the size of the local networks instead of global dense
ones. Additionally, polynomial interpolation was used to estimate the average throughput of the
network as a function of the number of nodes and target service rates. Three-dimensional planes of
the average throughput were presented to give a profound description to network’s performance.
The fast convergence time of the proposed model and its lower complexity are more practical than
the previous gradient descent algorithm.

Keywords: 5G; mMTC; IoT; CSMA; SINR; throughput; polynomial interpolation

1. Introduction

The evolution of the fifth generation of cellular mobile systems (5G) has become one of the most
significant fields for commercial applications. The 5G system is promising to increase data rates by
10 times that of the traditional Long-Term Evolution (LTE) networks, to an average of 10 Gbps with
a 1 ms round-trip latency. This high bandwidth is to accommodate an enormous number of connected
devices per unit area under the Internet of Things (IoT) framework [1]. In fact, the 5G requirement
covers a wide range of core services, specifically the massive Machine-Type Communications (mMTC)
is one of the top three services. The other core services being the ultra-reliable low latency (URLLC) and
the extreme mobile broadband (eMBB) communications [2]. The services in mMTC are defined by large
numbers of linked devices that are generally transmit data traffic. It includes algorithms, mechanisms,
and techniques that permit the exchange of information or data without explicit human involvement.

Recent research studies have shown that most of the existing machine-type communications suffer
from limited coverage and access reservation. Currently, the procedure for reserving access is limited
to a low number of devices and each device requires high data rates [3]. The main challenge in mMTC
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is the need for efficient connectivity for this massive number of devices that share packets of data.
Additionally, mMTC suffers from losses in data packets due to heavy traffic and congestions. a proper
way to overcome these data losses is to provide suitable quality of service (QoS) requirements such as
high network throughput with low latency.

In [4], an overview of key radio resource management techniques for 5G dense small cells
was studied. Preliminary system-level simulation results indicated that a mean throughput gain of
around 63% and up to 84% in latency reduction can be achieved by utilizing resource management
techniques. In [5], an efficient online scheme was proposed for predicting channel state information
from historical data, in 5G wireless communication systems. The experiment results showed
that the scheme not only obtained the predicted channel state information values very quickly
but also achieved highly accurate predictions with up to 2.650%–3.457% average difference ratio
between the prediction and measurements. In [6], a new Machine-to-Machine (M2M) communication
paradigm based on cognitive radio technology was studied, namely the cognitive M2M communication.
The cognitive M2M network architecture and cognitive machine model is presented and the coexistence
of cognitive M2M devices in TV white spaces was discussed. Additionally, a spectrum exploration
scheme motivated by energy-efficiency was introduced. Numerical results show important energy
savings and efficiency in providing smart grid data transmission. In [7], device-to-device (D2D)
energy-efficient resource allocation algorithm was introduced. To enhance QoS efficiency, a distributed
interference mitigation mechanism consisting of a method for canceling interference and a method
for optimizing transmission power constraint was discussed. Simulations analyze the achievable
performance of the proposed algorithm and discuss implementation and complexity. Additionally,
intelligent energy management based on the safe transfer of information between millions of sensors
and actuators installed with little or no human involvement was developed in [8]. By investigating the
inclusion of software-defined networking with machine-to-machine communication, this motivates
the study of a coherent communication structure for intelligent energy management. The proposed
software-defined machine-to-machine system was described, with a focus on its price reduction,
resource allocation, and end-to-end service quality assurance. In [9], two-stage access control and
resource allocation algorithm were developed. In the first phase, a contract-based incentive system
was introduced to motivate some delay-tolerant machine-type communication equipment. a long-term
cross-layer online resource allocation method was suggested in the second phase, which optimized
rate control, energy allocation, and channel choice, without previous channel state information. Finally,
under different simulation situations, the performance of the suggested algorithm was verified.

On the other hand, optimizations regarding carrier sense multiple access with collision avoidance
(CSMA/CA) have met with great success in different applications. Research on CSMA/CA has
a long tradition for years, on which a node senses the channel before transmitting on a shared
transmission medium to avoid collision of data in wireless networks [10]. Recent papers [11–14]
proposed various CSMA/CA scheduling algorithms that are able to optimize network QoS metrics,
particularly the network throughput. In [11], a CSMA scheme was formulated in which throughput
and power consumption of each node were optimized by controlling back-off and sleeping timers,
while ensuring throughput optimality. In [12], link throughput was analyzed by taking back-off

collisions into account; a model was formed to characterize the collision effect among the network’s
nodes. Results showed that their model was robust against different network topologies. In [13],
the performance of CSMA network’s throughput was studied under the signal to interference and noise
ratio (SINR) model, where a packet was received as long as a certain SINR threshold was exceeded.
In [14], they provided effective carrier sensing threshold adjustment algorithms for large wireless
CSMA networks. Simulation for evaluating consistency and goodput guaranteed safe interference.
They also introduced dynamic signal detection thresholds depending on neighboring transmission
feedback. In [15], a distributed iterative algorithm was studied, which produced approximate solutions
motivated by an approximation that allowed the expression of approximate solutions via a certain
non-linear system with a polynomial size. Numerical results showed that the algorithm produced
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highly accurate solutions and converged much faster than previous studies. In [16], a distributed
scheduling algorithm for the SINR model was studied and proved to be throughput optimal. Further,
the algorithm was augmented by using a parallel update technique and the numerical results showed
a good performance in terms of a supportable throughput and the convergence rate to steady-state.
Moreover, a random access channel evaluation and load estimation of a large number of MTC devices
were developed in [17]. a closed-form expression and an effective approach for achieving the Joint
Probability Distribution Function (PDF) were extracted from the amount of effective and collided access
requests within a random access opportunity. Numerical results justified their formulation’s efficiency
and demonstrated that the computational cost was smaller than that of other similar techniques.

There has been extensive consideration to the issue of connection scheduling for peak throughput
performance with a focus on the maximum weight scheduling model established in [18,19]. Despite its
optimization characteristic, a central controller is needed. In addition, solving for each schedule
choice is a non-deterministic polynomial-time hard (NP-hard) problem. Various studies have tried
to modify the algorithm of maximal weight to make it easier to deploy [20–22]. Such methods are
greedy and might not, however, attain an optimized performance. a series of articles [23–25] optimized
the throughput calculations for a group of connection scheduling schemes called adaptive CSMA,
which can, thus, maintain any attainable rate. In particular, the transmission attempt rate was tuned
by each connection to guarantee adequate average desired rates of service.

In [26], the transmission attempt rate was adjusted in the CSMA algorithm to support the required
target service rates. This technique poses a problem in adjusting the transmission attempt rate
parameter, as it is an NP-hard problem, which is difficult to handle. In addition, most of the research in
this field aims at solving this problem using a stochastic gradient descent algorithm which is an iterative
optimization method for differentiable objective functions [23]. The drawback of this method is that it
consumes millions of iterations to converge. Unfortunately, this approach results in an impractical
time of convergence depending on the size of the network. Few studies focus on using a proper SINR
model for interference, as most of the studies just settled with using interference model based on
conflict graph [23–25].

The work in this paper aimed to enhance the performance of global dense networks with a CSMA
scheduling algorithm under a more practical and realistic SINR model, to adequately capture the
complexity of wireless network interferences. In addition, by utilizing an approximation technique
to overcome large network sizes, the optimization problem could be solved as the approximation
technique distributes large networks into smaller ones. The size of the network and node distance
with its neighbors is independent of the size of the whole large network. Thus, the solution to
such optimization is achievable due to the scale of the small networks. This means that the global
optimization function of the transmission attempt rate parameter in CSMA is distributed into local
optimization functions for each node and its neighbors. The local optimization function is then
solved using Newton’s method of optimization instead of stochastic gradient descent, as it has a faster
convergence rate [26]. The achievable service rate of each link is then calculated and its percentage
error with the target service rate is formulated. In addition, the average throughput is finally calculated.
The whole process is repeated under different network operational parameters as SINR thresholds,
target service rates, and the number of nodes, to emphasize their effect on the average throughput.
The main contribution of the presented work is giving a full description of the effect of changing
network operational parameters on the average throughput and proving asymptotic relations using
polynomial interpolation that describes the following.

• Throughput as a function of both target service rates and SINR threshold for a given number
of nodes.

• Throughput as a function of both the number of nodes and the target service rates for a given
SINR threshold.

• Maximum throughput for a different number of nodes at different SINR thresholds.
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The proposed model proves its robustness against the increasing number of nodes due to its dependence
on the local network size instead of the global one. The model also provides efficient asymptotic
throughput relations to be used for estimating the performances of such wireless networks.

The rest of the paper is organized as follows. In Section 2, the system model is described,
Section 2.1 describes the used CSMA scheduling algorithm and the research problem is explained.
In Section 2.2, the global optimization function is introduced while the distributed local networks
algorithm and its model are described in Section 2.3. In Section 2.4, the computational complexity
is explained, Section 2.5 discusses the polynomial interpolation technique, and Section 2.6 analyzes
the delay performance. In Section 3, the numerical analysis of the proposed model is obtained and
described. Results are discussed in Sections 4 and 5 concludes the work and results.

The used parameters and variables in the following sections and their descriptions are summarized
and given in Table 1.

Table 1. System parameters and their descriptions.

Parameter/Variable Description

dii Distance between transmitter and receiver of same node i.
di j Distance between two nodes i and j.
N Total number of nodes.
N j Number of nodes at node j neighborhood.

x(t) Schedule of the network where xi(t) = 1 means that link i is active and
transmitting data and xi(t) = 0 means that link i is not active.

R Close-in-Radius distance where interference is neglected if distances between
nodes exceeded it.

SINR Signal to Interference and Noise Ratio.
pi Transmit power of link i.
α Path loss exponent.
ω The variance of the Gaussian thermal noise present at all receivers.
T SINR threshold that has to be exceeded to ensure successful data reception.
I List of all feasible schedules.
λ Transmission attempt rate

si
The long-term service rate of node i which is the marginal probability that

node i is active.
1(x ∈ I) The indicator for the feasibility of the schedule.

z Normalizing constant.
r Transmission aggressiveness.

yk
The feasible schedule such that yk = 0 means that node k is inactive while

yk = 1 indicates that node k is active and meets the required SINR threshold.
Th Average Normalized Throughput.

Th_max Maximum Normalized Throughput
e
(
st
)

The approximate error between the achieved and the target service rates.
P(x) the stationary distribution of the CSMA Markov chain

2. System Model

The model used in this article is based on a single-hop wireless network. Each node is formed from
a pair of transmitter and receiver similar to the bipole model in [27], the distance between transmitter
and receiver is dii for node i. N is defined as the total number of nodes in the network model. Let di j be
the distance between two nodes i and j.

For scheduling data transmissions between nodes, x(t) is defined as the schedule of the network;
it can also be referred to as x. In other words, xi(t) = 1 indicates that node i is active at time slot t and
during data transmission. Two nodes are considered to be neighbors and interfere with each other if
the distance between them is less than or equals to R (Close-in-Radius). Interference between nodes is
neglected if they are not neighbors or, in other words, the distance between them is higher than R as
shown in Figure 1.
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The SINR model at node i as a function of x(t) is given by:

SINR =
Pidii

−α∑
{ j∈ N j , j,I, x j(t)=1} P j d ji−α +ω

, (1)

where P j is the transmitting power of node j, α is the path loss exponent of the standard path loss
model |d|−α. ω is the variance of the Gaussian thermal noise present at all receivers. N j is a set of node
j and its neighbors.

The condition for xi(t) = 1 (Node i is active and transmitting data) is SINR ≥ T; T is the SINR
presumed threshold constraint. If all active nodes in a schedule satisfy this condition, their schedule is
called a feasible schedule. The list of all feasible schedules is defined as I, where receivers are able to
receive data successfully.

2.1. CSMA Scheduling Algorithm

The main aim of the CSMA scheduling algorithm is to ensure proper data packets reception.
The procedure objective is obtaining the transmission attempt rate λ, hence supporting the required
target service rates of each node for acquiring the optimal throughput. The scheduling algorithm
is based on the SINR readings of the previous time slot, to ensure successful transmission of data if
a certain threshold T is exceeded. The process is described in the following CSMA SINR threshold
scheduling Algorithm 1.

Algorithm 1. CSMA SINR threshold scheduling algorithm

-Each node is assigned with transmission attempt rate λ > 0.
-In each time slot, a randomly selected node i is allowed to update its schedule xi(t) based on the information
in the previous time slot.
if SINRi(x(t− 1)) < T, then
xi(t) = 0 and node i waits for another time slot to update its schedule again.
else if SINRi(x(t− 1)) ≥ T, then
Node i exchanges messages with neighbors, to find if they can meet their SINR requirements if link i gets
activated.
if any of its neighbors can’t meet its requirement, then
xi(t) = 0 and node i waits for another time slot to update its schedule again.
else if all neighbors can meet their SINR requirements if link i gets activated, then
xi(t) = 1 with probability λi

1+λi
and xi(t) = 0 with probability 1

1+λi
.

end if
end if
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It can be shown in [25] that the adaptive CSMA algorithm induces a Markov chain on the state
space of the schedules {0, 1}N. Further, the stationary distribution of the Markov chain, parametrized by
the transmission attempt rate vector λ = [λi]

N
i=1, is given by:

p(x) =
1
z

∏
j:x j=1

λ j 1(x ∈ I ),∀ x ∈ {0, 1}N , (2)

where 1(x ∈ I) is an indicator of x being a feasible schedule, and z is the normalizing constant. Then,
due to the ergodicity of the Markov chain, the long-term service rate of a node i denoted by si is
equal to the marginal probability that node i is active, i.e., pi(xi = 1). Thus, the service rates and the
transmission attempt rates are related as follows:

si = pi(1) =
∑

x: xi=1

1
z

∏
j:x j=1

λ j,∀ i ∈ N , (3)

where pi(1) denotes pi(xi = 1). The adaptive CSMA algorithm can support any service provided that
appropriate transmission attempt rates are used for the underlying distribution [28]. If the desired
service rates are known, these transmission attempt rates can be obtained by solving the system of
equations in Equation (3).

Assume that each node i has a capacity of 1. If node i transmits data all the time (without affecting
other nodes), then its service rate is 1 (unit of data per unit time). Then, si(r) is also the normalized
service rate with respect to the node capacity.

The following concave function G(r) can be maximized by choosing a suitable value of
the transmission aggressiveness r, this maximization is equivalent to the minimization of the
Kullback–Leibler divergence between the arrival rate and the service rate distribution functions
as established in [29].

2.2. The Global Optimization Function

The global optimization function of the proposed network model is given by:

r = argmax r∈RN G(r)G(r) =
∑
k∈N

skrk − ln

∑
y∈I

exp

∑
k∈N

ykrk


 , (4)

where r is the transmission aggressiveness vector of dimension N and it is a function of λ as r = ln(λ).
let y = [yk]k∈N ∈ {0, 1}N be the global feasible schedule such that yk = 0 means that node k is inactive
while yk = 1 indicates that node k is active and meets the required SINR threshold. The desired service
rates vector is denoted as {si}i∈N.

For a proper understanding of the global optimization Equation (4), let ∂G(r)
∂ri

= 0 to show that it
solves Equation (3) and results in:

si =

∑
y∈I:yi=1 exp

(∑N
k=1 ykrk

)
∑

y∈I exp
(∑N

k=1 ykrk
) ∀ i ∈ N , (5)

To solve Equation (4), the distributed stochastic gradient descent algorithm was used [23].
However, the gradient of (4) estimation was calculated in a distributed manner and took an impractical
time of convergence in order to reach steady state. In order to rectify this problem, the proposed
global optimization function was divided into separate and scalable approximated local optimization
functions and, finally, these local functions were appropriately combined for estimating the solution to
the global problem. The target service rates were assumed as predefined for each node.
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2.3. The Local Optimization Function

The local optimization function was similarly structured as the global one with some parameters
replaced by ones with a j index to represent its local attachment to node j and its neighbors. The local
optimization function of node j was defined as:

r j = argmax
r∈RNj F(r)F(r) =

∑
k∈N j

skrk − ln

∑
y∈I j

exp

∑
k∈N j

ykrk


 , (6)

where r j = [r jk]k∈ N j
is the local transmission aggressiveness of node j, y = [yk]k∈N j

∈ {0, 1}N j is the

local feasible schedule at node j such that y j = 0 means that node j is inactive and y j = 1 indicates that
node j is active and exceeds the SINR threshold. s( j) = {sk

∣∣∣k ∈ N j
}

is the local service rate vector of
node j.

Due to the downscaling of the global network dimensions, the solution might be simplified
by solving local optimization functions. The local solutions of the transmission attempt rate are
then combined to produce a global transmission attempt rate that can be directly used in the CSMA
algorithm. This process is chosen over the adaptation of transmission attempt rates using a stochastic
gradient descent that requires extensive time to converge on the global function. Each node in the
network executes (Algorithm 2) in parallel to get the average normalized throughput.

Algorithm 2. Proposed Algorithm to obtain Average Normalized Throughput

Input:
(
sk, k ∈ N j

)
; Output: Average Normalized Throughput Th

(
st
)

(1) Neighbors of node j provide their target service rates.
(2) Local optimization function (6) is solved using Newton’s method of optimization for node j with its

surrounding neighbors and the maximum achievable service rates is locally obtained for all feasible
schedules of the neighborhood.

(3) Node j and each neighbor from k ∈ N j provide their locally maximum achievable service rates.
(4) The average achievable service rate can be calculated for each node separately by averaging the service

rates in each neighborhood contained in that node.
(5) Calculate the approximate error between the achieved and the target service rates:

e
(
st
)
=

∑N
i=1

∣∣∣st
i − sa

i

∣∣∣
N

, (7)

where sa = [sa
i ]

N
i=1 are the service rates that can be achieved and st = [st

i ]
N
i=1 is the given target service

rate vector.
(6) Compute the average normalized throughput:

Th
(
st
)
=

∑N
i=1 st

i

(
1− e

(
st
))

N
, (8)

(7) Use Polynomial interpolation to form the average normalized throughput equations as a function of
either—number of nodes and target service rates or SINR threshold and target service rates. Polynomial
interpolation is also used to get the maximum normalized throughput as a function of the number
of nodes.



Sensors 2019, 19, 3651 8 of 20

The approximate global transmission attempt rate λ̃ that can be directly applied to the CSMA
SINR threshold scheduling algorithm (Algorithm 1) is given by:

λ̃ =

(
1− s j

s j

)|N j |−1 ∏
k∈N j

erkj , (9)

where s j is the target service rate of link j,
∣∣∣N j

∣∣∣ is the number of nodes in the local neighborhood of
node j. The transmission aggressiveness is rkj, k ∈ N j is the optimized parameter in Step (2) of node j
and its presence in every local neighborhood.

Newton’s method of optimization used in Step (2) is used to optimize the local optimization
function (6) [30]. It can be computed without complexity due to its relatively smaller size as compared
to the global function and is given by:

r(t) = r(t−1)
− ([∇2F(r(t−1))]ik)

−1 . [∇F(r(t−1))]k , (10)

where r(t) is the transmission aggressiveness of the current iteration and r(t−1) is of the previous iteration.
[∇2F

(
r(t−1)

)
]
ik

and [∇F
(
r(t−1)

)
]
k

are the Hessian matrix and the gradient vector of Newton’s method,
respectively. The gradient and Hessian of node j computations are done through the distribution:

b̂ j
(
x( j)

)
=

1
z j

exp

∑
k∈N j

xkrk

,∀ x( j)
∈ I j , (11)

where z j is the local normalization constant of node j and its neighbors. I j is a list of all feasible
schedules of node j and its neighbors. The gradient of (6) is given by:

[∇F(r)]k = sk −mk(r), k ∈ N j , (12)

where mk(r) = p(xk = 1) under b̂ j distribution for k ∈ N j.
The Hessian of (6) is given by:

[∇2F(r)]ik =
{

mi(r)mk(r) −mik(r), i, k ∈ N j, i , j
mk(r)

2
−mk(r), i = k.

, (13)

where mik(r) = p(xi = 1, xk = 1) of the distribution b̂ j.

2.4. Computational Complexity

It is possible to implement the Newton method in (Algorithm 2). This is because it is possible to
analytically calculate the gradient and the Hessian of the local objective function F(r) since the problem
dimension is reduced from the global one.

The gradient and the Hessian calculations need information about the feasible local schedules
at a link. This information is specifically needed to calculate the normalization constant z.
These computations are feasible because of the complexity of O(2|N j |) associated with a computation
scale of only a particular size of the local neighborhood that is independent of the network’s global
size, which could be considerably large.

2.5. Polynomial Interpolation

The polynomial cubic interpolation used in Step (7) is explained in [31–33] and has a common
form of:

f (θ) = a0 + a1θ+ a2θ
2 + . . .+ anθ

n, an , 0 , (14)

where θ is the variable of the function f and n is the degree of the polynomial.
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The solution of Equation (14) is computed using the Vandermonde matrix [33] formed in
Equation (15), in order to calculate the coefficient an given both θ and f :

1 θ1 θ2
1 · · · θm

1
1 θ2 θ2

2 · · · θm
2

1 θ3 θ2
3 · · · θm

3
...

...
...

. . .
...

1 θn θ2
n · · · θm

n





a0

a1

a2
...

am


=



f0
f1
f2
...
fn


, (15)

Another form of the polynomial interpolation used in this work is the bicubic interpolation for
a function of two variables, such as:

f (θ,ϕ) = a0 + a1θ+ a2ϕ+ a3θ
2 + a4θϕ+ a5ϕ

2 + a6θ
3 + a7θ

2ϕ+ a8θϕ
2 + a9ϕ

3, (16)

where θ and ϕ are the two variables of the function f .
The solution of Equation (16) is similar to Equation (14) and is computed using the Vandermonde

matrix formed in Equation (17) to calculate the coefficient an given θ, ϕ, and f :

1 θ1 ϕ1 θ2
1 θ1ϕ1 · · · ϕm

1
1 θ2 ϕ2 θ2

2 θ2ϕ2 · · · ϕm
2

1 θ3 ϕ3 θ2
3 θ3ϕ3 · · · ϕm

3
...

...
...

...
...

. . .
...

1 θn ϕn θ2
n θnϕn · · · ϕm

n





a0

a1

a2
...

am


=



f0
f1
f2
...
fn


, (17)

Equations (15) and (17) are solved using the Gaussian elimination method [34] until a reduced
echelon form is reached; hence, the values of the coefficients are computed. In Step (7),
Polynomial interpolation is used to obtain the average normalized throughput as a function of
either number of nodes and target service rates or SINR threshold and target service rates. Polynomial
interpolation is also used to get the maximum normalized throughput as a function of the number
of nodes.

2.6. Delay Performance

Considering the delay performance, it is known that the CSMA Markov chain’s impractically slow
mixing time leads to a bad delay performance [28,35]. Recent work such as [36,37] have enhanced delay
performance by using several parallel CSMA Markov chain cases. These results [36] are demonstrated
on the assumption that the ideal transmission attempt rate is pre-computed and is easily accessible to
the algorithm. The proposed local algorithm can be used in combination with the methods in [36,37]
to achieve a practical CSMA algorithm with an excellent throughput and a low delay, to effectively
estimate these transmission attempt rates.

3. Results

In this section numerical analysis are used to estimate the performance of the proposed algorithm.
Random topology graphs are considered with a different number of nodes to test the robustness of
the model. Random networks are generated by placing nodes on a two-dimensional area of length of
12 unit distance. The system parameters are summarized in Table 2.

Random networks are generated with varying densities from 10 up to 100 nodes, and vertices are
drawn when nodes are neighbors and interfere with each other. The total number of links is higher
than the total number of nodes, but it does not reach the mesh topology where the number of links
equals to N(N − 1)/2. The interference graph of a 100-node random topology is shown in Figure 2.
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Table 2. The system parameters used in numerical analysis.

System Parameter Value

Dimensions of the interference graph (unit area) 12 × 12
Distance between transmitter and its corresponding receiver
(unit distance) 0.5

Path loss exponent 3
Close in Radius (unit distance) 2.5
SINR threshold (dB) 9 up to 15
Target service rate (Unit of data per unit time) 0 up to 0.9
Transmit power (unit power) 1Sensors 2019, 19, x FOR PEER REVIEW 10 of 20 
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In order to prove the fast convergence rate of the proposed model, Figure 3 shows that the norm
of the gradient in Newton’s method of a random local network sample converges in 4 to 5 iterations.
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In Figure 4, the average normalized throughput as a function of the target service rate is shown
for different network topologies of 10, 30, 50, and 100 randomly distributed nodes at 9, 12 and 15 dB
SINR thresholds.
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As shown in Figure 4, increasing the SINR threshold shows degradation in throughput, especially at
high-target service rates. This is because the nodes will be unable to transmit until a higher SINR
threshold is met. Meanwhile, it is observed that initially, as target service rate increases, the average
normalized throughput increases until it reaches its maximum. This is where the network works under
“stable operating conditions”. After that point, the network enters “unstable operating conditions”
in which collisions become more likely and the number of backlogged frames increases. This means
that the arrival rate of new frames to the system will be larger than the capability of successful frames
transmission, thus, leading to a decrease of the average normalized throughput.

In order to acquire the obtained results in Figure 4 as a system of asymptotic relations,
polynomial bicubic interpolation algorithm is used. Therefore, the average normalized throughput can
be estimated via the following proposed equation in the general form of:

Th(N, S) = a0 + a1N + a2S + a3N2 + a4NS + a5S2 + a6N3 + a7N2S + a8NS2 + a9 S3, (18)

where Th is the average normalized throughput as a function of the number of nodes N and target
service rate is denoted as S. The constants a0, . . . , a9 are the constant coefficients in Equation (18) and
are given in Table 3.

Table 3. Coefficients of Equation (18) for different SINR thresholds.

SINR
Threshold a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

T = 9 0.3476 −3× 10−4 0.559 3.5× 10−6 0.0029 1.096 10−9
−3.4× 10−5 −0.00466 −1.016

T = 10 0.1716 −4.6× 10−4 −1.2147 3.4× 10−6 0.004496 5.442 10−9
−3.26× 10−5 −0.0064 −3.865

T = 11 −0.314 3.65× 10−4 4.92 3.3× 10−6 −0.00486 −8.14 10−9
−3× 10−5 0.00256 4.28

T = 12 −0.119 8.45× 10−5 2.49 3.18× 10−6 −0.00189 −2.97 10−9 2.8× 10−5 7.5× 10−4 1.239
T = 13 −0.305 3.65× 10−4 4.896 4× 10−6 −0.00614 −8.66 10−9

−3× 10−5 0.0038 4.81
T = 14 −0.3 1.9× 10−4 4.898 5.3× 10−6 −0.0059 −8.73 10−9

−3.4× 10−5 0.004 4.847
T = 15 −0.0515 −4.25× 10−4 1.718 6.6× 10−6

−7.35× 10−4 −1.597 10−9
−3.76× 10−4

−5.79× 10−4 0.447

The interpolation equations are used to describe the missing values between the calculated
throughput results and also give more details in three-dimensional planes of the average normalized
throughput as a function of both target service rates and the number of nodes. In Figure 5, the plane
is represented at different SINR thresholds of 9 up to 15 dB. It can be observed that increasing the
number of transmitting nodes in the network will cause more collisions, thus, leading to a decrease in
the network throughput.

Another way to make use of the polynomial bicubic interpolation is to generate another form of
the previous equation with different parameters, such as:

Th(T, S) = c0 + c1T + c2S + c3T2 + c4 TS + c5S2 + c6T3 + c7T2S + c8TS2 + c9 S3, (19)

where Th is the average normalized throughput as a function of target service rate denoted as S and
the SINR threshold T. The constants c0, . . . , c9 are the constant coefficients in Equation (19) and are
given in Table 4.

Moreover, the previous step of interpolation is repeated to find an asymptotic relation of the
average normalized throughput as a function of both target service rates and the SINR threshold.
In Figure 6, the plane is shown with a number of nodes from 10 up to 100 nodes.
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Table 4. Coefficients of Equation (19) for different number of nodes.

No. of
Nodes c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

N = 10 −0.028 −0.00138 1.32 8.95× 10−5 0.0166 −0.315 10−6 8.95× 10−4 −0.028 −0.128
N = 20 −0.0367 0.0025 1.25 −1× 10−4 0.0015 −0.112 10−6

−1.66× 10−4 −0.03 −0.219
N = 30 −0.069 0.0063 1.5 −2.89× 10−4 −0.0135 −0.566 10−7

−5.66× 10−4 −0.0324 0.0755
N = 40 −0.077 0.01069 1.43 −4.8× 10−4 −0.0328 −0.313 10−7 0.00129 −0.03 −0.0665
N = 50 −0.449 0.01425 0.8649 −6.74× 10−4 −0.0437 0.9377 10−8 0.002 −0.0365 −0.752
N = 60 −0.0276 0.0143 0.64 −6.76× 10−4 −0.0428 1.339 10−8 0.00197 −0.036 −1.025
N = 70 −0.0265 0.0143 0.623 −6.79× 10−4 −0.0419 1.29 10−8 0.0019 −0.036 −1.04
N = 80 −0.134 0.0165 1.942 −6.8× 10−4 −0.0647 −1.38 10−8 0.00185 −0.012 0.366
N = 90 −0.0599 0.0156 1.006 −6.8× 10−4 −0.052 0.516 10−9 0.0018 −0.023 −0.77

N = 100 −0.061 0.0156 1.019 −6.86× 10−4 0.0517 0.409 10−9 0.00175 −0.0229 −0.749

After obtaining the average normalized throughput from the numerical analysis, the maximum
normalized throughput could be extracted. Polynomial cubic interpolation algorithm was used to
concatenate the above figures and define a relation for acquiring the maximum normalized throughput
in the general form of:

Th_max(N) = k0 + k1N + k2N2, (20)

where Th_max is the maximum normalized throughput as a function of the number of nodes N.
The constants k0, k1, and k2 are the constant coefficients in Equation (20) and are given in Table 5.

Table 5. Coefficients of Equation (20) for different SINR thresholds.

SINR Threshold k0 k1 k2

S = 9 0.6989 −0.003 −4× 10−7

S = 12 0.6282 0.0033 −7.48× 10−8

S = 15 0.551 −0.00278 −1.2× 10−7

The interpolation equations graphs of the maximum normalized throughput are shown in Figure 7
as a function of the number of nodes at the different SINR thresholds from 9 up to 15 dB.

Another way to describe the maximum normalized throughput more generally, using the
polynomial bicubic interpolation is to formulate a plane that is a function of, both, the number of nodes
and the SINR threshold. Therefore, the maximum normalized throughput was estimated using the
following equation as the general form:

Th_max(N, T) = e0 + e1N + e2T + e3N2 + e4NT + e5T2, (21)

where Th_max is the maximum normalized throughput as a function of the number of nodes N and
the SINR threshold denoted as T. The constants e0, . . . , e5 are the constant coefficients in Equation (21)
and are given in Table 6.
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Table 6. Coefficients of Equation (21).

Coefficient e0 e1 e2 e3 e4 e5

Value 0.9213 −0.00345 −0.025 −8.47× 10−6 9.81× 10−5 10−5

As a result to Equation (21), the maximum normalized throughput as a function of both the
number of nodes and the SINR threshold can be generated approximately. Different from Equation (20),
the new equation adds the dimension of the SINR threshold to give a more general description and
eases the prediction to be based on two parameters instead of one. Equation (21) is shown in Figure 8
for different number of nodes and SINR thresholds.Sensors 2019, 19, x FOR PEER REVIEW 17 of 20 
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A sample of error using Equation (7) between the proposed approximation technique and
the stochastic gradient descent algorithm is shown in Figure 9. Where the local approximation
algorithm that calculates the approximate transmission attempt rates uses their static values in the
CSMA algorithm (i.e., they are not adapted during the algorithm). On the other hand, the stochastic
gradient descent algorithm begins with some initial transmission attempt rates, and by observing the
corresponding service rates, it adapts the transmission attempt rates [23].
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For 5G networks, the error has to be minimum at all target service rates. Additionally, determining
the transmission attempt rate is an NP-hard problem and the stochastic gradient descent is unpractical
as it adapts those transmission attempt rates in several iterations, as shown in the Figure 9. This is why
the proposed approach of pre-calculating those transmission attempt rates and using them directly in
the network helps in reducing the error at most target service rates. The results would be comparable
even at higher rates but there still exists an advantage in the early stages where the network works
under “stable operating conditions”. The error of the proposed model did not exceed 0.06, while the
gradient descent started with an error exceeding 0.2 for a target service rate up to 0.4 unit data per
unit time.

4. Discussion

The proposed model aims at providing possible ways of predicting random network performances
under different circumstances. One thing to mention is that the proposed model is scalable, as it studied
a 10- to 100-node random topology in an area of 12 × 12 square units of distance. This means that if
a 400-node random topology is studied at 24 × 24 square units of distance, the performance will be
similar to the proposed 100-node one. This is due to the dependence of the proposed model on the local
neighborhood size, not the global one. Therefore, what matters is the performance degradation that
would arise from increasing the number of nodes in the same limited area. Additionally, increasing the
given area can allow for fitting a higher number of nodes, as the limited area considered in this work
affects the interference to a great extent, due to the high-density neighborhoods interfering with each
other. Additionally, increasing the number of nodes in the given area to a value higher than the studied
ones might lead to a density (number of nodes/unit area) > 1, which is rarely found and should most
of the time be ≤ 1. Additionally, the resulting model might be used for scalable networks. In other
words, the resulted network could be used to estimate the performance of both small as well as large
networks. The presented analysis is based on the normalized unit area and the normalized throughput,
so it might provide a good performance whatever be the network size.

The proposed polynomial interpolation’s throughput asymptotic relations here are based on the
studied topologies and might lead to other performance prediction if different parameters were used.
To sum up the used parameters here, the SINR threshold was set to 9, 12, and 15 dB, up to 0.9 unit
target service rates, and up to 100 nodes randomly distributed in the unit area were considered.
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Three-dimensional topologies were applicable and would not have differed much from the
two-dimensional topology used in the proposed model, as the distance was the only matter.
We previously mentioned the close-in-radius R distance as the distance where interference was
neglected if two nodes were at distance > R apart from each other. This radius could either be of a circle
if a two-dimensional topology was considered or a radius of a sphere in case of the three-dimensional
topology. Therefore, at the end what matters is distances at any directions and the three-dimensional
topology could be equivalent to a dense network that is already studied in the proposed model.
Additionally, the main scope of this paper was to calculate the effect of the increasing the number of
nodes on the throughput in dense networks, which is suitable for 5G applications. The energy and the
delay could be considered in details in future work.

5. Conclusions

A CSMA algorithm of a single-hop wireless network was considered under a realistic SINR model.
An approximation algorithm of distributing the global network into downscaled local neighborhoods
was used to calculate the transmission attempt rate to optimize the throughput of the global network.
This was done by achieving target service rates of nodes while varying the number of nodes up to
a random 100-node topology. The proposed model converged fast and proved its robustness against
the increasing number of nodes as it depended only on the size of the local network instead of the
global dense one. Three-dimensional planes of the average normalized throughput were obtained by
polynomial interpolation that produced a complete description of the performance of the network.
Maximum normalized throughput was obtained too as a function of the number of nodes using
polynomial interpolation. The used approach of pre-calculating the transmission attempt rates and
using them directly in the network helped in reducing the error at most values of the target service
rates. Even at higher rates, results would be comparable with a gradient descent algorithm but there
still would exist an advantage in the early stages where the network would work under “stable
operating conditions”. The proposed model is also scalable, so it might provide a network performance,
whatever be its size. Additionally, the proposed model has a faster convergence time and is considered
to be less complex and more practical than the previously used gradient descent algorithm.
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