A Barcoded Polymer-Based Cross-Reactive Spectroscopic Sensor Array for Organic Volatiles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dickinson, T.A.; White, J.; Kauer, J.S.; Walt, D.R. A chemical-detecting system based on a cross-reactive optical sensor array. Nature 1996, 382, 697. [Google Scholar] [CrossRef] [PubMed]
- Sohn, Y.-S.; Goodey, A.; Anslyn, E.V.; McDevitt, J.T.; Shear, J.B.; Neikirk, D.P. A microbead array chemical sensor using capillary-based sample introduction: toward the development of an electronic tongue. Biosens. Bioelectron. 2005, 21, 303. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, J.J.; Savoy, S.; Clevenger, M.B.; Ritchie, J.E.; McDoniel, B.; Yoo, S.-J.; Anslyn, E.V.; McDevitt, J.T.; Shear, J.B. Solution-based analysis of multiple analytes by a sensor array: Toward the development of an electronic tongue. Am. Chem. Soc. 1998, 120, 6429. [Google Scholar] [CrossRef]
- Lundström, I.; Erlandsson, R.; Frykman, U.; Hedborg, E.; Spetz, A.; Sundgren, H.; Welin, S.; Winquist, F. Artificial’olfactory’images from a chemical sensor using a light-pulse technique. Nature 1991, 352, 47. [Google Scholar] [CrossRef]
- Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 210. [Google Scholar] [CrossRef]
- Walt, D.R.; Stitzel, S.E.; Aernecke, M.J. Artificial noses. Am. Sci. 2012, 100, 38. [Google Scholar]
- Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; D’Amico, A.; Legin, A.; Lvova, L.; Rudnitskaya, A.; Vlasov, Y. Human skin odor analysis by means of an electronic nose. Sens. Actuators B Chem. 2000, 64, 15. [Google Scholar] [CrossRef]
- Zhang, C.; Suslick, K.S.J. Colormetric sensor array for soft drink analysis. Agric. Food Chem. 2007, 55, 237. [Google Scholar] [CrossRef]
- Jonsson, A.; Winquist, F.; Schnürer, J.; Sundgren, H.; Lundström, I. Electronic nose for microbial quality classification of grains. Int. J. Food Microbiol. 1997, 35, 187. [Google Scholar] [CrossRef]
- De Vito, S.; Massera, E.; Piga, M.; Martinotto, L.; Di Francia, G. On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens. Actuators B Chem. 2008, 129, 750. [Google Scholar] [CrossRef]
- D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 2010, 68, 170. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Gleeson, K.; Hughes, J.M.B.; Greenberg, J.; Cataneo, R.N.; Baker, L.; McVay, W.P. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930. [Google Scholar] [CrossRef]
- Shirasu, M.; Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011, 150, 257. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.P.; Lewis, C.; Thomas, P.S. Exhaled breath analysis: Novel approach for early dectection of lung cancer. Lung Cancer 2009, 63, 164. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.P.; Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2004, 2, 161. [Google Scholar] [CrossRef] [PubMed]
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F.E. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Erickson, G.A.; Sabas, M.; Smith, J.P.; Greenberg, J. Volatile organic compounds in the breath of patients with schizophrenia. J. Clin. Pathol. 1995, 48, 466. [Google Scholar] [CrossRef]
- Mazzatenta, A.; Di Giulio, C.; Pokorski, M. Volatile organic compounds (VOCs) fingerprint of Alzheimer’s disease. Respir. Physiol. Neurobiol. 2013, 187, 128. [Google Scholar] [CrossRef]
- Tisch, U.; Nassar, M.; Axelrod, N.; Azar, F.; Marmur, A.; Aharon-peretz, J.; Haick, H. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 2013, 8, 43. [Google Scholar] [CrossRef]
- Dragonieri, S.; Schot, R.; Mertens, B.J.A.; Le Cessie, S.; Gauw, S.A.; Spanevello, A.; Resta, O.; Willard, N.P.; Vink, T.J.; Rabe, K.F. An electronic nose in the discrimination of patients with asthma and controls. Allergy Clin. Immunol. 2007, 120, 856. [Google Scholar] [CrossRef]
- Wang, C.; Ke, C.; Wang, X.; Chi, C.; Guo, L.; Luo, S.; Guo, Z.; Xu, G.; Zhang, F.; Li, E. Noninvasive detection of colorectal cancer by analysis of exhaled breath. Anal. Bioanal. Chem. 2014, 406, 4757. [Google Scholar] [CrossRef]
- Ionescu, R.; Broza, Y.; Shaltieli, H.; Sadeh, D.; Zilberman, Y.; Feng, X.; Glass-Marmor, L.; Lejbkowicz, I.; Müllen, K.; Miller, A.; et al. Detection of multiple sclerosis from exhaled breath using bilayers of polycyclic aromatic hydrocarbons and single-wall carbon nanotubes. ACS Chem. Neurosci. 2011, 2, 687. [Google Scholar] [CrossRef]
- Gardner, J.W.; Yinon, J. Electronic Noses & Sensors for the Detection of Explosives; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Freund, M.S.; Lewis, N.S. A chemically diverse conducting polymer-based “electronic nose”. Proc. Natl. Acad. Sci. USA 1995, 92, 2652. [Google Scholar] [CrossRef]
- Sisk, B.C.; Lewis, N.S. Vapor sensing using polymer/carbon black composites in the percolative conduction regime. Langmuir 2006, 22, 7928. [Google Scholar] [CrossRef]
- Gardner, J.W.; Shin, H.W.; Hines, E.L. An electronic nose system to diagnose illness. Sens. Actuators B Chem. 2000, 70, 19. [Google Scholar] [CrossRef]
- Thorn, R.M.S.; Greenman, J.J. Microbial volatile compounds in health and disease conditions. Breath Res. 2012, 6, 024001. [Google Scholar] [CrossRef]
- Aernecke, M.J.; Walt, D.R. Optical-fiber arrays for vapor sensing. Sens. Actuators B Chem. 2009, 142, 464. [Google Scholar] [CrossRef]
- Askim, J.R.; Mahmoudi, M.; Suslick, K.S. Optical sensor arrays for chemical sensing: The optoelectronic nose. Chem. Soc. Rev. 2013, 42, 8649. [Google Scholar] [CrossRef]
- Johnson, S.R.; Sutter, J.M.; Engelhardt, H.L.; Jurs, P.C.; White, J.; Kauer, J.S.; Dickinson, T.A.; Walt, D.R. Identification of multiple analytes using an optical sensor array and pattern recognition neural networks. Differences 1997, 69, 4641. [Google Scholar] [CrossRef]
- Glatz, R.; Bailey-Hill, K. Mimicking nature’s noses: From receptor deorphaning to olfactory biosensing. Prog. Neurobiol. 2011, 93, 270. [Google Scholar]
- Meixner, H.; Lampe, U. Metal oxide sensors. Sens. Actuators B Chem. 1996, 33, 198. [Google Scholar] [CrossRef]
- Wei, C.; Dai, L.; Roy, A.; Tolle, T.B. Multifunctional chemical vapro sensors of aligned carbon nanotube and polymer composites. J. Am. Chem. Soc. 2006, 128, 1412. [Google Scholar] [CrossRef]
- Shiokawa, S.; Kondoh, J. Surface acoustic wave sensors. Jpn. J. Appl. Phys. 2004, 43, 2799. [Google Scholar] [CrossRef]
- Gabl, R.; Feucht, H.D.; Zeininger, H.; Eckstein, G.; Schreiter, M.; Primig, R.; Pitzer, D.; Wersing, W. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosens. Bioelectron. 2004, 19, 615. [Google Scholar] [CrossRef]
- Chang, S.M.; Ebert, B.; Tamiya, E.; Karube, I. Development of chemical vapour sensor using SAW resonator oscillator incorporating odorant receptive LB films. Biosens. Bioelectron. 1991, 6, 293. [Google Scholar] [CrossRef]
- Wingqvist, G.; Yantchev, V.; Katardjiev, I. Mass sensitivity of multilayer thin film resonant BAW sensors. Sens. Actuators A Phys. 2008, 148, 88. [Google Scholar] [CrossRef]
- Tian, S.-Y.; Deng, S.-P.; Chen, Z.-X. Multifrequency large amplitude pulse voltammetry: A novel electrochemical method for electronic tongue. Sens. Actuators B Chem. 2007, 123, 1049. [Google Scholar] [CrossRef]
- Gallardo, J.; Alegert, S.; Del Valle, M. A flow-injection electronic tongue based on potentiometric sensors for the determination of nitrate in the presence of chloride. Sens. Actuators B Chem. 2004, 101, 72. [Google Scholar] [CrossRef]
- Winquist, F.; Wide, P.; Lundström, I. An electronic tongue based on voltammetry. Anal. Chim. Acta 1997, 357, 21. [Google Scholar] [CrossRef]
- Shevade, A.V.; Ryan, M.A.; Homer, M.L.; Manfreda, A.M.; Zhou, H.; Manatt, K. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors. Sens. Actuators B Chem. 2003, 93, 84. [Google Scholar] [CrossRef]
- White, J.; Kauer, J.S.; Dickinson, T.A.; Walt, D.R. Rapid analyte recognition in a device based on optical sensors and the olfactory system. Anal. Chem. 1996, 68, 2191. [Google Scholar] [CrossRef]
- Gorris, H.H.; Blicharz, T.M.; Walt, D.R. Optical-fiber bundles. FEBS J. 2007, 274, 5462. [Google Scholar] [CrossRef]
- Epstein, J.R.; Walt, D.R. Fluorescence-based fibre optic arrays: A universal platform for sensing. Chem. Soc. Rev. 2003, 32, 203. [Google Scholar] [CrossRef]
- Rakow, N.A.; Suslick, K.S. A colorimetric sensor array for odour visualization. Nature 2000, 406, 710. [Google Scholar] [CrossRef]
- Rakow, N.A.; Sen, A.; Janzen, M.C.; Ponder, J.B.; Suslick, K.S. Molecular recognition and discrimination of amies with a colorimetric array. Angew. Chem. Int. Ed. 2005, 44, 4528. [Google Scholar] [CrossRef]
- Dickinson, T.A.; Walt, D.R.; White, J.; Kauer, J.S. Generating sensor diversity through combinatorial polymer synthesis. Anal. Chem. 1997, 69, 3413. [Google Scholar] [CrossRef]
- Albert, K.J.; Lewis, N.S.; Schauer, C.L.; Sotzing, G.A.; Stitzel, S.E.; Vaid, T.P.; Walt, D.R. Optical multibead arrays for simple and complex odor discrimination. Chem. Rev. 2000, 100, 2595. [Google Scholar] [CrossRef]
- Chun, S.; Xu, J.; Cheng, J.; Ding, L.; Winograd, N.; Fenniri, H.J. Spectroscopically encoded resins for high throughput imaging time-of-flight secondary ion mass spectrometry. Comb. Chem. 2006, 8, 18. [Google Scholar] [CrossRef]
- Blais, D.R.; Alvarez-Puebla, R.A.; Bravo-Vasquez, J.P.; Fenniri, H.; Pezacki, J.P. Multiplex pathogen detection based on spatially addressable microarrays of barcoded resins. Biotechnol. J. 2008, 3, 949. [Google Scholar] [CrossRef]
- Fenniri, H.; Terreau, O.; Chun, S.; Oh, S.J.; Finney, W.F.; Morris, M.D. Classification of spectroscopically encoded resins by Raman mapping and infrared hyperspectral imaging. J. Comb. Chem. 2006, 8, 192. [Google Scholar] [CrossRef]
- Oh, E.H.; Song, H.S.; Park, T.H. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzym. Microb. Technol. 2011, 48, 427. [Google Scholar] [CrossRef]
- Farah, A.A.; Alvarez-Puebla, R.A.; Fenniri, H. Chemically stable silver nanoparticle-crosslinked polymer microspheres. J. Colloid Interface Sci. 2008, 319, 572. [Google Scholar] [CrossRef]
- Bravo-Vasquez, J.P.; Alvarez-Puebla, R.A.; Fenniri, H. Self-encoded polymer beads for microarray technologies. Sens. Actuators B Chem. 2007, 125, 357. [Google Scholar] [CrossRef]
- Fenniri, H.; Ding, L.; Ribbe, A.E.; Zyrianov, Y. Barcoded resins: A new concept for polymer-supported combinatoria library self-deconvolution. J. Am. Chem. Soc. 2001, 123, 8151. [Google Scholar] [CrossRef]
- Fenniri, H.; Chun, S.; Ding, L.; Zyrianov, Y.; Hallenga, K. Preparation, physical properties, on-bead binding assay and spectroscopic reliability of 25 barcoded polystyrene—poly(ethylene glycol) graft copolymers. J. Am. Chem. Soc. 2003, 125, 10546. [Google Scholar] [CrossRef]
- Fenniri, H.; Chun, S.; Terreau, O.; Bravo-Vasquez, J.P. Preparation and Infrared/Raman Classification of 630 Specroscopically Encoded Styrene Copolymers. J. Comb. Chem. 2008, 10, 31–36. [Google Scholar] [CrossRef]
- Fenniri, H.; Hedderich, H.G.; Haber, K.S.; Achkar, J.; Taylor, B. Towards the Dual Recursive Deconvolution (DRED) of Resin-Supported Combinatorial Libraries: A Non-invasive Methodology Based on Bead Self-Encoding and Multispectral Imaging. Angew. Chem. Int. Ed. 2000, 39, 4483–4485. [Google Scholar] [CrossRef]
- Raez, J.; Biais, D.R.; Zhang, Y.; Alvarez-Puebla, R.A.; Bravo-Vasquez, J.P.; Pezacki, J.P.; Fenniri, H. Spectroscopically encoded microspheres for antigen biosensing. Langmuir 2007, 23, 6482. [Google Scholar] [CrossRef]
- Fitzgerald, J.E.; Fadaee, S.S.; Sundaram, R.; Fenniri, H. Sensor arrays from spectroscopically-encoded polymers: towards an affordable diagnostic device for biomolecules. Sens. Actuators B Chem. 2019, 288, 332–336. [Google Scholar] [CrossRef]
- Fitzgerald, J.E.; Bui, E.T.H.; Simon, N.M.; Fenniri, H. Artificial nose technology: status and prospects in diagnostics. Trends Biotechnol. 2016, 35, 33. [Google Scholar] [CrossRef]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 2010, 82, 3581. [Google Scholar] [CrossRef]
- Hasweii, S.J. Practical Guide to Chemometrics; Marcel Dekker, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Adams, M.J. Chemometrics in Analytical Spectroscopy; Royal Society of Chemistry: Cambridge, UK, 1995. [Google Scholar]
- Esbensen, K.H. Multivariate Data Analysis-In Practice, 5th ed.; Camo Technologies: Woodbridge, NJ, USA, 2002. [Google Scholar]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51. [Google Scholar] [CrossRef]
- Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 2004, 120, 8425. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999. [Google Scholar] [CrossRef]
- Bravo-Vasquez, J.P.; Alvarez-Puebla, R.A.; Cho, J.Y.; Fenniri, H. Robust Au-PEG/PS microbeads as optically stable platforms for SERS. Small 2009, 5, 1283. [Google Scholar]
- Bravo-Vasquez, J.P.; Fenniri, H. Single-molecule SERRS detection platforms obtained via galvanic displacement on silver fractals. J. Phys. Chem. C 2009, 113, 12897–12900. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitzgerald, J.E.; Shen, J.; Fenniri, H. A Barcoded Polymer-Based Cross-Reactive Spectroscopic Sensor Array for Organic Volatiles. Sensors 2019, 19, 3683. https://doi.org/10.3390/s19173683
Fitzgerald JE, Shen J, Fenniri H. A Barcoded Polymer-Based Cross-Reactive Spectroscopic Sensor Array for Organic Volatiles. Sensors. 2019; 19(17):3683. https://doi.org/10.3390/s19173683
Chicago/Turabian StyleFitzgerald, Jessica E., Jianliang Shen, and Hicham Fenniri. 2019. "A Barcoded Polymer-Based Cross-Reactive Spectroscopic Sensor Array for Organic Volatiles" Sensors 19, no. 17: 3683. https://doi.org/10.3390/s19173683
APA StyleFitzgerald, J. E., Shen, J., & Fenniri, H. (2019). A Barcoded Polymer-Based Cross-Reactive Spectroscopic Sensor Array for Organic Volatiles. Sensors, 19(17), 3683. https://doi.org/10.3390/s19173683