Empirical Formulas for Estimating Backscattering and Absorption Coefficients in Complex Waters from Remote-Sensing Reflectance Spectra and Examples of Their Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Baltic Sea Data Set
2.1.1. In Situ Optical Measurements
2.1.2. Data Interpolation/Extrapolation
2.2. Additional Data From the NOMAD Database
2.3. Selected Aspects of the Quasi Analytical Algorithm (QAA)
- estimating the spectral values of the remote-sensing reflectance just below the sea surface, rrs, using the simplified relationship:rrs(λ) = Rrs(λ)/[0.52 + 1.7 × Rrs(λ)];
- estimating the ratio u(λ), from the reflectance rrs, based on the simplified best-fit relationship:rrs(λ) = g0u(λ) + g1[u(λ)]2,u(λ) = bb(λ)/[a(λ) + bb(λ)],
- estimating the absorption coefficient for a selected spectral band λ0, either green (the closest available band to 555 nm) or red (670 nm), where the selection of λ0 depends on the magnitude of the reflectance Rrs(670). The absorption coefficient a(λ0) can be estimated with one of the simplified empirical expressions which can generally be described as functions of reflectances rrs, i.e.,:a(λ0) = f(rrs(λ)).
2.4. The Hue Angle
2.5. Simple Models of Water Colour
3. Results and Discussion
3.1. General Characterization of the Dataset
3.2. Empirical Relationships between the Backscattering Coefficient and the Remote-Sensing Reflectance
3.3. Empirical Relationship between the Absorption Coefficient and the Hue Angle
3.4. Comparison of Empirical Formulas with the Results of Simple Modelling
3.5. Preliminary Assessment of Measurement Error Propagation
3.6. Potential Applications: an Example of a New Semi-Analytical Algorithm for IOP Retrieval
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
ALTERNATIVE NEW ALGORITHM |
---|
1. bb(620) = f(Rrs(620)) (emp. formula—Equation (12)) |
2. u(λ) = f(rrs(λ)) (emp. formula—Equation (14)) where rrs(λ) calculated acc. to Lee et al. (2002) (Equation (1)) |
3. γ = f(rrs(510)/rrs(555)) (emp. formula—Equation (15a)) |
4. bbp(λ) = [bb(620) − bbw(620)] [λ/620]−γ; bb(λ) = bbw(λ) + bbp(λ) |
5. a(λ) = bb(λ)/[(1/u(λ)) − 1]; an(λ) = a(λ) − aw(λ) |
Retrieved Quantity | ALT. NEW ALG. | |||
---|---|---|---|---|
Wavelength | 440 nm | 555 nm | 620 nm | |
bbp | MNB [%] | 19.8 | 9.4 | 5.1 |
(all data) | NRMSE [%] | 52.1 | 36.5 | 32.2 |
(n = 238) | sys. err. [%] | 11.9 | 4.5 | 0.9 |
X | 1.42 | 1.34 | 1.32 | |
bbp | MNB [%] | 4.2 | 1.2 | 0.1 |
(Baltic Sea) | NRMSE [%] | 29.7 | 24.6 | 23.5 |
(n = 148) | sys. err. [%] | 0.1 | −1.7 | −2.5 |
X | 1.33 | 1.28 | 1.26 | |
an | MNB [%] | 6.6 | 24 | 47.3 |
(all data) | NRMSE [%] | 23.3 | 47.7 | 149.5 |
(n = 173) | sys. err. [%] | 4 | 16.2 | 14.2 |
X | 1.25 | 1.43 | 1.96 | |
an | MNB [%] | 7 | 15 | 16 |
(Baltic Sea) | NRMSE [%] | 23.6 | 40.5 | 66 |
(n = 148) | sys. err. [%] | 4.2 | 8.9 | −0.7 |
X | 1.26 | 1.39 | 1.76 |
References
- IOCCG. Earth Observations in Support of Global Water Quality Monitoring. In IOCCG Report Series, No. 17; Greb, S., Dekker, A., Binding, C., Eds.; International Ocean Colour Coordinating Group: Dartmouth, Canada, 2018; p. 125. [Google Scholar]
- Mobley, C.D. Light and Water; Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994; p. 592. [Google Scholar]
- IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. In IOCCG Report Series, No. 5; Lee, Z.-P., Ed.; International Ocean Colour Coordinating Group: Dartmouth, Canada, 2006; p. 126. [Google Scholar]
- Werdell, P.J.; McKinna, L.I.W.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.P.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef] [PubMed]
- OBPG Algorithm Descriptions. Available online: https://oceancolor.gsfc.nasa.gov/atbd (accessed on 13 August 2019).
- Ocean Colour Climate Change Initiative Product User Guide (Issue 4.1.1). Available online: ftp://ftp.rsg.pml.ac.uk/occci-v4.0/documentation/OC-CCI-PUG-v4.1-v1.pdf (accessed on 13 August 2019).
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Kowalczuk, P. Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J. Geophys. Res. 1999, 104, 30047–30058. [Google Scholar] [CrossRef]
- Woźniak, S.B.; Meler, J.; Lednicka, B.; Zdun, A.; Stoń-Egiert, J. Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia 2011, 53, 691–729. [Google Scholar] [CrossRef]
- Meler, J.; Woźniak, S.B.; Stoń-Egiert, J.; Woźniak, B. Parameterization of phytoplankton spectral absorption coefficients in the Baltic Sea: General, monthly and two-component variants of approximation formulas. Ocean Sci. 2018, 14, 1523–1545. [Google Scholar] [CrossRef]
- Darecki, M.; Weeks, A.; Sagan, S.; Kowalczuk, P.; Kaczmarek, S. Optical characteristics of two contrasting case 2 waters and their influence on remote sensing algorithms. Cont. Shelf Res. 2003, 23, 237–250. [Google Scholar] [CrossRef]
- Woźniak, S.B.; Darecki, M.; Zabłocka, M.; Burska, D.; Dera, J. New simple statistical formulas for estimating surface concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) from remote-sensing reflectance in the southern Baltic Sea. Oceanologia 2016, 58, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Darecki, M.; Stramski, D. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 2004, 89, 326–350. [Google Scholar] [CrossRef]
- Wernand, M.R.; van der Woerd, H.J. Spectral analysis of the Forel-Ule ocean colour comparator scale. J. Europ. Opt. Soc. Rap. Public. 2010, 5, 10014s. [Google Scholar] [CrossRef]
- Wernand, M.R.; Hommersom, A.; van der Woerd, H.J. MERIS-based ocean colour classification with the discrete Forel–Ule scale. Ocean Sci. 2013, 9, 477–487. [Google Scholar] [CrossRef]
- Novoa, S.; Wernand, M.R.; van der Woerd, H.J. The Forel-Ule scale revisited spectrally: Preparation, protocol, transmission measurements and chromaticity. J. Europ. Opt. Soc. Rap. Public 2013, 8, 13057. [Google Scholar] [CrossRef]
- Novoa, S.; Wernand, M.R.; van der Woerd, H.J. The modern Forel-Ule scale: A ‘do-it-yourself’ colour comparator for water monitoring. J. Europ. Opt. Soc. Rap. Public 2014, 9, 14025. [Google Scholar] [CrossRef]
- Garaba, S.P.; Voss, D.; Zielinski, O. Physical, Bio-Optical State and Correlations in North–Western European Shelf Seas. Remote Sens. 2014, 6, 5042–5066. [Google Scholar] [CrossRef]
- Garaba, S.P.; Friedrichs, A.; Voss, D.; Zielinski, O. Classifying Natural Waters with the Forel-Ule Colour Index System: Results, Applications, Correlations and Crowdsourcing. Int. J. Environ. Res. Public Health 2015, 12, 16096–16109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Woerd, H.J.; Wernand, M.R. True Colour Classification of Natural Waters with Medium-Spectral Resolution Satellites: SeaWiFS, MODIS, MERIS and OLCI. Sensors 2015, 15, 25663–25680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Woerd, H.J.; Wernand, M.R. Hue-angle product for Low to medium spatial resolution optical satellite sensors. Remote Sens. 2018, 10, 180. [Google Scholar] [CrossRef]
- Busch, J.A.; Price, I.; Jeansou, E.; Zielinski, O.; van der Woerd, H.J. Citizens and satellites: Assessment of phytoplankton dynamics in a NW Mediterranean aquaculture zone. Int. J. Appl. Earth Obs. 2015, 47, 40–49. [Google Scholar] [CrossRef]
- Brewin, R.J.; Brewin, T.G.; Phillips, J.; Rose, S.; Abdulaziz, A.; Wimmer, W.; Sathyendranath, S.; Platt, T. A Printable Device for Measuring Clarity and Colour in Lake and Nearshore Waters. Sensors 2019, 19, 936. [Google Scholar] [CrossRef]
- Woźniak, S.B.; Sagan, S.; Zabłocka, M.; Stoń-Egiert, J.; Borzycka, K. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions. J. Mar. Syst. 2018, 182, 79–96. [Google Scholar] [CrossRef]
- Maffione, R.A.; Dana, D.R. Instruments and methods for measuring the backward-scattering coefficient of ocean waters. Appl. Opt. 1997, 36, 6057–6067. [Google Scholar] [CrossRef] [PubMed]
- Dana, D.R.; Maffione, R.A. Determining the Backward Scattering Coefficient with Fixed-Angle Backscattering Sensors—Revisited. In Proceedings of the Ocean Optics XVI Conference, Santa Fe, NM, USA, 18–22 November 2002. [Google Scholar]
- HOBI Labs (Hydro-optics, Biology & Instrumentation Laboratories, Inc.). HydroScat-4 Spectral Backscattering Sensor, User’s Manual, Revised ed. 15 June 2008, p. 65. Available online: https://www.hobiservices.com/docs/HS4ManualRevE-2008-6-14.pdf (accessed on 2 July 2019).
- Morel, A. Optical properties of pure water and pure sea water. In Optical Aspects of Oceanography; Jerlov, N.G., Nielsen, E.S., Eds.; Academic Press: New York, NY, USA, 1974; pp. 1–24. [Google Scholar]
- Pegau, W.S.; Gray, D.; Zaneveld, J.R.V. Absorption and attenuation of visible and near-infrared light in water: Dependence on temperature and salinity. Appl. Opt. 1997, 36, 6035–6046. [Google Scholar] [CrossRef] [PubMed]
- Zaneveld, J.R.V.; Kitchen, J.C.; Moore, C. The scattering error correction of reflecting-tube absorption meters. In Proceedings of the Ocean Optics XII, Bergen, Norway, 13–15 June 1994; Jaffe, J.S., Ed.; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, 1994; Volume 2258, pp. 44–55. [Google Scholar]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef] [PubMed]
- Sogandares, F.M.; Fry, E.S. Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements. Appl. Opt. 1997, 36, 8699–8709. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.C.; Baker, K.S. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 1981, 20, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Ding, K. Self-shading of in-water instruments. Limnol. Oceanogr. 1992, 37, 491–500. [Google Scholar] [CrossRef]
- Zibordi, G.; Ferrari, G.M. Instrument self-shading in underwater optical measurements: Experimental data. Appl. Opt. 1995, 34, 2750–2754. [Google Scholar] [CrossRef] [PubMed]
- IOCCG Algorithm Software. Available online: http://ioccg.org/resources/software (accessed on 3 June 2019).
- Gordon, H.R.; Morel, A.Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review; Springer: New York, NY, USA, 1983; 114p. [Google Scholar]
- Reynolds, R.A.; Stramski, D.; Neukermans, G. Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition. Limnol. Oceanogr. 2016, 61, 1869–1890. [Google Scholar] [CrossRef] [Green Version]
- CIE. Commission Internationale de l’Eclairage proceedings, 1931; Cambridge University Press: Cambridge, UK, 1932. [Google Scholar]
- Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of ocean color. J. Geophys. Res. 1988, 93, 10909–10924. [Google Scholar] [CrossRef]
- Mobley, C.D.; Sundman, L.K. Hydrolight 5; Ecolight 5; Technical Documentation; Sequoia Scientific: Bellevue, WA, USA, 2008; p. 95. [Google Scholar]
- Ocean Optics Web Book. Available online: http://www.oceanopticsbook.info (accessed on 28 May 2019).
- Lee, Z.P.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters: 2; Deriving bottom depths and water properties by optimization. Appl. Opt. 1999, 38, 3831–3843. [Google Scholar] [CrossRef]
- Melin, F.; Sclep, G.; Jackson, T.; Sathyendranath, S. Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets. Remote Sens. Environ. 2016, 177, 107–124. [Google Scholar] [CrossRef]
NEW ALGORITHM |
---|
1. bb(620) = f(Rrs(620)) (emp. formula—Equation (12)) |
2. u(λ) = f(rrs(λ)) (emp. formula—Equation (14)) where rrs(λ) calculated acc. to Lee et al. (2002) (Equation (1)) |
3. a(440) = f(α) (emp. formula—Equation (16) where α = f(Rrs(λ)) (Equations (7)–(10)) |
4. bb(440) = [a(440)u(440)]/[1 − u(440)]; bbp(440) = bb(440) − bbw(440) |
5. γ = log[bbp(440)/(bb(620) − bbw(620))]/log [620/440]) |
6. bbp(λ) = [bb(620) − bbw(620)] [λ/620]-γ; bb(λ) = bbw(λ) + bbp(λ)) |
7. a(λ) = bb(λ)/[(1/u(λ)) − 1]; an(λ) = a(λ) − aw(λ) |
Retrieved Quantity | NEW ALGORITHM | QAA v6 | |||||
---|---|---|---|---|---|---|---|
Wavelength | 440 nm | 555 nm | 620 nm | 440 nm | 555 nm | 620 nm | |
bbp | MNB [%] | 30.1 | 11.0 | 5.1 | 72.4 | 75.1 | 77.6 |
(all data) | NRMSE [%] | 67.2 | 36.4 | 32.2 | 393.9 | 358.9 | 341.9 |
(n = 238) | sys. err. [%] | 17.5 | 6.2 | 0.9 | 29.2 | 41.4 | 47.2 |
X | 1.54 | 1.34 | 1.32 | 1.72 | 1.55 | 1.49 | |
bbp | MNB [%] | −0.3 | −0.4 | 0.1 | 3.4 | 23.6 | 34.9 |
(Baltic Sea) | NRMSE [%] | 29.8 | 24.2 | 23.5 | 29.9 | 31.1 | 32.1 |
(n = 148) | sys. err. [%] | −4.7 | −3.2 | −2.5 | −0.8 | 19.8 | 31.2 |
X | 1.36 | 1.28 | 1.26 | 1.33 | 1.28 | 1.27 | |
an | MNB [%] | 2.8 | 21.7 | 47.3 | −19.2 | −5.7 | 29.5 |
(all data) | NRMSE [%] | 22.6 | 46 | 149.5 | 20.2 | 35.2 | 104.1 |
(n = 173) | sys. err. [%] | 0.2 | 14 | 14.2 | −21.8 | −12.4 | n.a. |
X | 1.26 | 1.43 | 1.96 | 1.3 | 1.48 | n.a. | |
an | MNB [%] | 2.5 | 12.9 | 16 | −18.4 | −2.7 | 32.3 |
(Baltic Sea) | NRMSE [%] | 23.1 | 38.9 | 66 | 21 | 35.1 | 97.7 |
(n = 148) | sys. err. [%] | −0.2 | 6.9 | −0.7 | −21.2 | −9.1 | n.a. |
X | 1.26 | 1.39 | 1.76 | 1.31 | 1.46 | n.a. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, S.B.; Darecki, M.; Sagan, S. Empirical Formulas for Estimating Backscattering and Absorption Coefficients in Complex Waters from Remote-Sensing Reflectance Spectra and Examples of Their Application. Sensors 2019, 19, 4043. https://doi.org/10.3390/s19184043
Woźniak SB, Darecki M, Sagan S. Empirical Formulas for Estimating Backscattering and Absorption Coefficients in Complex Waters from Remote-Sensing Reflectance Spectra and Examples of Their Application. Sensors. 2019; 19(18):4043. https://doi.org/10.3390/s19184043
Chicago/Turabian StyleWoźniak, Sławomir B., Mirosław Darecki, and Sławomir Sagan. 2019. "Empirical Formulas for Estimating Backscattering and Absorption Coefficients in Complex Waters from Remote-Sensing Reflectance Spectra and Examples of Their Application" Sensors 19, no. 18: 4043. https://doi.org/10.3390/s19184043
APA StyleWoźniak, S. B., Darecki, M., & Sagan, S. (2019). Empirical Formulas for Estimating Backscattering and Absorption Coefficients in Complex Waters from Remote-Sensing Reflectance Spectra and Examples of Their Application. Sensors, 19(18), 4043. https://doi.org/10.3390/s19184043