Ultra-Sensitive Fiber Refractive Index Sensor with Intensity Modulation and Self-Temperature Compensation
Abstract
:1. Introduction
2. Principle and Fabrication
3. Experiments and Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Correia, R.; James, S.; Lee, S.W.; Morgan, S.P.; Korposh, S. Biomedical application of optical fibre sensors. J. Opt. 2018, 20, 073003. [Google Scholar] [CrossRef]
- Lin, C.P.; Liao, C.R.; Wang, J.; He, J.; Wang, Y.; Li, Z.Y.; Yang, T.H.; Zhu, F.; Yang, K.M.; Zhang, Z.; et al. Fiber surface Bragg grating waveguide for refractive index measurements. Opt. Lett. 2017, 42, 1684–1687. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, K.; Jiang, J.F.; Xue, M.; Chang, P.X.; Liu, T.G. Temperature-insensitive refractive index sensor based on tilted moire FBG with high resolution. Opt. Express 2017, 25, 14900–14909. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.L.; Wang, Y.P.; Liao, C.R.; Sun, B.; Liu, Y.J.; Liu, S.; Wang, Q.; Yang, K.M.; Tang, J.; Zhong, X.Y. Simultaneous refractive index and temperature measurement with LPFG and liquid-filled PCF. IEEE Photon. Technol. Lett. 2015, 27, 375–378. [Google Scholar] [CrossRef]
- Shen, F.C.; Zhou, K.M.; Gordon, N.; Zhang, L.; Shu, X.W. Compact eccentric long period grating with improved sensitivity in low refractive index region. Opt. Express 2017, 25, 15729–15736. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Jeong, D.H.; Lee, H.Y.; Park, J.H.; Lee, S.K. Improved stability of gold nanoparticles on the optical fiber and their application to refractive index sensor based on localized surface plasmon resonance. Opt. Laser Technol. 2019, 114, 171–178. [Google Scholar] [CrossRef]
- Rifat, A.A.; Mandiraji, G.A.; Sua, Y.M.; Ahmed, R.; Shee, Y.G.; Adikan, F.R.M. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 2016, 24, 2485–2495. [Google Scholar] [CrossRef]
- Duan, L.; Yang, X.; Lu, Y.; Yao, J. Hollow-fiber-based surface plasmon resonance sensor with large refractive index detection range and high linearity. Appl. Opt. 2017, 56, 9907–9912. [Google Scholar] [CrossRef]
- Singh, S.; Prajapati, Y.K. Highly sensitive refractive index sensor based on D-shaped PCF with gold-graphene layers on the polished surface. Appl. Phys. 2019, 125, 437. [Google Scholar] [CrossRef]
- An, G.W.; Li, S.G.; An, Y.H.; Wang, H.Y.; Zhang, X.N. Glucose sensor realized with photonic crystal fiber-based Sagnac interferometer. Opt. Commun. 2017, 405, 143–146. [Google Scholar] [CrossRef]
- Shao, Z.H.; Qiao, X.G.; Rong, Q.Z. Highly sensitive intensity-interrogated gas refractometer using slotted photonic crystal fiber. IEEE Sens. J. 2018, 18, 9263–9270. [Google Scholar] [CrossRef]
- Li, K.W.; Zhang, N.; Zhang, N.M.Y.; Liu, G.G.; Zhang, T.; Wei, L. Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler. Opt. Lett. 2018, 43, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, Y.D.; Chen, Y.H.; Wang, J.F. Simultaneous measurement of temperature and RI based on an optical microfiber coupler assembled by a polarization maintaining fiber. Appl. Phys. Lett. 2019, 114, 151903. [Google Scholar] [CrossRef]
- Zhang, N.M.Y.; Li, K.W.; Zhang, N.; Zheng, Y.; Zhang, T.; Qi, M.; Shum, P.; Wei, L. Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point. Opt. Express 2018, 26, 29148–29158. [Google Scholar] [CrossRef] [PubMed]
- Li, K.W.; Zhang, N.M.Y.; Zhang, N.; Zhang, T.; Liu, G.G.; Wei, L. Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers. J. Lightwave Technol. 2018, 36, 2409–2415. [Google Scholar] [CrossRef]
- Jiao, T.; Meng, H.Y.; Deng, S.Y.; Liu, S.; Wang, X.J.; Wei, Z.C.; Wang, F.Q.; Tan, C.H.; Huang, X.G. Simultaneous measurement of refractive index and temperature using a Mach-Zehnder interferometer with forward core-cladding-core recoupling. Opt. Laser Technol. 2019, 111, 612–615. [Google Scholar] [CrossRef]
- Yu, X.J.; Chen, X.F.; Bu, D.; Zhang, J.T.; Liu, S.C. In-fiber modal interferometer for simultaneous measurement of refractive index and temperature. IEEE Photon. Technol. Lett. 2016, 28, 189–192. [Google Scholar] [CrossRef]
- Zhu, T.; Wu, D.; Liu, M.; Duan, D.W. In-line fiber optic interferometric sensors in single-mode fibers. Sensors 2012, 12, 10430–10449. [Google Scholar] [CrossRef]
- Zhang, C.B.; Ning, T.G.; Li, J.; Zheng, J.L.; Gao, X.K.; Pei, L. Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper. Opt. Laser Technol. 2018, 102, 12–16. [Google Scholar] [CrossRef]
- Chen, C.; Yang, R.; Zhang, X.Y.; Wei, W.H.; Guo, Q.; Zhang, X.; Qin, L.; Ning, Y.Q.; Yu, Y.S. Compact refractive index sensor based on an S-tapered fiber probe. Opt. Mater. Express 2018, 8, 919–925. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.G.; Wang, L.; Zhou, Q.; Sieg, J.; Zhao, D.L.; Wang, B.; Yan, T.Y.; Wang, S. Fiber refractive index sensor based on dual polarized Mach-Zehnder interference caused by a single-mode fiber loop. Appl. Opt. 2016, 55, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, M.M.; Sun, L.P.; Fan, P.C.; Ran, Y.; Jin, L.; Guan, B.O. Polarization maintaining microfiber-based evanescent-wave sensors. Acta Physica Sinica 2017, 66, 191–200. [Google Scholar]
- Yang, J.; Guan, C.Y.; Tian, P.X.; Yuan, T.T.; Zhu, Z.; Li, P.; Shi, J.H.; Yang, J.; Yuan, L.B. In-fiber refractive index sensor based on single eccentric hole-assisted dual-core fiber. Opt. Lett. 2017, 42, 4470–4473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.T.; Wang, Y.P.; Liao, C.R.; Sun, B.; He, J.; Yin, G.L.; Liu, S.; Li, Z.Y.; Wang, G.J.; Zhong, X.Y.; et al. Intensity modulated refractive index sensor based on optical fiber Michelson interferometer. Sens. Actuators B Chem. 2015, 208, 315–319. [Google Scholar] [CrossRef]
- Kong, Y.J.; Shu, X.W.; Cao, H.R.; Deng, J.C. Thin-core fiber taper-based multi-mode interferometer for refractive index sensing. IEEE Sens. J. 2018, 18, 8747–8754. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.A.; Harris, E.; Bao, X.Y. Double-pass in-line fiber taper Mach-Zehnder interferometer sensor. IEEE Photon. Technol. Lett. 2010, 22, 1750–1752. [Google Scholar] [CrossRef]
- Yang, Z.H.; Sun, H.; Gang, T.T.; Liu, N.; Li, J.C.; Meng, F.; Qiao, X.G.; Hu, M.L. Refractive index and temperature sensing characteristics of an optical fiber sensor based on a tapered single mode fiber/polarization maintaining fiber. Chin. Opt. Lett. 2016, 14, 050604. [Google Scholar]
- Kang, J.; Yang, J.R.; Zhang, X.D.; Liu, C.Y.; Wang, L. Intensity demodulated refractive index sensor based on front-tapered single-mode-multimode-single-mode fiber structure. Sensors 2018, 18, 2396. [Google Scholar] [CrossRef]
- Hou, L.T.; Zhang, X.D.; Yang, J.R.; Kang, J.; Ran, L.L. Simultaneous measurement of refractive index and temperature based on half-tapered SMS fiber structure with fringe-visibility difference demodulation method. Opt. Commun. 2019, 433, 252–255. [Google Scholar] [CrossRef]
- Chen, P.C.; Shu, X.W.; Cao, H.R. Novel compact and low-cost ultraweak Fabry-Perot interferometer as a highly sensitive refractive index sensor. IEEE Photon. J. 2017, 9, 7105810. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.Y.; Xu, D.G.; Liu, T.G.; Xu, W.; Zhang, C.; Yan, C.; Yan, D.X.; Tang, L.H.; He, Y.X.; et al. Temperature self-compensation high-resolution refractive index sensor based on fiber ring laser. IEEE Photon. Technol. Lett. 2017, 29, 1743–1746. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.H. In-line single-mode optical fiber interferometric refractive index sensors. J. Lightwave Technol. 2009, 27, 2296–2306. [Google Scholar] [CrossRef]
Structures | Sensitivity | Resolution (RIU) | Linearity | RI Range (RIU) | Refs |
---|---|---|---|---|---|
Tilted FBG | −574.23 nm/RIU | 1.045 × 10−4 | 0.999 | 1.40–1.45 | [3] |
Long-period grating | 505 nm/RIU | 1.188 × 10−4 | / | 1.333–1.354 | [5] |
Microfiber coupler | 12,020 nm/RIU | 4.99 × 10−6 | 0.996 | 1.3333–1.3341 | [13] |
S-tapered fiber | 268.8 nm/RIU | 2.23 × 10−4 | 0.982 | 1.332–1.387 | [20] |
Eccentric hole-assisted dual-core fiber | 102.2 dB/RIU | 9.785 × 10−5 | 0.981 | 1.335–1.37 | [23] |
Offset-core TCF | −202.46 dB/RIU | 4.939 × 10−5 | / | 1.42 | [24] |
Tapered fiber tip with air bubble | 442.59 dB/RIU | 2.259 × 10−5 | 0.994 | 1.333–1.38 | [25] |
Bias-tapered MMF | 345.78 dB/RIU | 2.892 × 10−5 | 0.998 | 1.336–1.351 | [29] |
Weak-FP based TCF | 240 dB/RIU | 4.167 × 10−5 | / | 1.3326–1.4305 | [30] |
1110.7 dB/RIU | 9.003 × 10−6 | / | 1.4305 | ||
NCF-based laser sensor | −196.1 dB/RIU | 5.099 × 10−5 | 0.997 | 1.335–1.354 | [31] |
−744.6 dB/RIU | 1.343 × 10−5 | 0.997 | 1.354–1.367 | ||
SP-TMDM | 516.02 dB/RIU | 1.938 × 10−5 | 0.998 | 1.33–1.356 | Our works |
DP-TMDM | 965.46 dB/RIU | 1.036 × 10−5 | 0.989 | 1.33–1.339 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Hou, L.; Ran, L.; Kang, J.; Yang, J. Ultra-Sensitive Fiber Refractive Index Sensor with Intensity Modulation and Self-Temperature Compensation. Sensors 2019, 19, 3820. https://doi.org/10.3390/s19183820
Li Z, Hou L, Ran L, Kang J, Yang J. Ultra-Sensitive Fiber Refractive Index Sensor with Intensity Modulation and Self-Temperature Compensation. Sensors. 2019; 19(18):3820. https://doi.org/10.3390/s19183820
Chicago/Turabian StyleLi, Zhaojun, Liangtao Hou, Lingling Ran, Jing Kang, and Jiuru Yang. 2019. "Ultra-Sensitive Fiber Refractive Index Sensor with Intensity Modulation and Self-Temperature Compensation" Sensors 19, no. 18: 3820. https://doi.org/10.3390/s19183820
APA StyleLi, Z., Hou, L., Ran, L., Kang, J., & Yang, J. (2019). Ultra-Sensitive Fiber Refractive Index Sensor with Intensity Modulation and Self-Temperature Compensation. Sensors, 19(18), 3820. https://doi.org/10.3390/s19183820