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Abstract: A novel adaptive morphological attribute profile under object boundary constraint
(AMAP–OBC) method is proposed in this study for automatic building extraction from high-resolution
remote sensing (HRRS) images. By investigating the associated attributes in morphological attribute
profiles (MAPs), the proposed method establishes corresponding relationships between AMAP–OBC
and building characteristics in HRRS images. In the preprocessing step, the candidate object set is
extracted by a group of rules for screening of non-building objects. Second, based on the proposed
adaptive scale parameter extraction and object boundary constraint strategies, AMAP–OBC is
conducted to obtain the initial building set. Finally, a further identification strategy with adaptive
threshold combination is proposed to obtain the final building extraction results. Through experiments
of multiple groups of HRRS images from different sensors, the proposed method shows outstanding
performance in terms of automatic building extraction from diverse geographic objects in urban scenes.
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1. Introduction

With the continuous improvement of satellite and sensor technology, high–resolution remote
sensing (HRRS) images have been widely used in many fields, such as updating geographic
databases, creating urban thematic maps, etc. As buildings are among the most representative
types of artificial targets in urban scenes, extraction of buildings from HRRS images is important in
these applications [1–3]. Compared with traditional medium- and low-resolution remote sensing
images, a great amount of semantic, textural, and spatial information of land covers is contained
in HRRS images. Hence, HRRS images are appropriate data sources for building feature extraction.
However, the increasing resolution of remote sensing images leads to the prominent phenomena of
high intraclass variance and low interclass variance, which reduce the ability to distinguish buildings
and other geographic objects [4].

In order to address this challenge, much effort has been made on importing spatial information
as a supplement to spectral and textural features [5]. It has been proven that such information
is highly effective in improving the ability to identify buildings in HRRS images [6,7]. In current
works, machine learning-based methods are the main strategy for building a feature extraction [8–11].
However, such methods deeply rely on a huge number of samples and the effective selection of
training samples. This means that in building feature extraction applications, such methods may
not be implemented or obtain reliable results due to the lack of samples in HRRS images [4].
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Meanwhile, more automatic building extraction methods with different strategies have been proposed,
such as automatic building extraction with rooftop detectors [12], automatic building outline detection
combined with geometric and spectral features [13], and the use of auxiliary data including light
detection and ranging (LIDAR) [14] and terrestrial laser scanning (TLS) [15], etc. In addition,
some building and non–building indices, such as the morphological building index (MBI) [16],
shadow index [17], and vegetation index [18], have been widely used.

In recent years, building extraction with morphological attribute profiles (MAPs) has been
proposed for HRRS images. As one of the most effective methods to model spatial and contextual
information for the analysis of HRRS images, the operators in MAPs can be efficiently implemented
based on the multiscale representation of land covers via tree structures [19]. Researchers have
indicated that a combination of suitable scale parameters and morphological attributes can significantly
improve the divisibility between buildings and other geographic objects [20,21]. However, there are
still some restrictions in automatically extracting buildings from HRRS images by MAPs, as follows:
(1) A reasonable set of scale parameters needs to be adaptively constructed. To extract buildings with
different morphological attributes, it is crucial to produce a corresponding sequence of profiles by
different scale parameters for each attribute. However, the theory of MAPs does not give explicit
criteria about this and the scale parameters are mainly determined according to the experience of
manual setting. (2) The connected area does not correspond to a geographic object. As the elementary
unit of attribute extraction, the connected area for each pixel may invade into multiple geographic
objects because it is determined only by the similarity of specific attributes between adjacent pixels.
Therefore, it is hard to guarantee that the extracted result will accurately reflect the real attributes of
the corresponding geographic object the current pixel belongs to. (3) For pixel-level results of MAPs
and geographic objects, how to automatically acquire the final object-level building extraction results
is also a challenging issue.

Concerning the above restrictions, a high-resolution remote sensing image building extraction
method by AMAP–OBC is proposed, and the contributions of this study can be summarized as follows:

(1) A novel AMAP–OBC for automatic building extraction is proposed. By establishing the
corresponding relationships between AMAP–OBC and characteristics of buildings in HRRS images,
the set of scale parameters can be adaptively obtained, and the connected area for attribute extraction
is restricted by the inherent boundaries of real geographic objects, which is beneficial for extracting
more accurate attributes.

(2) In addition, a further identification strategy with adaptive threshold combination is proposed.
It can break the semantic gap between the extracted building pixels and segmented geographic objects,
and realize further screening of non–building objects with building pixels in the final results.

This study mainly includes six sections: Section 2 contains the analysis of building characteristics
in high-resolution remote sensing images; in Section 3, we briefly describe the MAP theory and
constitution of the building attribute set; in Section 4, we elaborate on the implementation steps of the
proposed method; Section 5 contains an analysis and discussion of the experiments; and in Section 6,
we give the conclusion.

2. Analysis of Building Characteristics in HRRS Images

The geometric relationship between the sensor, the ground, and buildings in remote sensing
images is shown in Figure 1.

Roof, ground, and shadow, respectively, represent the roof of a building, the adjacent ground,
and shadow caused by the building occluding sunlight. In general, different building roofs have
different spectra and reflectivity due to material differences, so there may be significant differences
in spectral and textural characteristics. However, since the pixels belonging to the roof of the same
building have strong spectral and textural consistency, they are manifested as a homogeneous connected
area constrained by the boundary of the building. In terms of geometric features, buildings usually
behave as various rectangles or other regular shapes, and morphological attributes such as area, etc.,
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are significantly different from other geographic objects such as roads and vehicles. The shadow of a
building shows a significant dark color and a shape-regular connected area, and is distributed adjacent
to the building, so it frequently produces confusion in the building extraction.Sensors 2019, 19, x FOR PEER REVIEW 3 of 20 
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Figure 1. Geometric relationship between sensor, ground, and buildings.

3. MAP Theory and Constitution of Building Attribute Set

3.1. MAP Theory

MAP theory is developed from set theory, in which adjacent pixels are first selected through
spectral similarity and spatial connectivity to conduct the connected area, and then different operators
are designed according to the characteristics of the geographic objects with different scale parameters
and different attributes, and finally the extraction of specific objects is realized through differential
processing [22]. Let M denote grayscale image, i denote a pixel point of the image, and k denote an
arbitrary gray level. Then, a binary image Thi

k(M) can be obtained:

Thi
k(M) =

{
1, M (i)> k
0, otherwise

. (1)

Traverse all pixels in an image to get a series Thk(M) and set the maximum grayscale that satisfies
the attribute constraint as the result of the attribute opening operation of point i:

Γ i(M) = max{k : i ∈ Γ i(Thk(M))}. (2)

By using the symmetry of attribute transformation, the attribute closed transformation Φi(M) of
point i can be obtained:

Φ i(M) = min{k : i ∈ Φ i(Thk(M))}, (3)

where Φi
(
Thk

(
M)) = (Γi((Thk(M)

)c)
)c denotes the attribute closed transformation of Thk(M),

and (T hk(M)) c denotes the complementary set of Thk(M). All pixels are traversed to obtain the
attribute open transformation Γ(M) and the attribute closed transformation Φ(M) of M. On this
basis, let T = {T0, T1, . . . , TW} denote the scale parameter set of MAPs and Tw ∈ T denote the wth scale
parameter; the difference between the adjacent scales of the attribute opening operation and closed
operation result is taken separately, and the difference result constitutes the different morphological
profile (DAP) transformation ∆Ψ(M) of M, represented as follows:

∆Ψ(M) =

{
∆vΨ(M)

〈
ΦTw(M) −ΦTw−1(M), w = (W − v+1),∀v ∈ [1, · · , W]

ΓTw−1(M) − ΓTw(M), w = (v−W),∀v ∈ [W+1, ··, 2W]

〉
, (4)
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where ΓTw
(M) and ΦTw

(M) denote the attribute opening and closed transformation results obtained by
scale Tw, respectively. Due to the difference between attributes, objects will have the greatest response
on different scale parameters, then a set of pixels that conform to the attribute range of the building
can be extracted according to this principle.

3.2. Constitution of Building Attribute Set

The constitution of the building attribute set is determined based on prior knowledge and the
semantic characteristics contained in different attributes. According to the characteristics of the
building analyzed in Section 2, this study constructed a building attribute set with four attributes:
Area, diagonal, standard deviation, and normalized moment of inertia (NMI).

Among them, area reflects the size of the building; diagonal describes the diagonal length of
the minimum external rectangle, thus reflecting the aspect ratio of the building; standard deviation
describes the degree of gray variation inside the building; and NMI reflects the shape and gravity
position of the building.

4. Method

The implementation of the proposed method mainly included image segmentation and
non-building object screening, initial building set extraction by AMAP–OBC, and further identification
of indefinite objects. A specific description of the implementation process is shown in Figure 2.
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4.1. Image Segmentation and Non-Building Object Screening

4.1.1. Image Segmentation by WJSEG

As shown in Figure 2, the discrete pixels in an HRRS image are first classified into geographic
objects with semantic information through image segmentation, thus providing basic analysis units for
building extraction [23]. The quality of segmentation has a strong influence on the practical value of
the building extraction results [24]. Therefore, wavelet-JSEG (WJSEG), an effective high-resolution
remote sensing image segmentation method, was adopted in this study [25].

Compared with the famous eCognition commercial software, WJSEG locates object boundaries
more accurately in the complex background of a city, and helps to increase the transparency of the
proposed method [26]. As an advanced multiscale segmentation method, WJSEG mainly includes four
steps: Multiband image fusion, seed region conduction and secondary extraction, inter scale constraint
segmentation, and region merging. The specific implementation steps can be found in [25].

4.1.2. Non-Building Object Screening

On the basis of segmentation results, objects that differed significantly from the morphological
characteristics of the building were removed, along with shadow and vegetation detection results.
For each extracted object, the specific screening rules were as follows:

Rule 1: In order to reduce false positives caused by shadow, a pixel-level shadow detection
method based on the Gaussian distribution background model theory was adopted. The specific
implementation steps can be found in [27]. If the proportion of shadow pixels in an object was greater
than 80%, the object was considered to be seriously affected by shadow and should be removed.

Rule 2: In order to reduce false positives caused by vegetation such as lawn and tree canopy,
a vegetation index based on the red-green-blue (RGB) model was adopted to extract vegetation pixels.
The specific implementation steps can be found in [18]. If the proportion of vegetation pixels in an
object is greater than 80%, remove this object.

Rule 3: If there were fewer than 10 pixels in an object, the object was considered to be a dim or
small target, such as a vehicle or noise, and it should be removed.

Rule 4: If the rectangular degree of an object was less than 0.8 and the length–width ratio of its
minimum bounding rectangle was greater than 5, the object was considered to be a narrow target,
such as a road or waterway, and it should be removed [28].

After the discrimination of all objects in segmentation results with the above group of rules,
the remaining objects constituted a candidate object set as the input for subsequent building extraction.

4.2. Initial Building Set Extraction by AMAP–OBC

4.2.1. Producing Attribute Profile Under the Object Boundary Constraint

During the process of calculating the attributes, the connected area for each pixel is produced by
the similarity between adjacent pixels in traditional MAPs, as shown in Figure 3.

As shown in Figure 3, i represents a general pixel that belongs to an object in the candidate object
set. The extracted corresponding connected area in a traditional MAP is expressed as the area with a
black mesh pattern. It is shown that this area has invaded into adjacent objects. In this case, the inherent
attributes of the current object cannot be accurately extracted. Therefore, this study retained only the
pixels that were inside the object to produce the connected area for pixel i, as shown by the area with
red lines. That is, the connected area would be constrained by the inherent boundary of the object
pixel i belonging to, thus providing more accurate attributes for subsequent building extraction.
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4.2.2. Adaptive Scale Parameter Extraction

Based on the connected areas, the MAPs of different attributes were constructed according to
Equations (1)–(4) in Section 3.1. In this process, whether the selection of the scale parameter set was
reasonable was the key factor that affected the building extraction, which depended on the following:
In urban scenes, building clusters in the same local area (such as a residential or industrial area)
usually have a class of typical morphological attributes different from other features. Therefore, in the
multiscale MAP of each attribute, it should be ensured that building clusters with typical attributes
in the scene could be extracted through subsequent differential processing, while other objects were
just removed. Based on this principle, this study proposed an adaptive extraction strategy for scale
parameters, and the specific steps were as follows:

Step 1: Set the range and subintervals of the attribute interval to adaptively search the optimal
scale parameters. According to suggestions regarding the fluctuation range of building attributes
in [29–31], set area interval as [500, 28000], diagonal interval as [10, 100], standard deviation interval as
[10, 70], and NMI interval as [0.2, 0.5], and divided each interval equally into 50 subintervals.

Step 2: For each attribute, let SIx denote the xth subinterval. Under the object boundary constraint,
the number of connected areas that met the requirements of the attribute range corresponding to SIx
was calculated, denoted by Qx.

Step 3: Denote µ as an index of change degree. If it satisfies:

(Qx −Qx−1) > (Qx + Qx−1) × µ. (5)

The initial value of SIx−1 and the final value of SIx are included as the optimal scale parameters.
If it satisfies:

(Qx −Qx+1) > (Qx + Qx+1) × µ. (6)

The initial value of SIx and the final value of SIx+1 are included as the optimal scale parameters;
otherwise, continue the discrimination in the next interval. According to the ideal results of multiple
experiments, it is suggested to set µ as 0.4 in this study.

The proposed adaptive scale parameter extraction strategy was based on the following
corresponding relationships between morphological attributes and characteristics of buildings in
HRRS images: If the number of connected areas satisfying the attribute range corresponding to SIx
was significantly higher than that of SIx−1, or when the number of connected areas satisfying the
attribute range corresponding to SIx+1 was significantly lower than that of SIx, SIx matched the typical
morphological attributes of the building clusters that might exist in the scene. Therefore, it was
necessary to consider SIx as a typical interval, and the corresponding scale parameters need to be
retained to ensure that the connected areas corresponding to SIx could be effectively extracted during
the differential processing.
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Step 4: Traverse all intervals and use all optimized scale parameters extracted to form the final
scale parameter set Topt = {T0, T1, . . . , TW}. Then, the proposed AMAP–OBC could be produced based
on Topt and under object boundary constraint.

Step 5: Conduct DAP by the steps introduced in Section 3.1. On this basis, the pixels in each DAP
that conformed to the attribute range of the building constituted a union set, and the pixels belonging
to shadow and vegetation were removed. Finally, combined with the obtained set of candidate objects,
all objects containing building pixels were retained to form the initial building set.

4.3. Further Identification of Indefinite Objects

The extraction results of the initial building set are not reliable, because the objects only need to
meet the conditions for the existence of building pixels from AMAP–OBC. For this reason, this study
partitioned the initial building set into a definite building set, an indefinite object set, and a definite
non-building set, and further identified the indefinite objects. The specific steps were as follows:

Step 1: In the initial building set, let g denote the building pixel proportion in an object and gmax
denote the maximum of g, gmid = 0.5× gmax.

As shown in Figure 4, p(g) represents the number of objects with g in the initial building set, and
the fluctuation intervals of dynamic thresholds δ1 and δ2 are (0, gmid) and (gmid, gmax), respectively.Sensors 2019, 19, x FOR PEER REVIEW 8 of 20 
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Step 2: Calculate the Jeffries Matusita (J–M) distance between any two objects that satisfy g ∈ (0, δ1)

and g ∈ (δ1, gmid) to obtain the sum of these distances, JMδ1 . Similarly, JMδ2 can be calculated based
on the objects that satisfy g ∈ (gmid, δ2) and g ∈ (g2, gmax). Let JMδ1,2 = JMδ1 + JMδ2 ; by traversing all
possible combinations of δ1 and δ2, the optimal combination can be adaptively extracted when the
minimum value of JMδ1,2 is obtained, as shown by δopt1 and δopt2 in Figure 4. On this basis, the definite
building set, indefinite object set, and definite non-building set are extracted.

Step 3: For each object Rinde f inite in the indefinite object set, further identification was made.
Let the sum of J–M distances between Rinde f inite and all objects in the definite building set be JMtrue, and
the sum of J–M distances between Rinde f inite and all objects in the definite non-building set be JM f alse.
If JMtrue < JM f alse, put Rinde f inite in the definite building set; otherwise, put Rinde f inite in the definite
non-building set.

Step 4: Traverse all objects in the indefinite object set to obtain the final building extraction results.

5. Experiments and Discussion

In the experiments, three datasets of HRRS images were used. Combining statistical accuracy
and visual inspection, the performance of the method in this study was verified by comparison with a
variety of advanced building extraction methods.
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5.1. Datasets and Experimental Strategy

5.1.1. Dataset Description

Dataset 1 was a pan-sharpened WorldView image with red, green, and blue bands of Chongqing,
China; the acquisition date was August 2011, the spatial resolution was 0.5 m, and the size was
1370 pixels × 1370 pixels, as shown in Figure 5a. Dataset 2 was an aerial remote sensing image with red,
green, and blue bands of Nanjing, China; the acquisition date was October 2011, the spatial resolution
was 2 m, and the image size was 300 pixels × 500 pixels, as shown in Figure 5b. Dataset 3 was a
WorldView pan-sharpened image with red, green, and blue bands of Nanjing, China; the acquisition date
was December 2012, the spatial resolution was 0.5 m, and the image size was 1400 pixels × 1400 pixels,
as shown in Figure 5c. In addition, the ground truth maps were manually delineated by field
investigation and visual interpretation, in which white objects represent buildings and black objects
represent non-buildings. Some representative areas marked in red boxes (patches I1, I3, and I5) and
blue boxes (patches I2, I4, and I6) in Figure 5 were chosen for detailed comparison and analysis.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 20 

 

I1, I3, and I5) and blue boxes (patches I2, I4, and I6) in Figure 5 were chosen for detailed comparison 

and analysis. 

                                         
(a) 

                                                
(b) 

 
(c) 

Figure 5. Three datasets and corresponding ground truth maps: (a) Dataset 1 and patches I1 (red box) 

and I2 (blue box); (b) dataset 2 and patches I3 (red box) and I4 (blue box); and (c) dataset 3 and patches 

I5 (red box) and I6 (blue box). 

The reasons for selecting these three datasets for the experiments were as follows: (1) Airborne 

and satellite-borne sensors are currently the two principal forms of HRRS image acquisition. Using 

Figure 5. Three datasets and corresponding ground truth maps: (a) Dataset 1 and patches I1 (red box)
and I2 (blue box); (b) dataset 2 and patches I3 (red box) and I4 (blue box); and (c) dataset 3 and patches
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The reasons for selecting these three datasets for the experiments were as follows: (1) Airborne and
satellite-borne sensors are currently the two principal forms of HRRS image acquisition. Using these
datasets was helpful to analyze the applicability of the proposed method for different data sources.
(2) These datasets were typical urban scenes, mainly composed of land covers such as buildings, roads,
vegetation, wasteland, shadows, etc., which was helpful to verify the stability and reliability of the
proposed method. (3) The acquisition seasons of these datasets were different, which was helpful
to analyze the influence of vegetation factors on the extraction of buildings. (4) As an aerial remote
sensing image, dataset 2 had a large oblique imaging angle. By comparing with the other two datasets,
it was helpful to analyze the influence of building inclination, especially for high-rise buildings, on the
proposed method.

5.1.2. Experimental Setup

In order to analyze the performance of this method comprehensively and objectively, this study
used four advanced building extraction methods for comparative experiments: The traditional
MAP method (method 1) [5], the MBI-based method (method 2) [16]; the top-hat filter and k-means
classification based method (method 3) [7], and the gray-level co-occurrence matrix (GLCM) and support
vector machine (SVM) based method (method 4) [20]. By comparing with method 1, it was helpful to
analyze the validity of the proposed boundary constraint strategy. Methods 2 and 3 were automatic
building extraction methods: Building index and rooftop detector methods, respectively. Method 4 was
the machine learning method. These three types of advanced methods were adopted to evaluate the
overall performance of the proposed method. Methods 1 and 2 were pixel-based, and it was difficult
to compare their building extraction effect directly with the object-based method. Therefore, based
on the building pixels extracted from methods 1 and 2, the subsequent implementation steps were
the same as the proposed method. At the same time, in order to ensure consistency of the basic
units, the segmentation in methods 3 and 4 was replaced with WJSEG, and the other implementation
steps and parameter settings were consistent with the original reference. The parameter setting of the
proposed method and the corresponding basis were given in Section 4. On this basis, the adaptively
extracted scale parameters were set, and the parameter combinations of δopt1 and δopt2 are shown in
Tables 1–4.

Table 1. Extracted scale parameter set of dataset 1.

Attribute Scale Parameter Set of Dataset 1

Area (1050, 2149, 1600, 2699, 4900, 5999, 6000, 7099, 7650, 8749, 8750, 9849, 9300, 10,399,
10,400, 11,499, 15,350, 16,499, 17,000, 18,099, 22,500, 23,599)

Diagonal (20.8, 24.3, 29.8, 33.3, 38.8, 42.3, 49.6, 53.1, 65.8, 69.3, 74.8, 78.3, 82, 85.5, 92.8, 96.3)

NMI (0.2, 0211, 0.224, 0.235, 0.254, 0.265, 0.284, 0.295, 0.302, 0.313, 0.35, 0.361, 0.38,
0.391,0.427,0.439,0.482,0.493)

Standard deviation (18, 19.9, 23, 24.9, 29, 30.9, 32, 33.9, 45, 46.9, 60, 61.9, 64, 65.9)

Table 2. Extracted scale parameter set of dataset 2.

Attribute Scale Parameter Set of Dataset 2

Area (500, 1599, 1600, 2699, 2700, 3799, 4350, 5449, 6000, 6549)
Diagonal (10, 13.5, 15.4, 18.9, 20.8, 24.3, 28, 31.5, 35.2, 38.7, 46, 49.5, 55, 58.5, 64, 67.5, 69.4, 72.9)

NMI (0.2, 0211, 0.212, 0.223, 0.23, 0.241, 0.26, 0.271, 0.314, 0.325, 0.35, 0.361, 0.368, 0.379,
0.416, 0.427)

Standard deviation (10, 11.9, 15, 16.9, 24, 25.9, 28, 29.9, 34, 35.9, 40, 41.9, 46, 47.9, 50, 51.9, 54, 55.9)
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Table 3. Extracted scale parameter set of dataset 3.

Attribute Scale Parameter Set of Dataset 3

Area (2150, 3249, 3250, 4349, 6000, 7099, 8200, 9299, 9850, 10,949, 12,600,
13,699, 15,900, 16,999, 19,200, 20,229)

Diagonal (17.2, 20.7, 24.4, 27.9, 31.6, 35.1, 37, 40.5, 47.8, 51.3, 58.6, 62.1, 64, 67.5,
71.2, 74.7, 89.2, 92.7, 94.6, 98.1)

NMI (0.2, 0.211, 0.224, 0.235, 0.242, 0.253, 0.296, 0.307, 0.332, 0.343, 0.35, 0.361,
0.38, 0.391, 0.47, 0.481)

Standard deviation (12, 13.9, 16, 17.9, 20, 21.9, 22, 23.9, 25, 26.9, 30, 31.9, 33, 34.9, 38, 39.9, 40,
41.9, 46, 47.9, 50, 51.9, 56, 57.9, 62, 63.9)

Table 4. Extracted combinations of δopt1 and δopt2 in the three datasets.

Dynamic
Threshold Dataset 1 Dataset 2 Dataset 3

δopt1 0.43 0.35 0.39
δopt2 0.81 0.77 0.75

5.2. Experimental Results and Accuracy Evaluation

5.2.1. General Results and Analysis of Datasets

The building extraction results of the three datasets are given in Figures 6–8, in which the true
positive (TP), false positive (FP), false negative (FN), and other non–buildings are represented by
four colors.
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The quantitative results of the different methods are reported in Tables 5–7. By the statistical accuracy
and visual inspection shown in the three groups of experiments, overall accuracy (OA) of the proposed
method reached more than 90%, and the fluctuation range was less than 2%, which was significantly
higher than the other four comparison methods. Therefore, among the challenges brought by the different
data sources, the proposed method had high accuracy, high stability, and high reliability. Moreover, it also
shows that the seasonal differences in the collection of the three datasets and the existing differences in
building inclination did not significantly affect the extraction accuracy of the proposed method.

Table 5. Evaluation of building extraction accuracy in dataset 1. OA, overall accuracy; FP, false positive;
FN, false negative.

Method/Indicator OA (%) FP (%) FN (%) Kappa

Evaluation
Criteria

The Higher the
Better

The Lower the
Better

The Lower the
Better

The Higher the
Better

Proposed method 92.1 4.71 3.12 0.782
Method 1 72.9 22.6 4.43 0.556
Method 2 71.9 16.1 12.1 0.542
Method 3 83.1 6.83 9.82 0.644
Method 4 83.8 10.7 5.99 0.663

Table 6. Evaluation of building extraction accuracy in dataset 2.

Method/Indicator OA (%) FP (%) FN (%) Kappa

Evaluation
Criteria

The Higher the
Better

The Lower the
Better

The Lower the
Better

The Higher The
Better

Proposed method 90.2 6.95 3.25 0.780
Method 1 76.9 17.0 6.06 0.543
Method 2 75.5 10.8 13.6 0.527
Method 3 78.7 8.89 12.6 0.568
Method 4 80.1 5.64 14.3 0.594

Table 7. Evaluation of building extraction accuracy in dataset 3.

Method/Indicator OA (%) FP (%) FN (%) Kappa

Evaluation
Criteria

The Higher the
Better

The Lower the
Better

The Lower the
Better

The Higher the
Better

Proposed method 90.5 4.65 5.12 0.766
Method 1 78.6 13.9 7.44 0.529
Method 2 76.7 9.30 13.9 0.501
Method 3 72.6 12.6 14.9 0.456
Method 4 80.9 9.30 9.77 0.563

Compared with the proposed method, the FPs of method 1 in the three groups of experiments
were significantly reduced, and there was no significant difference of FNs between the two methods.
This shows that MAPs had the advantage of being very sensitive to potential buildings in the image.
On the other hand, it also shows that the traditional MAP strategy of constructing a connected area only
based on similarities between adjacent pixels had difficulty accurately describing the inherent attributes
of the object, which led to an increase in FPs and a significant decrease in OA. Therefore, the object
boundary constraint strategy proposed in this study was feasible, effective, and necessary.

Except for the OA of method 3 in dataset 1 (82.4%), the OA of methods 2 and 3 in the three groups
of experiments was lower than 80%. This was mainly due to the fixed-shape structural elements
adopted by these methods in constructing the descriptors. These kinds of descriptors were only
sensitive to the pixels that belong to buildings with similar morphological characteristics of structural
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elements, while ignoring the diversity of building shapes and sizes in urban scenes, so it was difficult
to obtain ideal results. In addition, since shadows were not considered in method 3, there was a certain
amount of fake shadow objects in the final building extraction results.

Since method 4 was a classification method based on machine learning, it had higher requirements
for an abundance of samples. However, there were only 833, 462, and 212 samples after WJSEG
segmentation in datasets 1, 2, and 3, respectively, so it was difficult to reflect the real accuracy that
method 4 could reach. Therefore, although the OA of method 4 fluctuated slightly and exceeded 80%
in the three groups of experiments, FPs and FNs show large fluctuations. In addition, as the OA in
dataset 1 with more samples (83.2%) was higher than that in dataset 2 (80.1%) and dataset 3 (80.7%),
we believed that with increased samples, the OA of method 4 would be significantly improved.

5.2.2. Visual Comparison of Representative Patches

The results of the representative patches in each dataset are reported in Figure 9 (patches I1 and I2),
Figure 10 (patches I3 and I4), and Figure 11 (patches I5 and I6). The results obtained by the proposed
method were the most complete and precise in most scenes. The results for each representative patch
were discussed as follows.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 20 

 

Table 7. Evaluation of building extraction accuracy in dataset 3. 

Method/Indicator OA (%) FP (%) FN (%) Kappa 

Evaluation Criteria 
The higher the 

better 

The lower the  

better 

The lower the  

better 

The higher 

the better 

Proposed method 90.5 4.65 5.12 0.766 

Method 1 78.6 13.9 7.44 0.529 

Method 2 76.7 9.30 13.9 0.501 

Method 3 72.6 12.6 14.9 0.456 

Method 4 80.9 9.30 9.77 0.563 

5.2.2. Visual Comparison of Representative Patches 

The results of the representative patches in each dataset are reported in Figure 9 (patches I1 and 

I2), Figure 10 (patches I3 and I4), and Figure 11 (patches I5 and I6). The results obtained by the 

proposed method were the most complete and precise in most scenes. The results for each 

representative patch were discussed as follows. 

   
(a)                           (b)                         (c) 

   

(d)                           (e)                          (f)   

    

(g)                          (h)                          (i) 

Figure 9. Cont.



Sensors 2019, 19, 3737 14 of 19
Sensors 2019, 19, x FOR PEER REVIEW 15 of 20 

 

   

(j)                          (k)                          (l) 

Figure 9. Building extraction results of patches I1 and I2: (a) Patch I1; (b–f) results obtained in patch 

I1 using the proposed method and methods 1, 2, 3, and 4 respectively; (g) patch I2; (h–l) results 

obtained in patch I2 using the proposed method and methods 1, 2, 3, and 4, respectively. 

As the most common types of buildings in urban HRRS images, residential and industrial 

buildings are always regions of interest (ROIs) in related applications. Therefore, the following 

analysis and discussion were focused on the extraction effects of these two types of buildings. First 

of all, for residential building with small size (e.g., residential buildings in the yellow rectangle of I1) 

and industrial buildings with large size (e.g., industrial buildings in the yellow rectangle of I6), the 

analysis shows that the adopted WJSEG could accurately extract their complete contours with 

different shapes, thus providing effective analysis units for subsequent building extraction. In terms 

of residential building extraction, the proposed method accurately extracted the vast majority of 

buildings, as shown in the yellow rectangles of I1, I3, and I5, which was significantly better than the 

other comparison methods. At the same time, mixed shadows, vegetation, roads, and other artificial 

targets (e.g., green rectangle in I3) were effectively filtered out. Among the other four comparison 

methods, the extraction effect of method 4 was better than that of the other three. Especially in I5, due 

to the irregular shapes of the buildings, methods 1, 2, and 3 all had serious FPs and FNs. In the 

building extraction of industrial areas, for example, in the yellow rectangle of I2, only methods 3 and 

4 and the proposed method completely extracted three buildings, but at the same time methods 3 

and 4 erroneously detected the wasteland in the green rectangle of I2 as a building. As for common 

stacking areas of production materials in industrial areas (e.g., the green rectangle in I6) and 

wasteland around factory buildings (e.g., the purple rectangle in I6), all five methods could extract 

them correctly. In addition, geographic objects with similar morphological features of building, such 

as playground (e.g., the purple rectangle in I1) and pool (e.g., the purple rectangle in I2), which were 

located around the two types of buildings, were also effectively screened by the proposed method. 

To sum up, these representative patches show that the proposed method was significantly better than 

the other four comparison methods. 

On this basis, we further discussed the influence of shadow, vegetation, and building inclination 

on the extraction effect of the proposed method. (1) In terms of shadow, the shadow detection strategy 

introduced in the proposed method already filtered out most shadow objects. However, there were 

a few ground surfaces (e.g., the green rectangle in I5) with similar textures and morphological 

features of buildings between adjacent shadows that were erroneously detected as buildings. (2) In 

terms of vegetation, although the collection seasons of the three datasets were summer, autumn, and 

winter, the vegetation index basically filtered out vegetation objects, such as canopies and lawns in 

the yellow and purple rectangles of I2. Obvious FNs only existed in areas where buildings and low 

canopies with weak edges were densely distributed (e.g., the green and brown rectangles in I1). (3) 

Since the building inclination effect was more prominent in high-rise buildings in aerial remote 

sensing images, we chose I4, belonging to dataset 2, for detailed discussion. Through analysis, we 

found that the building side elevation generated by the building inclination effect would result in 

two situations after segmentation: (1) When the side elevation and the roof were divided into the 

Figure 9. Building extraction results of patches I1 and I2: (a) Patch I1; (b–f) results obtained in patch I1
using the proposed method and methods 1, 2, 3, and 4 respectively; (g) patch I2; (h–l) results obtained
in patch I2 using the proposed method and methods 1, 2, 3, and 4, respectively.

As the most common types of buildings in urban HRRS images, residential and industrial
buildings are always regions of interest (ROIs) in related applications. Therefore, the following analysis
and discussion were focused on the extraction effects of these two types of buildings. First of all,
for residential building with small size (e.g., residential buildings in the yellow rectangle of I1) and
industrial buildings with large size (e.g., industrial buildings in the yellow rectangle of I6), the analysis
shows that the adopted WJSEG could accurately extract their complete contours with different shapes,
thus providing effective analysis units for subsequent building extraction. In terms of residential
building extraction, the proposed method accurately extracted the vast majority of buildings, as shown
in the yellow rectangles of I1, I3, and I5, which was significantly better than the other comparison
methods. At the same time, mixed shadows, vegetation, roads, and other artificial targets (e.g., green
rectangle in I3) were effectively filtered out. Among the other four comparison methods, the extraction
effect of method 4 was better than that of the other three. Especially in I5, due to the irregular shapes of
the buildings, methods 1, 2, and 3 all had serious FPs and FNs. In the building extraction of industrial
areas, for example, in the yellow rectangle of I2, only methods 3 and 4 and the proposed method
completely extracted three buildings, but at the same time methods 3 and 4 erroneously detected the
wasteland in the green rectangle of I2 as a building. As for common stacking areas of production
materials in industrial areas (e.g., the green rectangle in I6) and wasteland around factory buildings
(e.g., the purple rectangle in I6), all five methods could extract them correctly. In addition, geographic
objects with similar morphological features of building, such as playground (e.g., the purple rectangle
in I1) and pool (e.g., the purple rectangle in I2), which were located around the two types of buildings,
were also effectively screened by the proposed method. To sum up, these representative patches show
that the proposed method was significantly better than the other four comparison methods.

On this basis, we further discussed the influence of shadow, vegetation, and building inclination
on the extraction effect of the proposed method. (1) In terms of shadow, the shadow detection strategy
introduced in the proposed method already filtered out most shadow objects. However, there were a
few ground surfaces (e.g., the green rectangle in I5) with similar textures and morphological features
of buildings between adjacent shadows that were erroneously detected as buildings. (2) In terms of
vegetation, although the collection seasons of the three datasets were summer, autumn, and winter, the
vegetation index basically filtered out vegetation objects, such as canopies and lawns in the yellow and
purple rectangles of I2. Obvious FNs only existed in areas where buildings and low canopies with
weak edges were densely distributed (e.g., the green and brown rectangles in I1). (3) Since the building
inclination effect was more prominent in high-rise buildings in aerial remote sensing images, we chose
I4, belonging to dataset 2, for detailed discussion. Through analysis, we found that the building side
elevation generated by the building inclination effect would result in two situations after segmentation:
(1) When the side elevation and the roof were divided into the same object, such as yellow and green



Sensors 2019, 19, 3737 15 of 19

rectangles, these objects were correctly extracted. After visual inspection of all the datasets, it was also
rare to find any FPs or FNs caused by this situation. (2) When the side elevation was regarded as an
individual object in the segmentation results, FNs (e.g., the purple rectangle) or filtering out as shadow
(e.g., the brown rectangle) might occur. In spite of this, we found that the roofs corresponding to these
side elevations were accurately extracted, so it still had certain reference value in practical application.
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in patch I4 using the proposed method and methods 1, 2, 3, and 4, respectively.
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5.3. Analysis of the Impact on the Overall Accuracy with Different µ

During the adaptive scale parameter extraction process proposed in this study, the change degree
index µ in Equations (5) and (6) was used to determine the degree of difference between extracted
typical interval and adjacent intervals. In order to specify the setting basis of µ, the impact on OA
with different µ was analyzed in this study. As shown in Figure 12, the horizontal coordinate was
µ, the interval was 0.05, the longitudinal coordinate was OA, and the experimental results of three
datasets were represented by curves in different styles.
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Figure 12. Impact on the overall accuracy by different µ.

As shown above, in the three dataset experiments, with the continuous increase of µ, OA shows
a similar trend of gradually increasing at first and then rapidly decreasing after reaching the peak.
Among them, µ = 0.45, µ = 0.4, and µ = 0.5 corresponded to the peaks of the overall accuracy curves
with 92.3%, 90.2%, and 90.8% in the experiments of datasets 1, 2, and 3, respectively. The detailed
µ-OA values in the three groups of experiments are shown in Table 8.

Table 8. Detailed µ-OA values in three dataset experiments.

Dataset 1

µ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
OA (%) 39.3 42.9 57.6 71.8 80.4 85.5 89.3 92.1 92.3 91.0
µ 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

OA (%) 88.6 82.1 75.1 67.1 59.8 46.2 39.9 30.8 30.8

Dataset 2

µ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
OA (%) 52.5 67.6 72.1 79.4 83.2 86.4 88.4 90.2 89.5 88.7
µ 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

OA (%) 86.2 86.8 82.7 82.7 73.9 65.7 54.3 45.7 35.3

Dataset 3

µ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
OA (%) 68.8 74.4 78.9 82.5 84.9 86.1 88.6 90.5 89.3 90.8
µ 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

OA (%) 88.9 83.4 79.1 71.3 66.4 62.3 52.1 45.4 41.6

Through analysis we found that when µ was set as 0.4, OA could reach 92.1% and 90.5%, and was
only slightly lower, by 0.02% and 0.03%, than the corresponding highest OA in datasets 1 and 3,
respectively. This means that the ideal results could be obtained in all three dataset experiments by
setting µ as 0.4. Therefore, considering the requirements of automation and reliability, it is suggested
to directly set µ as 0.4 in practical applications.
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6. Conclusions

Aiming at the restrictions in automatically extracting buildings by MAPs, a novel adaptive
morphological attribute profile under object boundary constraint (AMAP–OBC) was proposed in this
study. By establishing the corresponding relationships between AMAP–OBC and characteristics of
buildings in HRRS images, a set of scale parameters could be adaptively obtained, and meanwhile the
connected area extraction was restricted by the inherent boundaries of geographic objects. On this
basis, the final building extraction results were obtained by a further identification strategy with an
adaptive threshold combination. In experiments with urban high-resolution remote sensing images,
the proposed method was significantly better than four comparison methods in statistical accuracy and
visual inspection, and OA reached more than 90%, while FPs and FNs were lower than 7% and 6%,
respectively. Therefore, the proposed method showed outstanding performance in terms of building
extraction from diverse objects in urban districts.

Author Contributions: Conceptualization, C.W.; methodology, C.W. and Y.S.; software, Y.S.; validation, H.X., Y.S.,
and H.L.; formal analysis, Y.S. and X.Q.; investigation, K.Z. and H.L.; resources, C.W.; writing—original draft
preparation, Y.S.; writing—review and editing, C.W.; visualization, C.W. and Y.S.; supervision, C.W., H.X., and
K.Z.; project administration, C.W.

Funding: This study is supported by the Jiangsu Overseas Visiting Scholar Program for University Prominent
Young and Middle–aged Teachers and Presidents (No. 2018–69), the National Natural Science Foundation of China
(No. 61601229), the Natural Science Foundation of Jiangsu Province (No. BK20160966), the Priority Academic
Program Development of Jiangsu Higher Education Institutions (No. 1081080009001), and the six talent peaks
project in Jiangsu Province (No. 2019- XYDXX-135).

Conflicts of Interest: All authors have reviewed the manuscript and approved submission to this journal.
The authors declare that there is no conflict of interest regarding the publication of this article and no self–citations
included in the manuscript.

References

1. Lai, X.; Yang, J.; Li, Y. A Building Extraction Approach Based on the Fusion of LiDAR Point Cloud and
Elevation Map Texture Features. Remote Sens. 2019, 11, 1636. [CrossRef]

2. Guo, Z.; Du, S. Mining parameter information for building extraction and change detection with very
high–resolution imagery and GIS data. GISci. Remote Sens. 2017, 54, 38–63. [CrossRef]

3. Gevaert, C.M.; Persello, C.; Nex, F. A deep learning approach to DTM extraction from imagery using
rule–based training labels. ISPRS J. Photogramm. Remote Sens. 2018, 142, 106–123. [CrossRef]

4. Hussain, E.; Shan, J. Urban building extraction through object–based image classification assisted by digital
surface model and zoning map. Int. J. Image Data Fusion. 2016, 7, 63–82. [CrossRef]

5. Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological Attribute Profiles for the Analysis
of Very High–resolution Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [CrossRef]

6. Johnson, B.; Xie, Z. Classifying a high resolution image of an urban area using super–object information.
ISPRS J. Photogramm. Remote Sens. 2013, 83, 40–49. [CrossRef]

7. Gavankar, N.L.; Ghosh, S.K. Automatic building footprint extraction from high–resolution satellite image
using mathematical morphology. Eur. J. Remote Sens. 2018, 51, 182–193. [CrossRef]

8. Zuo, T.C.; Feng, J.T.; Chen, X.J. Hierarchically Fused Fully Convolutional Network for Robust Building
Extraction. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November
2016; pp. 291–302.

9. Zhong, Z.; Li, J.; Cui, W. Fully convolutional networks for building and road extraction: Preliminary results.
In Proceedings of the 2016 IEEE International Geoscience & Remote Sensing Symposium (IGARSS), Beijing,
China, 10–15 July 2016; pp. 1591–1594.

10. Huang, Z.; Cheng, G.; Wang, H.; Li, H.; Shi, L.; Pan, C. Building extraction from multi–source remote sensing
images via deep deconvolution neural networks. In Proceedings of the 2016 IEEE International Geoscience &
Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1835–1838.

11. Xu, Y.Y.; Wu, L.; Xie, Z.; Chen, Z.L. Building Extraction in Very High Resolution Remote Sensing Imagery
Using Deep Learning and Guided Filters. Remote Sens. 2018, 10, 144. [CrossRef]

http://dx.doi.org/10.3390/rs11141636
http://dx.doi.org/10.1080/15481603.2016.1250328
http://dx.doi.org/10.1016/j.isprsjprs.2018.06.001
http://dx.doi.org/10.1080/19479832.2015.1119206
http://dx.doi.org/10.1109/TGRS.2010.2048116
http://dx.doi.org/10.1016/j.isprsjprs.2013.05.008
http://dx.doi.org/10.1080/22797254.2017.1416676
http://dx.doi.org/10.3390/rs10010144


Sensors 2019, 19, 3737 19 of 19

12. Li, Z.; Xu, D.; Zhang, Y. Real walking on a virtual campus: A VR–based multimedia visualization and
interaction system. In Proceedings of the 3rd International Conference on Cryptography, Security and
Privacy, Kuala Lumpur, Malaysia, 19–21 January 2019; pp. 261–266.

13. Wang, Y.D. Automatic extraction of building outline from high resolution aerial imagery. In Proceedings of
the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; pp. 419–423.

14. Mezaal, M.R.; Pradhan, B.; Shafri, H.Z.M. Automatic landslide detection using Dempster–Shafer theory from
LiDAR–derived data and orthophotos. Geomatics nat. Hazard. Risk. 2017, 8, 1935–1954. [CrossRef]

15. Qin, J.; Wan, Y.; He, P. An Automatic Building Boundary Extraction Method of TLS Data. Remote Sens.
2015, 30, 3–7.

16. Huang, X.; Zhang, L. Morphological Building/Shadow Index for Building Extraction from High–Resolution
Imagery over Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 161–172. [CrossRef]

17. Huang, X.; Yuan, W.; Li, J.; Zhang, L. A new building extraction postprocessing framework for high–spatial–resolution
remote–sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 654–668. [CrossRef]

18. Ok, A.O. Automated detection of buildings from single VHR multispectral images using shadow information
and graph cuts. ISPRS J. Photogramm. Remote Sens. 2013, 86, 21–40. [CrossRef]

19. Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications.
Comput. Electron. Agric. 2008, 63, 282–293. [CrossRef]

20. Kumar, M.; Garg, P.K.; Srivastav, S.K. A Spectral Structural Approach for Building Extraction from Satellite
Imageries. Int. J. Adv. Remote Sens. GIS. 2018, 7, 2471–2477. [CrossRef]

21. Xia, J.; Mura, M.D.; Chanussot, J. Random subspace ensembles for hyperspectral image classification with
extended morphological attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4768–4786. [CrossRef]

22. Dalla, M.M.; Atli, B.J.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute filters for the
analysis of hyperspectral data. Int. J. Remote Sens. 2010, 31, 5975–5991. [CrossRef]

23. Beaulieu, J.M.; Goldberg, M. Hierarchy in picture segmentation: A stepwise optimization approach.
IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 150–163. [CrossRef]

24. Tilton, J.C. Analysis of hierarchically related image segmentations. In Proceedings of the IEEE Workshop on
Advances in Techniques for Analysis of Remotely Sensed Data, Greenbelt, MD, USA, 27–28 October 2003;
pp. 60–69.

25. Wang, C.; Shi, A.Y.; Wang, X.; Wu, F.M.; Huang, F.C.; Xu, L.Z. A novel multi–scale segmentation algorithm for
high resolution remote sensing images based on wavelet transform and improved JSEG algorithm. Optik. Int.
J. Light Electron Opt. 2014, 125, 5588–5595. [CrossRef]

26. Chakraborty, D.; Singh, S.; Dutta, D. Segmentation and classification of high spatial resolution images based
on Hölder exponents and variance. Geo–spatial Inf. Sci. 2017, 20, 39–45. [CrossRef]

27. Adeline, K.R.M.; Chen, M.; Briottet, X. Shadow detection in very high spatial resolution aerial images:
A comparative study. J. Photogramm. Remote Sens. 2013, 80, 21–38. [CrossRef]

28. Tao, C.; Tan, Y.; Cai, H.; Bo, D.U.; Tian, J. Object–oriented method of hierarchical urban building extraction
from high–resolution remote–sensing imagery. Acta Geod. Et Cartog. Sini. 2010, 39, 39–45.

29. Ghamisi, P.; Jón, A.B.; Sveinsson, J.R. Automatic Spectral–Spatial Classification Framework Based on
Attribute Profiles and Supervised Feature Extraction. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5771–5782.
[CrossRef]

30. Cavallaro, G.; Dalla, M.M.; Benediktsson, J.A. Extended Self–Dual Attribute Profiles for the Classification of
Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1690–1694. [CrossRef]

31. Aptoula, E.; Mura, M.D.; Lefèvre, S. Vector Attribute Profiles for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 3208–3220. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/19475705.2017.1401013
http://dx.doi.org/10.1109/JSTARS.2011.2168195
http://dx.doi.org/10.1109/JSTARS.2016.2587324
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.004
http://dx.doi.org/10.1016/j.compag.2008.03.009
http://dx.doi.org/10.23953/cloud.ijarsg.338
http://dx.doi.org/10.1109/TGRS.2015.2409195
http://dx.doi.org/10.1080/01431161.2010.512425
http://dx.doi.org/10.1109/34.16711
http://dx.doi.org/10.1016/j.ijleo.2014.07.002
http://dx.doi.org/10.1080/10095020.2017.1307660
http://dx.doi.org/10.1016/j.isprsjprs.2013.02.003
http://dx.doi.org/10.1109/TGRS.2013.2292544
http://dx.doi.org/10.1109/LGRS.2015.2419629
http://dx.doi.org/10.1109/TGRS.2015.2513424
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Analysis of Building Characteristics in HRRS Images 
	MAP Theory and Constitution of Building Attribute Set 
	MAP Theory 
	Constitution of Building Attribute Set 

	Method 
	Image Segmentation and Non-Building Object Screening 
	Image Segmentation by WJSEG 
	Non-Building Object Screening 

	Initial Building Set Extraction by AMAP–OBC 
	Producing Attribute Profile Under the Object Boundary Constraint 
	Adaptive Scale Parameter Extraction 

	Further Identification of Indefinite Objects 

	Experiments and Discussion 
	Datasets and Experimental Strategy 
	Dataset Description 
	Experimental Setup 

	Experimental Results and Accuracy Evaluation 
	General Results and Analysis of Datasets 
	Visual Comparison of Representative Patches 

	Analysis of the Impact on the Overall Accuracy with Different  

	Conclusions 
	References

