Optimizing the Limit of Detection of Waveguide-Based Interferometric Biosensor Devices
Abstract
:1. Introduction
2. Methods
2.1. Sensitivity
2.2. Noise Sources
2.3. Impact of Noise on the Limit of Detection
2.4. Experimental Methods
3. Enhancement Strategies
3.1. Sampling Frequency and Mechanical Noise
3.2. Quantization, Shot and Thermal Noise
- Choose a large value of the DAQ voltage range ().
- Increase the input power () as much as possible without saturating the DAQ, possibly with the help of an external fiber amplifier (EDFA). This helps reduce the impact of shot, thermal and quantization noise.
- If the DAQ is not close to saturation, increase the gain of the amplifier (G). Depending on the specific amplifier, this may reduce the amplifier NEP.
- If the DAQ is not close to saturation, decrease the DAQ voltage range to minimize quantization noise.
3.3. Residual Baseband Noise
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Quantization Noise
Appendix A.2. Equipment Parameters
Parameter | Value | Unit |
---|---|---|
Laser - WSL-100 (Santec) | ||
EDFA - EAD-500C (IPG Photonics) | ||
Photo Detection - PDA10CS-EC (Thorlabs) | ||
R | ||
G | ||
450 | ||
DAQ - NI USB-6210 (National Instruments) | ||
250 | ||
– | ||
M | 16 | – |
General | ||
– | ||
6 | ||
(simulated [38]) |
References
- Wangüemert-Pérez, J.G.; Hadij-ElHouati, A.; Sánchez-Postigo, A.; Leuermann, J.; Xu, D.X.; Cheben, P.; Ortega-Moñux, A.; Halir, R.; Molina-Fernández, Í. Subwavelength structures for silicon photonics biosensing. Opt. Laser Technol. 2019, 109, 437–448. [Google Scholar] [CrossRef]
- Luan, E.; Shoman, H.; Ratner, D.; Cheung, K.; Chrostowski, L. Silicon Photonic Biosensors Using Label-Free Detection. Sensors 2018, 18, 3519. [Google Scholar] [CrossRef] [PubMed]
- Gavela, A.F.; García, D.G.; Ramirez, J.; Lechuga, L. Last Advances in Silicon-Based Optical Biosensors. Sensors 2016, 16, 285. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Priego, P.; Martens, D.; Elamin, A.A.; Soetaert, P.; Roy, W.V.; Vos, R.; Anton, B.; Bockstaele, R.; Becker, H.; Singh, M.; et al. Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform. ACS Sens. 2018, 3, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sens. Actuators B 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Baets, R.; Subramanian, A.Z.; Clemmen, S.; Kuyken, B.; Bienstman, P.; Thomas, N.L.; Roelkens, G.; Thourhout, D.V.; Helin, P.; Severi, S. Silicon Photonics: Silicon nitride versus silicon-on-insulator. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–22 March 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Molina-Fernández, Í.; Leuermann, J.; Ortega-Moñux, A.; Wangüemert-Pérez, J.G.; Halir, R. Fundamental limit of detection of photonic biosensors with coherent phase read-out. Opt. Express 2019, 27, 12616–12629. [Google Scholar] [CrossRef] [PubMed]
- Passaro, V.; Dell’Olio, F.; Casamassima, B.; Leonardis, F.D. Guided-Wave Optical Biosensors. Sensors 2007, 7, 508–536. [Google Scholar] [CrossRef] [Green Version]
- Kita, D.M.; Michon, J.; Johnson, S.G.; Hu, J. Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing? Optica 2018, 5, 1046–1054. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Tu, X.; Kim, K.W.; Kee, J.S.; Shin, Y.; Han, K.; Yoon, Y.J.; Lo, G.Q.; Park, M.K. Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B 2013, 188, 681–688. [Google Scholar] [CrossRef]
- Torrijos-Morán, L.; García-Rupérez, J. Single-channel bimodal interferometric sensor using subwavelength structures. Opt. Express 2019, 27, 8168–8179. [Google Scholar] [CrossRef] [PubMed]
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yan, H.; Xu, X.; Chakravarty, S.; Tang, N.; Tian, H.; Chen, R.T. Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators. Opt. Express 2017, 25, 10527–10535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, Z.; Gao, D.; Zhang, M.; Zhang, D. High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator. Opt. Express 2017, 25, 20911–20922. [Google Scholar] [CrossRef] [PubMed]
- Flueckiger, J.; Schmidt, S.; Donzella, V.; Sherwali, A.; Ratner, D.M.; Chrostowski, L.; Cheung, K.C. Sub-wavelength grating for enhanced ring resonator biosensor. Opt. Express 2016, 24, 15672–15686. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Huang, L.; Xu, X.; Chakravarty, S.; Tang, N.; Tian, H.; Chen, R.T. Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides. Opt. Express 2016, 24, 29724–29733. [Google Scholar] [CrossRef]
- Chalyan, T.; Guider, R.; Pasquardini, L.; Zanetti, M.; Falke, F.; Schreuder, E.; Heideman, R.; Pederzolli, C.; Pavesi, L. Asymmetric Mach–Zehnder Interferometer Based Biosensors for Aflatoxin M1 Detection. Biosensors 2016, 6, 1. [Google Scholar] [CrossRef]
- Halir, R.; Ortega-Monux, A.; Benedikovic, D.; Mashanovich, G.Z.; Wanguemert-Perez, J.G.; Schmid, J.H.; Molina-Fernandez, I.; Cheben, P. Subwavelength-Grating Metamaterial Structures for Silicon Photonic Devices. Proc. IEEE 2018, 106, 2144–2157. [Google Scholar] [CrossRef]
- Xu, D.X.; Densmore, A.; Delâge, A.; Waldron, P.; McKinnon, R.; Janz, S.; Lapointe, J.; Lopinski, G.; Mischki, T.; Post, E.; et al. Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding. Opt. Express 2008, 16, 15137–15148. [Google Scholar] [CrossRef]
- Martens, D.; Bienstman, P. Comparison between Vernier-cascade and MZI as transducer for biosensing with on-chip spectral filter. Nanophotonics-Berlin 2017, 6, 703–712. [Google Scholar] [CrossRef] [Green Version]
- van Gulik, R.J.J.; de Boer, B.M.; Harmsma, P.J. Refractive Index Sensing Using a Three-Port Interferometer and Comparison With Ring Resonators. IEEE J. Sel. Top. Quant. 2017, 23, 433–439. [Google Scholar] [CrossRef]
- Gounaridis, L.; Groumas, P.; Schreuder, E.; Tsekenis, G.; Marousis, A.; Heideman, R.; Avramopoulos, H.; Kouloumentas, C. High performance refractive index sensor based on low Q-factor ring resonators and FFT processing of wavelength scanning data. Opt. Express 2017, 25, 7483–7495. [Google Scholar] [CrossRef] [PubMed]
- Claes, T.; Bogaerts, W.; Bienstman, P. Vernier-cascade silicon photonic label-free biosensor with very large sensitivity and low-cost interrogation. In Proceedings of the Biosensing and Nanomedicine IV, San Diego, CA, USA, 12 September 2011; p. 80990R. [Google Scholar] [CrossRef]
- González-Guerrero, A.B.; Maldonado, J.; Herranz, S.; Lechuga, L.M. Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics. Anal. Methods 2016, 8, 8380–8394. [Google Scholar] [CrossRef] [Green Version]
- Dante, S.; Duval, D.; Sepúlveda, B.; González-Guerrero, A.B.; Sendra, J.R.; Lechuga, L.M. All-optical phase modulation for integrated interferometric biosensors. Opt. Express 2012, 20, 7195–7205. [Google Scholar] [CrossRef] [PubMed]
- Marin, Y.E.; Toccafondo, V.; Velha, P.; Jeong, Y.; Scarano, S.; Nottola, A.; Tirelli, S.; Jeon, H.P.; Minunni, M.E.; Pasquale, F.D.; et al. Silicon-photonic interferometric biosensor using active phase demodulation. In Proceedings of the Frontiers in Biological Detection: From Nanosensors to Systems X, San Francisco, CA, USA, 20 February 2018; p. 1051005. [Google Scholar] [CrossRef]
- Halir, R.; Vivien, L.; Roux, X.L.; Xu, D.X.; Cheben, P. Direct and Sensitive Phase Readout for Integrated Waveguide Sensors. IEEE Photonics J. 2013, 5, 6800906. [Google Scholar] [CrossRef]
- Reyes-Iglesias, P.J.; Molina-Fernández, I.; Moscoso-Mártir, A.; Ortega-Moñux, A. High-performance monolithically integrated 120 downconverter with relaxed hardware constraints. Opt. Express 2012, 20, 5725–5741. [Google Scholar] [CrossRef] [PubMed]
- Milvich, J.; Kohler, D.; Freude, W.; Koos, C. Mach-Zehnder interferometer readout for instantaneous sensor calibration and extraction of endlessly unwrapped phase. In Proceedings of the 2017 IEEE Photonics Conference (IPC), Orlando, FL, USA, 1–5 October 2017; pp. 567–568. [Google Scholar] [CrossRef]
- Knoerzer, M.; Szydzik, C.; Ren, G.; Huertas, C.S.; Palmer, S.; Tang, P.; Nguyen, T.G.; Bui, L.; Boes, A.; Mitchell, A. Optical frequency comb based system for photonic refractive index sensor interrogation. Opt. Express 2019, 27, 21532–21545. [Google Scholar] [CrossRef]
- Luff, B.; Wilkinson, J.; Piehler, J.; Hollenbach, U.; Ingenhoff, J.; Fabricius, N. Integrated optical Mach-Zehnder biosensor. J. Lightwave Technol. 1998, 16, 583–592. [Google Scholar] [CrossRef]
- Saurav, K.; Thomas, N.L. Probing the fundamental detection limit of photonic crystal cavities. Optica 2017, 4, 757–763. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, L.; Pang, W. Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection. Opt. Express 2016, 24, 18197–18208. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing: Pearson New International Edition; Pearson Education Limited: London, UK, 2013. [Google Scholar]
- MathWorks. Available online: https://de.mathworks.com/help/matlab/ref/fft.html (accessed on 7 July 2019).
- CNM Silicon Nitride Photonic Integration Platform. Available online: http://www.imb-cnm.csic.es/index.php/en/clean-room/silicon-nitride-technology (accessed on 7 July 2019).
- Fimmwave by Photon Design. Available online: https://www.photond.com/products/fimmwave.htm (accessed on 7 July 2019).
- Saunders, J.E.; Sanders, C.; Chen, H.; Loock, H.P. Refractive indices of common solvents and solutions at 1550 nm. Appl. Opt. 2016, 55, 947–953. [Google Scholar] [CrossRef]
- Beck, H.G.E.; Spruit, W.P. 1/f noise in the variance of Johnson noise. J. Appl. Phys. 1978, 49, 3384–3385. [Google Scholar] [CrossRef]
- Torres-Cubillo, A.; Leuermann, J.; Molina-Fernández, Í.; Halir, R. Modelling the limit of detection of coherent photonic biosensors. In Proceedings of the XXXIV Simposium Nacional de la Unión Científica Internacional de Radio, Seville, Spain, 4–6 September 2019; p. 4.1.2. [Google Scholar]
- MathWorks. Available online: https://www.mathworks.com/products/matlab.html (accessed on 13 August 2019).
Solution | ||
---|---|---|
Purified Water (Milli-Q) | - | |
NaCl ( Mass Perc.) | ||
NaCl ( Mass Perc.) | ||
NaCl ( Mass Perc.) | ||
NaCl ( Mass Perc.) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leuermann, J.; Fernández-Gavela, A.; Torres-Cubillo, A.; Postigo, S.; Sánchez-Postigo, A.; Lechuga, L.M.; Halir, R.; Molina-Fernández, Í. Optimizing the Limit of Detection of Waveguide-Based Interferometric Biosensor Devices. Sensors 2019, 19, 3671. https://doi.org/10.3390/s19173671
Leuermann J, Fernández-Gavela A, Torres-Cubillo A, Postigo S, Sánchez-Postigo A, Lechuga LM, Halir R, Molina-Fernández Í. Optimizing the Limit of Detection of Waveguide-Based Interferometric Biosensor Devices. Sensors. 2019; 19(17):3671. https://doi.org/10.3390/s19173671
Chicago/Turabian StyleLeuermann, Jonas, Adrián Fernández-Gavela, Antonia Torres-Cubillo, Sergio Postigo, Alejandro Sánchez-Postigo, Laura M. Lechuga, Robert Halir, and Íñigo Molina-Fernández. 2019. "Optimizing the Limit of Detection of Waveguide-Based Interferometric Biosensor Devices" Sensors 19, no. 17: 3671. https://doi.org/10.3390/s19173671
APA StyleLeuermann, J., Fernández-Gavela, A., Torres-Cubillo, A., Postigo, S., Sánchez-Postigo, A., Lechuga, L. M., Halir, R., & Molina-Fernández, Í. (2019). Optimizing the Limit of Detection of Waveguide-Based Interferometric Biosensor Devices. Sensors, 19(17), 3671. https://doi.org/10.3390/s19173671