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Abstract: Many standard methods used for the remote sensing of ocean colour have been developed,
though mainly for clean, open ocean waters. This means that they may not always be effective
in complex waters potentially containing high concentrations of optically significant constituents.
This paper presents new empirical formulas for estimating selected inherent optical properties of water
from remote-sensing reflectance spectra Rrs(λ), derived, among other things, for waters with high
concentrations of dissolved and suspended substances. These formulas include one for estimating the
backscattering coefficient bb(620) directly from the magnitude of Rrs in the red part of the spectrum,
and another for estimating the absorption coefficient a(440) from the hue angle α. The latter quantity
represents the water’s colour as it might be perceived by the human eye (trichromatic colour vision);
it is easily calculated from the shape of the Rrs spectrum. These new formulas are based on a combined
dataset. Most of the data were obtained in the specific, optically complex environment of the
Baltic Sea. Additional data, taken from the NASA bio-Optical Marine Algorithm Dataset (NOMAD)
and representing various regions of the global oceans, were used to widen the potential applicability
of the new formulas. We indicate the reasons why these simple empirical relationships can be derived
and compare them with the results of straightforward modelling; possible applications are also
described. We present, among other things, an example of a simple semi-analytical algorithm using
both new empirical formulas. This algorithm is a modified version of the well-known quasi-analytical
algorithm (QAA), and it can improve the results obtained in optically complex waters. This algorithm
allows one to estimate the full spectra of the backscattering and absorption coefficients, without the
need for any additional a priori assumptions regarding the spectral shape of absorption by dissolved
and suspended seawater constituents.

Keywords: empirical formulas; seawater inherent optical properties; backscattering and absorption
coefficients; remote-sensing reflectance; hue angle; trichromatic colour vision; semi-empirical algorithms

1. Introduction

As part of a discipline colloquially referred to as ocean colour remote sensing, different algorithms
have been developed that permit the retrieval of a variety of information about the aquatic environment,
based on satellite observations of light emerging from the water surface. The progress that has taken
place in this field of science in the last few decades is documented, among others, in the reports
issued by the International Ocean Color Coordinating Group (see [1] and earlier reports). One of the
basic quantities spectrally describing the light emerging from water is the remote sensing reflectance
Rrs(λ), defined as the ratio of the water-leaving radiance to the downward irradiance (for precise
definitions of the optical quantities, see e.g., the monograph by Mobley [2]). Many algorithms have been
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developed with which various biogeochemical properties of the surface water layer can be estimated
directly from Rrs spectra, e.g., the concentration of the main phytoplankton pigment chlorophyll a,
or the concentration of particulate organic carbon, to name but a few. There is also another group
of algorithms with which the so-called inherent optical properties (IOPs) of water can be estimated
(see e.g., [3]). IOPs, by definition, are optical properties that do not depend on changes in the light
fields in the atmosphere and within the water, and they generally describe how light can be absorbed
and scattered by different constituents of the complex medium that is seawater. Importantly, IOPs can
form a physically justified “link” between the remotely observed reflectance of the sea and different
biogeochemical characteristics of individual seawater components.

An overview of the various possible approaches for retrieving marine IOPs from remote sensing
can be found, for example, in the recent work by Werdell et al. [4]. It is generally known that, owing
to the complexity of the formation of the upwelling light field in water, the algorithms for retrieving
IOPs cannot be reduced to purely analytical solutions: IOP algorithms always have to contain a certain
dose of empiricism. Purely empirical solutions are possible, as are look-up table approaches using
results of forward models, and solutions jointly referred to as semi-analytical inversions. Among the
latter group, there are a number of distinct classes, one of which is the “spectral deconvolution” class
(for details, see Werdell et al. [4]). This class is of special interest to the authors of this work. As opposed
to other semi-analytical approaches, spectral deconvolution methods allow one to separate the process
of estimating total seawater IOPs from the process of decomposing them into component spectra.
A widely known example of a spectral deconvolution algorithm, is the quasi-analytical algorithm
(QAA) developed by Lee et al. [5]. Although the original version of this algorithm was developed
almost two decades ago, its updated versions are still frequently used by the ocean colour science
community (e.g., by NASA’s Ocean Biology Processing Group [6], or by ESA’s Ocean Colour Climate
Change Initiative project [7]).

Typical conditions in the waters of the Baltic Sea differ significantly from those in open oceanic
regions. The Baltic Sea is an example of waters belonging to the broad category referred to as Case 2
according to the classification introduced by Morel and Prieur [8]. In this sea, there are usually very
high concentrations of chromophoric dissolved organic matter (CDOM) [9], not correlated with the
content of autogenic chlorophyll a, and variable concentrations of suspended substances [10], often
much higher than in oceanic waters. Also, significant seasonal changes in phytoplankton absorption
properties have been documented in this sea [11]. As a result of the composition of this seawater,
Rrs spectra recorded in the Baltic Sea have maxima clearly shifted towards red wavelengths compared
to typical oceanic spectra [12,13]. Optical and bio-optical relationships developed mainly on the basis
of data from open oceanic regions are often inapplicable to Baltic waters. This is the case, for example,
with standard algorithms estimating chlorophyll a concentration [14]. As we will show in the example
analysed at the end of this work, this also happens when one attempts to estimate selected IOPs.

In addition to the quantities commonly used in ocean colour remote sensing, in this work we will
also refer to the quantity known as the hue angle. It is a single parameter that can mathematically
represent the colour of water as perceived by the human eye, which, as we know, uses the so-called
trichromatic colour vision mechanism. The hue angle may also be associated with the classic colour
scale of sea water, the so-called Forel-Ule scale, commonly used by oceanographers long before the
era of precise spectral radiometers, including satellite radiometers. In recent years, there has been an
evident resurgence of interest in the re-use of this scale and the historical data related to it [15–24].

The main aim of the current work was formulated as follows: to employ data collected in the
specific conditions of the Baltic Sea as a basis for finding new forms of simple empirical formulas. These
formulas should enable selected water IOPs to be estimated directly on the basis of remote-sensing
reflectance spectra, especially in waters with high concentrations of dissolved and suspended substances.
There was also an additional goal: to give examples of the possible use of the new formulas as calculation
steps in new variants of semi-analytical algorithms for the retrieval of full spectra of seawater IOPs in
the visible spectral range. These examples are intended to be an alternative to other known standard



Sensors 2019, 19, 4043 3 of 25

algorithms belonging to the “spectral deconvolution” class (like the QAA), which permit water IOPs to
be retrieved without the need to adopt additional a priori assumptions regarding the spectral shapes
of absorption coefficients by various seawater components.

2. Materials and Methods

The empirical formulas presented here were derived on the basis of combined data sets. We used
our own original set of data obtained in the specific, optically complex environment of the Baltic Sea,
and combined it with additional data that were available to us from the NASA bio-Optical Marine
Algorithm Data set (NOMAD). The data obtained from the NOMAD database represent different
regions of global oceans, mostly open waters. Figure 1 shows the different locations in which all the
data used in this work were collected.
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Figure 1. Sampling station locations: (a) stations in the southern and central Baltic Sea (authors’
own data); (b) stations in different regions of the global oceans (data from the NASA bio-Optical Marine
Algorithm Dataset (NOMAD)).

2.1. Baltic Sea Data Set

The authors’ original data set was gathered at 148 stations in the surface waters of the southern
and central Baltic Sea, during 6 cruises of r/v “Oceania” in spring (April 2011, May 2013, 2014, 2015)
and late summer (September 2011, 2012). The in situ optical measurements included spectral values
of the light backscattering coefficient in seawater bb, the light absorption coefficient by all non-water
constituents of seawater an and the remote-sensing reflectance Rrs. The methodology used for in situ
measurements has already been described in our earlier papers (see e.g., [13,25]), but we recapitulate
the most important details below.

2.1.1. In Situ Optical Measurements

Optical measurements were carried out at each station according to a standardized protocol tailored
to the capabilities of the vessel and available research equipment. For logistical reasons, two main
instruments for measuring water IOPs—the HydroScat-4 spectral backscattering meter (HOBI Labs,
Bellevue, WA, USA) and AC-9 spectral absorption-attenuation meter (WET Labs, Philomath, OR,
USA)—were lowered simultaneously, but on separate frames, on the same side of the ship at a
horizontal distance of about 20 m. After immersion in water, signal stability was checked and signals
were measured for at least 60 sec as part of the so-called “surface measurements mode”, before standard
profiling of the water column commenced. Both instruments were submerged to a minimum depth
beneath the water surface to prevent the generation of air bubbles (in practice to a depth of about 1 m).
This additional procedure of special measurements carried out in the surface layer was dictated, among
other things, by our wish to be consistent with the simultaneous collection of discrete seawater samples
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for biogeochemical analysis (the relevant results have already been presented in [10,11,25]). For the
purposes of this study, only signals recorded in “surface mode” were averaged (without filtering out
spikes) and we did not take into account possible changes in sea water IOPs with depth.

The backscattering coefficient bb(λ) [m−1] was measured with the HydroScat-4 instrument at
4 wavelengths—420, 488, 550, 620 nm, using the methods described by Maffione and Dana [26,27].
To the averaged signals registered in subsurface water layer the standard method of correcting for the
incomplete recovery of the light backscattered in highly attenuating waters was applied in accordance
with User’s Manual [28] (the so-called sigma correction); additional data on absorption and attenuation
measured with the AC-9 instrument were used for this purpose. To obtain values of light backscattering
from suspended particles only, bbp(λ), theoretical values of the backscattering coefficient for pure water
bbw(λ) were subtracted according to Morel [29].

The AC-9 instrument equipped with a 25 cm pathlength was used to measure the light absorption
coefficient by all non-water (suspended and dissolved) constituents of seawater an(λ) [m−1] at
9 wavelengths: 412, 440, 488, 510, 532, 555, 650, 676 and 715 nm. This instrument was integrated with a
standard ctd probe and equipped with a pump and a flow-through system. The standard methods of
corrections were applied to temperature- and salinity-dependent water absorption [30], and to the
incomplete recovery of the scattered light in the absorption tube (the so-called proportional method)
with the value of an(715) assumed to be 0 [31]. Absorption coefficients for pure water aw(λ) were added
(a combination of data from different sources [32–34]) in order to obtain values of a(λ) (total light
absorption coefficient of seawater).

Radiometric measurements were carried out using the C-OPS compact optical profiling system
(Biospherical instruments Inc.) at a distance of about 10–30 m from the ship to prevent shading.
If possible, the radiometric measurements were carried out at the same time as the IOP measurements,
or were started with a delay of no more than 15 min. The remote-sensing reflectance just above
seawater Rrs(λ) [sr−1] was calculated from radiometric measurements at 17 wavelengths from 340 to
765 nm. The following quantities were directly measured with the C-OPS instrument: the upward
radiance profiles in water Lu(z, λ) and the downward irradiance just above the water Ed(0+, λ).
Radiometers were equipped with tilt and roll sensors; only nadir measurements have been taken
into account to minimalize uncertainty related to additional corrections of various angular effects in
analysis of measurements of upward radiance. To estimate the upward radiance “just below the sea
surface” Lu(0−, λ), measurements of the profiles of upward radiance Lu(z, λ) were extrapolated from a
subsurface layer of 0.5–2 m using the attenuation coefficient for upward radiance KLu(z, λ). The latter
was calculated as the local slope of ln[Lu(z, λ)] measured over a depth interval spanning a few metres
in the surface layer. The thickness of this depth interval depended on the extent to which the surface
layer was homogeneous (typically about 3 m). The correction for the self-shading effect in the upward
radiance just below the sea surface Lu(0−, λ) was also applied [35,36]. Then, the water-leaving radiance
Lw(0+, λ) was obtained from estimated Lu(0−,λ), using a factor of 0.544 calculated from the “n2 law for
radiance” (see e.g., [2]). Finally, the Rrs(λ) was calculated as Lw(0+, λ)/Ed(0+, λ).

All our instruments for IOP and radiometric measurements were periodically calibrated.
The HydroScat-4 was factory-calibrated every two years; calibration factors at different spectral
channels differed on average by less than 4% between consecutive calibrations (<2% differences for
the 620 nm channel). The AC-9 instrument was factory-calibrated every year; calibration factors
between consecutive years differed by <3% (average) and ca 4% for 440 nm. The stability of the AC-9’s
calibration was regularly checked by performing scans in ultrapure water and in air. The C-OPS system
was likewise calibrated on a regular basis in a factory calibration facility (in most cases annually) and
no significant deviations of the calibration coefficients were recorded at that time. Since we had two
C-OPS systems at our disposal, we were able to regularly compare them and check the stability of the
radiometric performance of our devices.
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2.1.2. Data Interpolation/Extrapolation

The in situ optical instruments we used at sea differed in both the number and location of available
individual spectral bands. In order to conduct further quantitative analyses, we decided to interpolate
(and in some cases to extrapolate) the data to the selected eleven wavelengths of light: 412, 440, 488,
510, 532, 555, 589, 620, 650, 676 and 715 nm. For this purpose, we performed linear interpolations of
the values of coefficients bbp(λ) and an(λ), as well as the reflectance Rrs(λ). In these calculations, we
used the closest pairs of available bands from the set of original measured data.

2.2. Additional Data From the NOMAD Database

The additional data used in this work to extend the ranges of variability of the quantities analysed
were obtained from the publicly available NOMAD database. From this, we selected sets of optical data
that included spectra of backscattering coefficients, and also downward irradiance and water-leaving
radiance spectra with measurements performed, among others, in the red spectral channels (at either
619 nm or 625 nm). As a result, and after initial quality control, we were able to select 90 sets of data
for which we performed similar simple linear interpolations to the same eleven spectral bands, as we
had done in case of the Baltic Sea data (the selected sets of NOMAD data correspond to the cruises
marked in this database as: “rb-01-02”, “ant-xxiii-1”, “biosope 3”, “oceania 1998” and “oceania 1999”).
Twenty-five of these 90 cases included information on absorption coefficients.

2.3. Selected Aspects of the Quasi Analytical Algorithm (QAA)

When giving examples of new algorithms in this paper, we will refer to the original quasi-analytical
algorithm (QAA), developed by Lee at al. [5]. All the details concerning this particular algorithm may
be found, for example, in the documentation of its latest version (version 6 [37]); nevertheless, we recall
here certain aspects that will be important for the later analysis.

The QAA, derived on the basis of data gathered mostly in the open waters of global oceans,
combines a few simplified or purely empirical formulas with other fully analytical steps in the
subsequent calculations. The input to this algorithm comprises the spectral values of the remote
sensing reflectance just above the sea surface, Rrs. Its first simplified or empirical steps involve:

• estimating the spectral values of the remote-sensing reflectance just below the sea surface, rrs,
using the simplified relationship:

rrs(λ) = Rrs(λ)/[0.52 + 1.7 × Rrs(λ)]; (1)

• estimating the ratio u(λ), from the reflectance rrs, based on the simplified best-fit relationship:

rrs(λ) = g0u(λ) + g1[u(λ)]2, (2)

where u(λ) represents the ratio of the backscattering coefficient bb(λ) to the sum of absorption a(λ)
and backscattering bb(λ), i.e.,:

u(λ) = bb(λ)/[a(λ) + bb(λ)], (3)

and the best fit coefficients g0 and g1 are taken as equal 0.0895 and 01247, respectively (according to
Lee et al. [5]);

• estimating the absorption coefficient for a selected spectral band λ0, either green (the closest
available band to 555 nm) or red (670 nm), where the selection of λ0 depends on the magnitude
of the reflectance Rrs(670). The absorption coefficient a(λ0) can be estimated with one of the
simplified empirical expressions which can generally be described as functions of reflectances
rrs, i.e.,:

a(λ0) = f(rrs(λ)). (4)



Sensors 2019, 19, 4043 6 of 25

These particular functions use a combination of blue, green and red rrs bands (for the sake
of brevity, we do not give detailed formulas here; they can be found in the original QAA
documentation [5,37]).

In the next step, after a(λ0) has been estimated, the QAA allows one to analytically calculate
the backscattering coefficient bb(λ0), using the relationship given by Equation (3); and, by taking
into account the known values of pure water backscattering, bbw(λ), the backscattering coefficient of
particulate matter bbp(λ0) can also be calculated. The algorithm then assumes that the spectral shape of
coefficient bbp(λ) can be described by the following power function:

bbp(λ) = bbp(λ0) [λ/λ0]−γ, (5)

which is a simplification often adopted in the practical analysis of optical data (see e.g., [8,38,39]).
The slope parameter γ needed to apply the spectral shape assumed by Equation (5) is calculated using
another empirical best-fit equation:

γ = 2[1 − 1.2exp(−0.9(rrs(443)/rrs(555))]. (6)

Then, with the help of Equation (5), the full spectrum of bbp(λ) can be calculated, and later, fully
analytically (again using of Equation (3)), the full spectrum of a(λ) as well. The QAA includes
more computational steps based on further empirical formulas. In these steps the total absorption
coefficient a(λ) is divided into two components: one representing phytoplankton particles and the
other representing the sum of absorption by detritus and by dissolved organic matter. In this paper,
however, we will overlook these final steps.

At this point, it should be noted that the empirical steps of the QAA, represented above by
Equations (4) and (6), are key elements of this algorithm. They are far-reaching simplifications.
At these stages, based on selected features of the shape of the reflectance spectrum, “intelligent guesses”
are made for the values of the absorption coefficient a(λ0) and the slope parameter γ. These steps are
of major importance for the accuracy of all subsequent calculations, leading to the analytical retrieval
of full spectra of absorption and backscattering coefficients. As we will show, in situations when
concentrations of both suspended and dissolved matter in seawater are high, i.e., in conditions typical
of the Baltic Sea, other empirical relationships may be considered as very preliminary computational
steps in semi-analytical algorithms, similar to the classic QAA.

2.4. The Hue Angle

Our analyses also took into account the hue angle (usually denoted by α). This is a single quantity
which mathematically represents the sensation of water colour as it might be perceived by the human
eye: it can be calculated directly from the spectral shape of Rrs (see e.g., [16]). Generally, the human
eye has three kinds of cone cells that sense light in different broad spectral bands. The sensitivity of the
average human eye can be represented by so-called colour matching functions (CMFs) [40]. Figure 2
depicts standard colorimetric 2-degree CMFs, denoted by x, y and z. These functions can be used to
calculate quantities called tristimulus values: X, Y and Z. This is done by integrating the product of
each CMF and Rrs(λ) over the whole visible light spectrum:

X =

∫ 700 nm

400 nm
Rrs(λ)x(λ)dλ; Y =

∫ 700 nm

400 nm
Rrs(λ)y(λ)dλ; Z =

∫ 700 nm

400 nm
Rrs(λ)z(λ)dλ. (7)
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Having specified the tristimulus values, we can calculate quantities known as chromaticity
coordinates, x, y and z:

x = X/(X + Y + Z); y = Y/(X + Y + Z); z = Z/(X + Y + Z). (8)

The first two of these coordinates, the independent ones x and y, allow one to plot what is called a
chromaticity diagram. Such a diagram can numerically represent the human eye’s sensation of colour,
regardless of the light intensity. A certain point in the chromaticity diagram, called the “white point”
(with coordinates xw = yw = 1/3), represents the light that the human eye would treat as “colourless”
(either as white or grey depending on the intensity). For any given point (x, y) in the chromaticity
diagram, the sought-after value of the hue angle α is defined as the value in degrees of the angle
between the segment connecting the “white point” with the given point (x, y) and the X axis. Thus,
the hue angle can be calculated as:

α[in degrees] = (180/π)(atan2(y − yw,x − xw) mod 2π), (9)

where atan2 stands for a 2-argument arctangent function, which may be defined as follows:

atan2(y, x) =


2arctan

(
y

√
x2+y2+x

)
i f x > 0 or y , 0

π i f x < 0 and y = 0
unde f ined i f x = 0 and y = 0

(10)

2.5. Simple Models of Water Colour

When analysing the new empirical formulas derived in this work, we will also refer to simple water
colour models. We will take into account two simple models. One, denoted as “model A”, is designed
to represent various conditions that can occur in the Baltic Sea, generally belonging to the Case 2
water category according to the classification introduced by Morel and Prieur [8]. The second model,
“model B”, is constructed in a similar way, but has to represent the conditions in Case 1 waters, where
all the optically active constituents can be correlated with the concentration of chlorophyll a. Both these
simple models calculate the quantity u (defined earlier by Equation (3)). Importantly, this quantity is
then treated as a simple proxy for the spectral shape of the remote-sensing reflectance Rrs (because it is
well known that in the first approximation the reflectance Rrs(λ) changes proportionally to the value of
u(λ) [2,41]). Both models will also calculate the hue angle α on the basis of the spectra of u. This is
done using Equations (7)–(10), with u(λ) inserted into the calculations instead of Rrs(λ).
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Model A will account for different concentrations of chromophoric dissolved organic matter
(CDOM) and different concentrations of both organic and inorganic particulate matter. The total
absorption coefficient a is assumed to be the sum of absorption coefficients for pure water, CDOM and
particulate matter (a = aw + ag + ap), and the total backscattering coefficient bb is assumed to be the sum
of backscattering for pure water and particulate matter (bb = bbw + bbp). The IOPs of pure water are
taken from the literature (aw—a combination from [32–34]; bbw from [29]). The model results presented
later will correspond to four different cases of CDOM absorption ag(λ). These spectra are modelled
using the following simplified formula:

ag(λ) = ag(440) exp[−Sg(λ − 440)]. (11)

Four values of ag(440) will be taken into account: 0, 0.2, 0.7 and 1.6 m−1. The first of these values
represent the hypothetical situation with no CDOM in the water, the second and third represent
typically low and high values of ag(440) that might be encountered in the coastal areas of the southern
Baltic Sea; the fourth is an instance of a very high CDOM concentration, which can occur when
the waters of the River Vistula (Wisła) enter the Baltic Sea. In all cases, we assume the spectral
slope Sg to be 0.0196. The IOPs of particulate matter in our simple model will be parameterized
with the concentrations of the organic and inorganic fractions of particulate matter (POM and PIM).
Mass-specific coefficients, denoted by ap* and bbp*, were established for the pure POM and PIM fractions;
their values are presented in Figure 3. Note that all the values assumed here are only examples taken
for the purposes of performing simple and illustrative modelling. However, these values are based
on the authors’ own new dataset acquired in different seasons of the year in a coastal location on
the southern Baltic Sea. The bbp* and ap* spectra for the pure organic and inorganic fractions were
calculated with a methodology similar to the one described by Woźniak et al. [25]. The calculations
with model A will be performed for the following POM and PIM concentrations: 0, 0.1, 0.2, 0.5, 1, 2, 5,
10, 20, 50 and 100 g m−3.
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3.1. General Characterization of the Dataset 

Figure 3. Assumed spectra of mass-specific absorption and backscattering coefficients, ap* and bbp*,
for pure particulate organic matter (POM) and particulate inorganic matter (PIM) fractions, used by the
simple water colour model adopted here to represent different conditions in the Baltic Sea (model A).

The second model, model B, will calculate the ratio u and the hue angle α in a similar way to
model A, but the important difference is how the water IOPs are defined. In model B, which is intended
to represent Case 1 waters, both particulate backscattering coefficient bbp and the absorption coefficient
of particulate and dissolved matter (an = ap + ag) are parameterized with only one quantity - the
concentration of chlorophyll a (Chl a). This is done according to the set of formulas known as the
“new” IOPs model for Case 1, which is used, among others, in Mobley’s well-known Hydrolight code
(see e.g., [42,43]). We will take the following Chl a values into account in our computations: 0, 0.03, 0.1,
0.3, 1, 3, 10, 30, and 100 mg m−3.
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3. Results and Discussion

3.1. General Characterization of the Dataset

In general, the variability of different optical properties of water in our combined dataset is
significant. The spectral backscattering and absorption coefficients of seawater measured in the Baltic
Sea region alone are characterized by a variability of up to one order of magnitude (Figure 4a,b).
Extending this set with data from NOMAD increases the overall range of variability to two orders
of magnitude. Also, the variability of the remote-sensing reflectance is substantial. Rrs spectra from
the Baltic Sea generally show a maximum in the green region, and the changes in Rrs values at longer
wavelengths can be as high as one order of magnitude. The additional Rrs data from NOMAD generally
have different spectral shapes. Moreover, these Rrs values are much higher in the blue range and much
lower in the red range when compared to the Baltic Sea spectra. Overall, the variability of Rrs for the
combined dataset covers almost two orders of magnitude in the blue and red-light regions. (Figure 4c).
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Figure 4. Empirical data analysed in this work: (a) spectra of the backscattering coefficient; (b) absorption
coefficient; (c) remote-sensing reflectance. The authors’ original data from the Baltic Sea are shown as
black curves; additional data from the NOMAD database are plotted in grey. Values representing pure
water are plotted in panels a and b.

3.2. Empirical Relationships between the Backscattering Coefficient and the Remote-Sensing Reflectance

Apart from the complex relationships that can theoretically occur between given apparent optical
properties (radiances and irradiances on the basis of which the remote-sensing reflectance Rrs is defined)
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and inherent optical properties describing light scattering and absorption by various components
of seawater, here we performed statistical analyses of the dependences between measured values
of bb and reflectance Rrs. It turned out that, in contrast to the blue light range, approximate best-fit
relationships between the logarithms of these two quantities could be derived for longer wavelengths
of light, especially in the red. From the statistical point of view, the best relationships were found for
the 620 nm band. These took the form of a third-order polynomial, which for the combined dataset
(Baltic Sea and NOMAD data) is (see Figure 5):

log(bb(620)) = −0.206[log(Rrs(620))]3
− 1.477[log(Rrs(620))]2

− 2.029[log(Rrs(620))] − 0.6384. (12)

The determination coefficient r2 for this relationship is 0.94. When we restricted the statistical analyses
to the Baltic Sea data, a similar polynomial was found with a determination coefficient r2 of 0.90 (see the
additional curve in Figure 5).
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Figure 5. Relationship between the backscattering coefficient bb and the remote sensing reflectance Rrs

at 620 nm. Data from the Baltic Sea and the NOMAD database are shown by green and blue points.
The two lines show the best-fit polynomial relationships.

The fact that there is a statistical relationship between bb and Rrs, described by Equation (12),
can be explained by the existence of a chain of “component” relationships between quantities that
are more directly related. In the red part of the spectrum, the backscattering coefficient bb strongly
affects the overall value of the u ratio (u = bb/(a + bb)), since the total absorption a in this particular
spectral region is dominated by absorption due to pure water. In turn, u is the quantity that strongly
determines the value of the remote-sensing reflectance “just below” the sea surface, denoted as rrs. And
finally, there must be a close relationship between rrs and the remote sensing reflectance “just above”
the sea surface Rrs. With our data, we were able to document two of these three relationships. For the
combined data set, the best-fit statistical relationship between log(bb(620)) and log(u(620)) was found,
which takes the following form:

log(bb(620)) = 0.4339[log(u(620))]3 + 2.502[log(u(620))]2 + 5.916[log(u(620))] + 2.803. (13)
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This particular formula has a determination coefficient of r2 = 0.99. We were also able to find the
best-fit relationship between log(u) and log(rrs). It takes the following form:

log(u) = −0.1116[log(rrs)]3
− 0.9328[log(rrs)]2

− 1.632[log(rrs)] − 1.59, (14)

with r2 = 0.90 (to obtain the latter relationship, all values of u and rrs, regardless of light wavelength,
were taken into account). The formulas given by Equations (13) and (14) are plotted in Figure 6a,b.
It should be noted here that Equation (14) differs to some extent from similar formulas often used in the
subject literature (compare the additional curves plotted in Figure 6b representing the formulas given
by Lee et al. [5,44] and Gordon et al. [41]). As regards the last statistical “component” relationship
quoted, the one between the reflectances “just below” and “just above” the sea surface, rrs and Rrs,
we do not have the appropriate data available, and we are not in a position to present our own best-fit
relationship. In further calculations, whenever necessary, we will use the simplified formula given by
Lee et al. [5], cited earlier as Equation (1).

Using Equation (12), one can estimate the backscattering coefficient for wavelength 620 nm
directly from the reflectance Rrs. As we know, coefficient bb(λ) can be written as the sum of two
coefficients: bbw(λ) representing the contribution of pure water and bbp(λ) representing the contribution
of particulate matter. The values of bbw(λ) for pure water are known (in the subsequent calculations we
take the values according to Morel [29]). If we assume that the spectral shape of coefficient bbp(λ) can
be described by the power function given in Equation (5), and if we knew this function’s spectral slope
γ, we could estimate the whole spectrum of bb coefficient from its value initially estimated in the red
band. Figure 6c presents spectra of coefficient bbp approximated with power functions and normalized
to the value for wavelength 620 nm. In the case of the Baltic Sea data, the average spectral slope γ
is 1.16, while the values representing the 5th and 95th percentiles of γ are 0.65 and 1.9, respectively.
In the case of the NOMAD data, the average γ is 1.21, and the 5th and 95th percentiles are 0.12 and 2.1,
respectively. The original best-fit relationship used in QAA algorithm, given earlier as Equation (6),
and using the 443 and 555 nm spectral bands to predict slope γ, in the case of the Baltic Sea data turned
out to give strongly underestimated results. We also noticed that it relatively poorly described the
weak trend existing in the subset of data obtained from the NOMAD database. Our analyses showed
that better results could be achieved, at least in the case of the Baltic Sea data, if instead of the blue
wavelength of 443 nm, we applied the longer wavelength of 510 nm. The best-fit formula retaining the
mathematical form of Equation (6) that we found has the following form:

γ = 2[1 − 4.339exp[−2.943(rrs(510)/rrs(555))]] (15a)

The coefficient r2 for the linear regression between the expression log(1 − 0.5γ) and rrs(510)/rrs(555) in
this case was 0.23. Alternatively, for Baltic data, it is possible to provide a best-fit formula using linear
regression directly between γ and rrs(510)/rrs(555):

γ = 1.538(rrs(510)/rrs(555)) − 0.1456 (15b)

For this formula, r2 = 0.25. Low values of the determination coefficients r2 suggest, however, that both
these formulas should be treated with caution, as they are very approximate (see Equation (15a,b)
plotted in Figure 6d). We also tested other approaches, but they did not yield better results. We found,
for example, that for our data there was no clear tendency between the slope γ and the magnitude of
bbp at any wavelength, as opposed to the suggestion of Reynolds et al. [39].
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Figure 6. Selected relationships and estimated best-fit formulas: (a) the relationship between bb(620)
and u(620); (b) the relationship between u and rrs; (c) spectra of the normalized backscattering coefficient
bb(λ)/bb(620); (d) the relationship between the slope of the bbp coefficient spectrum γ and the reflectance
ratio rrs(510)/rrs(555). In panel b, in addition to the line representing the best-fit relationships, selected
formulas from the literature are also plotted (according to Lee et al. [5,44] and Gordon et al. [41]).
Panel c shows spectra representing the average values of slope γ calculated for data from the Baltic Sea
and from the NOMAD database.

3.3. Empirical Relationship between the Absorption Coefficient and the Hue Angle

Another simple statistical relationship, which is of potential practical significance, is the one we
found between the absorption coefficient and the sensation of colour perceived by the human eye.
In Figure 7 we plotted the chromaticity coordinates calculated according to Equations (7) and (8) for
all our available cases of Rrs spectra, and already corrected by values representing the “white point”.
These coordinates allowed the hue angle to be determined for each of the considered cases according
to Equation (9).
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Figure 7. Plot of chromaticity coordinates calculated for data from the Baltic Sea and from the NOMAD
database. The example of the hue angle α refers to one of the data points.

We found that the calculated hue angles correlated well with the absorption coefficient, especially
in the blue band of 440 nm (Figure 8). The best-fit formula found for the combined dataset takes the
following form:

log(a(440)) = −7.406 × 10−7α3 + 2.999 × 10−4α2
− 0.04493α + 1.984, (16)

with the determination coefficient r2 = 0.93. A similar formula can also be found for Baltic Sea data
alone (see the additional curve in Figure 8), but with a distinctly lower determination coefficient r2 of
0.76. A formula similar to ours, also in the form of a third-order polynomial, relating the logarithm
of the absorption coefficient a(440) to the hue angle α has been suggested by van der Woerd and
Wernand [22] (see Figure 8 in their work). We have drawn their formula in our Figure 8. It is generally
similar in shape, but the a(440) values predicted for the same hue angles are generally 2–3 times smaller
than ours. We will comment on this later, when we discuss the comparison of our formulas with simple
modelling results.Sensors 2019, 19, x FOR PEER REVIEW 14 of 27 
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Figure 8. Relationship between the absorption coefficient a(440) and the hue angle α. Data from the
Baltic Sea and the NOMAD database are shown as green and blue points. The two thick lines show the
best polynomial relationships; the thin line represents the relationship according to van der Woerd and
Wernand [22]. The additional legend above the horizontal axis illustrates the colours represented by
selected values of the hue angle α.
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3.4. Comparison of Empirical Formulas with the Results of Simple Modelling

The new formulas given by Equations (12)–(16) were found to be best-fit approximations of the
relations observed between the empirical data. Below we compare some of these empirical formulas
with results obtainable by simple theoretical modelling. As we mentioned in the previous section,
we refer to two models: model A, designed to represent various conditions that may occur in Case 2
waters; and model B, representing conditions from Case 1 waters. For the sake of clarity, all of the
results of model A shown below are plotted only for the cases where only pure POM or only pure
PIM is present in the water. Examples of the u ratio spectra obtained with model A for high CDOM
concentrations (with ag(440) = 0.7 m−1) and for various concentrations of pure POM and pure PIM are
shown in Figure 9a,b. Examples of the u ratio spectra obtained with model B for selected concentrations
of Chl a are illustrated in Figure 9c.Sensors 2019, 19, x FOR PEER REVIEW 15 of 27 
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only one variable—Chl a. If we look at the empirical data points shown in Figure 10a, we see that 
their positions seem to be broadly consistent with the ranges predicted by simple models. Points 
representing the Baltic Sea data lie mainly between the two modelled curves representing high and 
low ag(440) values for pure POM cases (note that for samples taken in the surface waters of the 
southern Baltic Sea, the average ratio of POM to (POM + PIM) is approximately 0.8, which means that 
particles in this basin are usually dominated by the organic fraction [10,25]). In the case of the 
empirical data points from the NOMAD database, some of them are close, but most of them are 

Figure 9. Example of results calculated using the simple models. Spectra of the u ratio (taken here as
a simple proxy for the remote-sensing reflectance), calculated for: (a) model A and the case of high
chromophoric dissolved organic matter (CDOM) concentration (assuming ag(440) = 0.7 m−1) and for
different concentrations of the pure POM fraction; (b) as a, but for different concentrations of pure PIM
fractions; (c) spectra calculated with model B for different chlorophyll a concentrations. On each panel,
lines representing pure water are also plotted for reference.
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The most important aspects of comparing the results obtained by modelling and the results
of empirical data analysis are summarized in the three panels in Figure 10. Figure 10a compares
the values of u(620) with the hue angles α. This diagram shows both modelled and empirical data.
Different curves represent different scenarios of model A results, when the POM or PIM concentration
changes, while ag is kept constant. As generally expected, the mutual positions of these curves may
illustrate the trend that, with low and medium particulate matter concentrations and increasing
absorption of CDOM, the hue angle can be clearly reduced, while the u(620) values remain more or less
similar. Another generally expected modelling result is that at high particulate matter concentrations,
u(620) may be clearly higher for pure PIM concentrations than for pure POM. Unlike the various
scenarios represented by model A, the results of model B presented in this diagram form only one
curve. Obviously, this is because this model uses a simplified IOP parameterization using only one
variable—Chl a. If we look at the empirical data points shown in Figure 10a, we see that their positions
seem to be broadly consistent with the ranges predicted by simple models. Points representing the
Baltic Sea data lie mainly between the two modelled curves representing high and low ag(440) values
for pure POM cases (note that for samples taken in the surface waters of the southern Baltic Sea,
the average ratio of POM to (POM + PIM) is approximately 0.8, which means that particles in this
basin are usually dominated by the organic fraction [10,25]). In the case of the empirical data points
from the NOMAD database, some of them are close, but most of them are located slightly to the left
of the curve representing the results of model B. This may be because the CDOM concentrations for
the cases that we took from the NOMAD database were usually higher than those anticipated by the
“new” IOPs Case 1 model.

The next panel, Figure 10b, illustrates the comparison of the empirical formula given by Equation
(13) with the modelling results. First of all, it is worth noting that with the red wavelength considered,
modelling results are, as expected, almost insensitive to different CDOM concentrations (the contribution
of CDOM to the total absorption coefficient is marginal for this wavelength). The modelling results
also show that regardless of the particulate matter composition in the range of low and medium
backscattering values, we can expect a strong statistical relationship between bb(620) and u(620). Only
for cases of high bb(620) do we observe that the model curves are separated between the extreme
cases of pure POM and pure PIM. As we have already mentioned, suspended matter in Baltic surface
waters is typically dominated by the organic fraction, so it seems reasonable that the line representing
the empirical Equation (13) lies closer to the results of model A obtained for pure POM. Because the
modelling results confirm the existence of a strong correlation between bb(620) and u(620), it also
becomes an argument in favour of the empirical relationship between bb(620) and Rrs(620) given by
Equation (12). In turn, Figure 10c compares the modelling results with the empirical relationship
given by Equation (16). Here, we can see that with three orders of magnitude of changes in a(440),
there is a maximum of twofold differences in the modelled results for different scenarios giving the
same hue angles. The largest deviations from the general trend formed by the modelled data can be
observed only for hypothetical situations where no particulate matter was assumed to be present in the
seawater, i.e., only high concentrations of CDOM. As we can see, the curve representing the empirical
Equation (16) shows quite a similar trend to the one emerging from all the modelling results obtained
from Case 2 waters. In this context, the aforementioned additional formula, taken from the work of
van der Woerd and Wernand [22], also shows smaller predicted values of a(440) in comparison with
the modelling results. To conclude, we consider that both comparisons with the results of modelling
presented in Figure 10b,c provide additional arguments in favour of the empirical formulas presented
in this article as practical solutions for estimating selected IOPs from Rrs spectra.
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Figure 10. Comparison of empirical data and formulas with the results of simple modelling: (a) the
relationship between the values of u(620) and the hue angle α; (b) the relationship between bb(620) and
u(620); (c) the relationship between a(440) and the hue angle α. The green and blue points in panel a
represent data from the Baltic Sea and from the NOMAD database, respectively. The empirical formulas
(Equations (13) and (16)) are plotted in panels b and c. Model A results were used in all panels to draw
various black and grey squares connected with the dashed curves. These curves represent different
scenarios in which the CDOM concentration is assumed to be constant, whereas the concentration
of the pure POM or PIM fraction ranges from 0 and 100 g m−3. The results of model B, representing
different concentrations of chlorophyll a (from 0 to 100 mg m−3), were plotted in all the panels as
blue triangles connected by a dashed blue line. Panel c also shows a curve representing the formula
according to van der Woerd and Wernand [22].
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3.5. Preliminary Assessment of Measurement Error Propagation

The main formulas presented in this work were derived on the basis of empirical data, which to
some extent must have been encumbered with measurement errors. However, the statistical nature of
these formulas (best-fit relationships obtained on large sets of data points), means that the impact of
statistical errors on our original data should have been largely cancelled out. Only possible systematic
errors (biases) could have affected the formulas. Assuming, however, that no significant biases occurred
during derivation of these formulas, a separate problem is how their application in practice may
propagate measurement errors contained in new data sets being analysed. Below we give examples of
estimates that allow us to partially address this last problem.

In the case of the formula enabling coefficient bb(620) to be calculated on the basis of Rrs(620)
(Equation (12)), one can make a relatively uncomplicated estimate. We considered two simplified
scenarios. In the first, we assumed that the input data would be affected by an arbitrary statistical
error, which is always +/−5% of the Rrs(620) value. In the second such scenario, we assumed that the
input data would always be burdened with an error of +/−10−4 sr−1. The first of these values may
represent the generally desired accuracy sought in remote sensing studies, while the second one is a
top-down estimate of what accuracy can be achieved in practice in red light bands in relation to global
satellite research (see e.g., [45]). In the first scenario, the relative differences (representing relative
errors) of the estimated coefficient bb(620) never exceed +/−8%, while in the second scenario, relative
differences no greater than +/−23% occur for Rrs(620) > 6 × 10−4 sr−1, and no greater than +/−15%
occur for Rrs(620) > 8 × 10−4 sr−1 (see Figure 11a). This means, as expected, that the proposed formula
seems to be predestined for use in waters rich in suspended substances (such as Baltic waters), where
the reflectance in the red band reaches values of 10−3 sr−1 and higher.

In the case of the second main formula that we propose, a comprehensive discussion of possible
error propagation would be much more complicated and would probably exceed the scope of this
paper. Nonetheless, we provide an example estimate which, in our opinion, allows at least a qualitative
assessment of the problem.

The empirical formula given by Equation (16) uses the hue angle α, a quantity calculated from
the full spectrum of Rrs(λ). Errors occurring in different bands of the measured reflectance, which
may generally be uncorrelated with each other, can affect the calculated value of the hue angle.
To illustrate this, we take two typical spectral shapes, corresponding to the Baltic data set and the data
from the NOMAD database. By typical spectral shapes we mean here the average values of normalized
spectra denoted by Rrs(λ)/<Rrs> (in each case normalization was carried out to the average value of the
reflectance from the entire spectrum, denoted by <Rrs>; the input spectra used in calculations were the
spectra analysed in this paper linearly interpolated every 5 nm). These averaged shapes Rrs(λ)/<Rrs>

are shown in Figure 11b. In addition, two types of modification were introduced into each of these
shapes to illustrate possible spectral “distortions” that could change their “effective colour”. The first
distortion was to increase the value in the blue light range by 5% (from 400 to 500 nm), and at the
same time to reduce the value in the red range by 5% (from 600 to 700 nm). In contrast, the second
modification consisted of a corresponding decrease in the blue range and increase in the red range.
Then, for each of these spectra, the hue angle α values were calculated (according to formulas 7 to 10,
and taking the normalized shape Rrs(λ)/<Rrs> as the equivalent of the reflectance spectrum Rrs(λ)).
These values are given in the caption to Figure 11b. In the case of a typical Baltic shape we found
α = 90.3◦, and after taking into account the distortions, we found relative differences of about +/−4%,
what in terms of absolute values was about +4◦ and −3◦. For a typical shape of the data from the
NOMAD database we found α = 212.1◦, and after taking into account the distortions the differences in
percentages were smaller (below +/−1%), and in terms of absolute values ranged from about +1◦ to
−2◦. These examples show that one can imagine hypothetical distortions of reflectance spectra caused
by errors in various parts of the spectrum that could lead to noticeable changes in the value of the
calculated hue angle. In the next step, we assume arbitrarily possible hue angle errors up to +/−5%
or +/−5◦.
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Figure 11c illustrates the impact that errors in the hue angle assessment of +/−5% or +/−5◦ may
have on the retrieved value of the absorption coefficient a(440) using Equation (15). Both scenarios
indicate that errors in the assessment of a(440) will not exceed +/−17% in the α range from about 75◦ to
175◦. The biggest errors may occur in very clean waters (for u > 200◦). The above statements, however,
should probably be treated with some caution, and as qualitative rather than quantitative.
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Figure 11. Results of calculation illustrating the discussion of the possible measurement error
propagation related to the practical use of the empirical formulas presented here: (a) the relative
differences in the retrieved values of bb(620) using Equation (12), calculated for the scenarios of different
relative or absolute errors introduced in the input values of Rrs(620); (b) average spectra of normalized
reflectances Rrs(λ)/<Rrs> for the Baltic Sea data and NOMAD data, and their “distorted” versions;
the calculated values of the hue angle α are given in the caption; (c) the relative differences in the
retrieved values of a(440) with use of Equation (16), calculated for different relative or absolute errors
introduced in the input values of the hue angle α. The relative differences in panels a and c were
calculated according to the following formula: (rel. diff. in retrieved quantity Y)[%] = 100*[f(X + ε) −
f(X)]/f(X), where Y—a dependent variable (either bb(620) or a(440)), X—an independent variable (either
Rrs(620) or α), f(X)—an empirical formula tested (either Equation (12) or Equation (16)), ε—an error
introduced in the independent variable.
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3.6. Potential Applications: an Example of a New Semi-Analytical Algorithm for IOP Retrieval

We can suggest at least a few potential applications of the new empirical formulas derived in
this work. For fully professional applications, such as satellite optical data analysis, we can generally
suggest that the estimated information about bbp(620) and a(440) can be used at least to perform the
initial selection of Rrs spectra into subgroups that clearly differ in their optical properties. In our opinion,
this would help in the further development of various classification-based methods. The results shown
in Figure 10a suggest that another possibility would be to use the hue angle α directly in combination
with the magnitude of Rrs in the red part of the spectrum, in order to distinguish different cases of
seawater composition. As for applications that go beyond the fully professional ones, it seems that
the formula binding the absorption coefficient with the water colour observed by the human eye
(Equation (16)) may be relevant for the recently spreading Secchi disc and Forel-Ule scale applications
within citizen science (see e.g., [13,16,17]). In addition to these general suggestions, we present two
specific examples, showing how these new formulas can be used as calculation steps in new variants of
semi-empirical spectral deconvolution algorithms for analysing Rrs spectra. The first of these examples
is discussed below, while the second, alternative example, is presented in Appendix A.

Table 1 shows a new algorithm, which is constructed in a similar way as the aforementioned
standard QAA. It enables one to estimate the spectra of backscattering and absorption coefficients in
the entire visible spectral range. In this example we propose to start the calculation by estimating the
backscattering coefficient bb(620) (step 1), the full spectrum of the u ratio (step 2) and the absorption
coefficient a(440) (step 3). This can be done by means of the empirical equations established in this
work, i.e., 12, 14 and 16, as well as 7 to 10 for calculating the hue angle α. Later, from these empirically
estimated quantities, the full spectra of coefficients bb and a can be retrieved in an analytical manner
(steps from 4 to 7).

Table 1. An example of the new semi-analytical algorithm.

NEW ALGORITHM

1. bb(620) = f(Rrs(620)) (emp. formula—Equation (12))
2. u(λ) = f(rrs(λ)) (emp. formula—Equation (14))

where rrs(λ) calculated acc. to Lee et al. (2002) (Equation (1))
3. a(440) = f(α) (emp. formula—Equation (16)

where α = f(Rrs(λ)) (Equations (7)–(10))
4. bb(440) = [a(440)u(440)]/[1 − u(440)]; bbp(440) = bb(440) − bbw(440)

5. γ = log[bbp(440)/(bb(620) − bbw(620))]/log [620/440])
6. bbp(λ) = [bb(620) − bbw(620)] [λ/620]-γ; bb(λ) = bbw(λ) + bbp(λ))

7. a(λ) = bb(λ)/[(1/u(λ)) − 1]; an(λ) = a(λ) − aw(λ)

The optical coefficients retrieved with the aid of this new algorithm at three wavelengths—440, 555
and 620 nm—are compared with the measured values in Figure 12, and Table 2 gives the details of the
estimation errors calculated according to both standard arithmetic statistics and logarithmic statistics.
Since the variability of the optical coefficients analysed here is more than two orders of magnitude,
we will focus on the latter values only. In general, in the case of our entire dataset (i.e., combined data
from the Baltic Sea and the NOMAD database), the new algorithm allows us to retrieve coefficients bbp
with relatively low systematic errors: from −4.7% to 21.4% (this range represents 11 spectral bands
analysed between 412 nm and 715 nm). The statistical error according to logarithmic statistics can be
described by a quantity known as the standard error factor. This quantity allows us to estimate the
statistical error range by dividing and multiplying by its value (see the footnote to Table 2). In the case
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of the new algorithm and coefficient bbp, the standard error factors range from 1.32 to 1.64. As generally
expected, the precision in retrieving bbp with our algorithm is greater for data from the Baltic Sea,
representing generally higher values of this quantity. When estimating coefficient an(λ), we observe
a general tendency to achieve greater precision for shorter wavelengths and poorer precision for
longer wavelengths. This behaviour is also generally expected. The new algorithm estimates the
total absorption coefficient a with an accuracy similar at all wavelengths (with standard error factors
no higher than 1.30). However, when calculating coefficient an, the contribution of pure water to
coefficient a should be subtracted. Naturally, the estimation errors of coefficients an are much larger in
the spectral range where the absorption of pure water dominates the total absorption. In the range
between 412 and 620 nm, the new algorithm retrieves an(λ) with systematic errors from −18.8% to
14.2% and with standard error factors between 1.26 and 1.96. The standard error factors are relatively
low, of the order of 1.43 or less, only in the spectral range between 412 to 555 nm, where the influence
of pure water absorption is limited. Importantly, however, the accuracy of the new algorithm, though
far from perfect, is clearly better than the results that can be obtained when the standard QAA is
applied to our data (see the additional rows in Table 2 related to the use of the latest version of QAA).
The application of QAA to our dataset leads to systematic errors ranging from approximately +30%
to +50% for bbp, and from ca. −10% to −20% for an. The standard error factors are also clearly higher
compared to the results obtained using the new algorithm.

Table 2. Summary of estimation errors of coefficients bbp and an obtained when the new algorithm
(formulated in this work) and the standard quasi-analytical algorithm (QAA) (according to Lee et al. [5];
version 6 [37]) were applied to the entire dataset used in this work, as well as to the subsets representing
the Baltic Sea data. The statistical parameters calculated according to arithmetic statistics: the mean
normalized bias (MNB) 1 and the normalized root mean square error (NRMSE) 2; the parameters
calculated according to logarithmic statistics: the systematic error (sys.err.) 3 and the standard error
factor (X) 4.

Retrieved
Quantity

NEW ALGORITHM QAA v6

Wavelength 440 nm 555 nm 620 nm 440 nm 555 nm 620 nm

bbp MNB [%] 30.1 11.0 5.1 72.4 75.1 77.6
(all data) NRMSE [%] 67.2 36.4 32.2 393.9 358.9 341.9
(n = 238) sys. err. [%] 17.5 6.2 0.9 29.2 41.4 47.2

X 1.54 1.34 1.32 1.72 1.55 1.49

bbp MNB [%] −0.3 −0.4 0.1 3.4 23.6 34.9
(Baltic Sea) NRMSE [%] 29.8 24.2 23.5 29.9 31.1 32.1

(n = 148) sys. err. [%] −4.7 −3.2 −2.5 −0.8 19.8 31.2
X 1.36 1.28 1.26 1.33 1.28 1.27

an MNB [%] 2.8 21.7 47.3 −19.2 −5.7 29.5
(all data) NRMSE [%] 22.6 46 149.5 20.2 35.2 104.1
(n = 173) sys. err. [%] 0.2 14 14.2 −21.8 −12.4 n.a.

X 1.26 1.43 1.96 1.3 1.48 n.a.

an MNB [%] 2.5 12.9 16 −18.4 −2.7 32.3
(Baltic Sea) NRMSE [%] 23.1 38.9 66 21 35.1 97.7

(n = 148) sys. err. [%] −0.2 6.9 −0.7 −21.2 −9.1 n.a.
X 1.26 1.39 1.76 1.31 1.46 n.a.

1 MNB = 1
n
∑n

i=1

( Pi − Oi
Oi

)
, where Pi, Oi—predicted and observed values, respectively; 2 NRMSE =
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one to quantify the range of the statistical error, which extends from the value of σ− = (1/X) − 1 to the value of σ+ = X − 1.
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values for three spectral bands: 440, 555 and 620 nm: (a) comparison for the backscattering coefficient
of particulate matter bbp; (b) comparison for the absorption coefficient of the sum of dissolved and
suspended constituents an.

Clearly, the results discussed above and presented in Table 2 should not be treated as a formal
validation of the new algorithm. For such a purpose an additional, independent set of data not
used in formulating the new algorithm should be used. But all these results point to the fact that for
data representing a marine environment with high concentrations of both particulate and suspended
matter, one can use relationships other than the standard empirical ones in the formulation of the
semi-analytical inversion algorithm. In our opinion, the new algorithm, alternative to the standard
QAA, could be used at least in situations where Rrs(620) is equal to or greater than ca. 7 × 10−4 sr−1,
which corresponds to the lower range (5th percentile) of the values that we recorded in the Baltic Sea.
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4. Summary

The empirical formulas presented in this work were derived on the basis of a combined dataset.
Among others things, we used our own set of data obtained in the specific, optically complex
environment of the Baltic Sea, which is characterized by high concentrations of both dissolved and
suspended matter. To increase the potential applicability of these formulas, this dataset was expanded
with additional data from the NOMAD database, representing different regions of the global oceans,
with generally much lower concentrations of optically important water constituents.

One of the new empirical formulas presented (Equation (12)) can be used to estimate the
backscattering coefficient bb(620) directly from the magnitude of the remote-sensing reflectance Rrs

in the red part of the visible spectrum. Its existence can be explained by the chain of more direct
relationships between the backscattering coefficient bb in the red band, the ratio of backscattering to
the sum of absorption and backscattering (u), and the remote-sensing reflectances “just below” and
“just above” the sea surface (rrs and Rrs, respectively).

Another empirical formula presented in this work, is the one which relates the absorption
coefficient a(440) to the hue angle α (Equation (16)). The latter is a single quantitative measure of
the colour of water as it might be perceived by the human eye, or by any hypothetical radiometric
instruments having three independent broad channels for acquiring colour information (i.e., blue,
green and red channels). The hue angle α can be easily calculated if the spectral shape of Rrs is known.

Comparison of the new empirical formulas with the results of simple modelling performed
for both Case 1 and Case 2 scenarios appears to confirm that they can be treated as acceptable first
approximations of the dependences between remote-sensing reflectance and water IOPs in selected
spectral bands.

One possible application of the new formulas is to use them as first calculation steps of the new
version of the semi-analytical algorithm for analysing remote-sensing reflectance spectra (see algorithm
in Table 2). This algorithm can offer an alternative to the known, standard quasi-analytical algorithm
(QAA). It enables one to estimate the full spectra of the backscattering and absorption coefficients in the
entire visible spectral range, and it does not require any additional a priori assumptions regarding the
spectral shape of the absorption coefficients of dissolved and suspended seawater components. When
applied to our dataset, the new algorithm offers a better precision than the current version of QAA.
We believe that semi-empirical algorithms of this type, belonging to the category described as spectral
deconvolution, should be developed further. They should increase the precision of IOP retrieval in
different marine environments, where there may be significant changes in the optical properties of
various components of seawater, and where, for example, the assumption of the constant/invariant
shape of the spectral absorption coefficient of phytoplankton should be avoided.

It also seems to us that, in addition to being used as an element in multi-stage algorithms, the
new formula linking the absorption coefficient with the hue angle may be of particular interest to the
marine optics research community. In recent years, the trichromatic color vision mechanism has been
used in practice only sporadically, and in our opinion, it has great potential both in purely professional
applications and for the development of citizen science.
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Appendix A

Table A1 shows an alternative version of the new algorithm that can be constructed in a similar
way as the standard QAA. In this alternative version, we propose to start the calculation by estimating
the backscattering coefficient bb(620) (step 1), the full spectrum of the u ratio (step 2) and the spectral
slope of the suspended matter backscattering coefficient γ (step 3). This can be done by means of the
empirical equations derived in this work, i.e., 12, 14 and 15a. Later, from these empirically estimated
quantities, the full spectra of coefficients bb and a can be retrieved in an analytical manner (steps 4
and 5). Please note that this version does not use an empirical formula linking the absorption coefficient
a(440) with the hue angle α. The estimation errors for three wavelengths—440, 555 and 620 nm—are
given in Table A2.

Table A1. An alternative example of the new semi-analytical algorithm.

ALTERNATIVE NEW ALGORITHM

1. bb(620) = f(Rrs(620)) (emp. formula—Equation (12))
2. u(λ) = f(rrs(λ)) (emp. formula—Equation (14))

where rrs(λ) calculated acc. to Lee et al. (2002) (Equation (1))
3. γ = f(rrs(510)/rrs(555)) (emp. formula—Equation (15a))

4. bbp(λ) = [bb(620) − bbw(620)] [λ/620]−γ; bb(λ) = bbw(λ) + bbp(λ)
5. a(λ) = bb(λ)/[(1/u(λ)) − 1]; an(λ) = a(λ) − aw(λ)

Table A2. Summary of estimation errors of coefficients bbp and an obtained when the alternative version
of the new algorithm were applied to the entire dataset used in this work, as well as to the subsets
representing the Baltic Sea data. The statistical parameters are the same as in Table 2.

Retrieved
Quantity

ALT. NEW ALG.

Wavelength 440 nm 555 nm 620 nm

bbp MNB [%] 19.8 9.4 5.1
(all data) NRMSE [%] 52.1 36.5 32.2
(n = 238) sys. err. [%] 11.9 4.5 0.9

X 1.42 1.34 1.32

bbp MNB [%] 4.2 1.2 0.1
(Baltic Sea) NRMSE [%] 29.7 24.6 23.5

(n = 148) sys. err. [%] 0.1 −1.7 −2.5
X 1.33 1.28 1.26

an MNB [%] 6.6 24 47.3
(all data) NRMSE [%] 23.3 47.7 149.5
(n = 173) sys. err. [%] 4 16.2 14.2

X 1.25 1.43 1.96

an MNB [%] 7 15 16
(Baltic Sea) NRMSE [%] 23.6 40.5 66

(n = 148) sys. err. [%] 4.2 8.9 −0.7
X 1.26 1.39 1.76
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