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Abstract: Surface plasmon enhanced light scattering (SP-LS) is a powerful new sensing SPR modality
that yields excellent sensitivity in sandwich immunoassay using spherical gold nanoparticle (AuNP)
tags. Towards further improving the performance of SP-LS, we systematically investigated the AuNP
size effect. Simulation results indicated an AuNP size-dependent scattered power, and predicted
the optimized AuNPs sizes (i.e., 100 and 130 nm) that afford extremely high signal enhancement
in SP-LS. The maximum scattered power from a 130 nm AuNP is about 1700-fold higher than
that obtained from a 17 nm AuNP. Experimentally, a bio-conjugation protocol was developed by
coating the AuNPs with mixture of low and high molecular weight PEG molecules. Optimal IgG
antibody bioconjugation conditions were identified using physicochemical characterization and a
model dot-blot assay. Aggregation prevented the use of the larger AuNPs in SP-LS experiments.
As predicted by simulation, AuNPs with diameters of 50 and 64 nm yielded significantly higher
SP-LS signal enhancement in comparison to the smaller particles. Finally, we demonstrated the
feasibility of a two-step SP-LS protocol based on a gold enhancement step, aimed at enlarging 36 nm
AuNPs tags. This study provides a blue-print for the further development of SP-LS biosensing and
its translation in the bioanalytical field.

Keywords: surface plasmon resonance; surface plasmon enhanced light scattering; gold
nanoparticles; signal amplification; gold enhancement

1. Introduction

Surface plasmon resonance (SPR) has matured into one of the most powerful and versatile
bioanalytical techniques. It has been widely employed to monitor biomolecular binding events
including cells [1–3], proteins [4,5] and nucleic acids [6] and more generally for the development of
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medical diagnostic technology [7]. Signal amplification tags are commonly employed to enable the
detection with conventional SPR set-up of analytes of either low molecular weight or at ultra-low
concentrations. Along with SPR amplification strategies based on fluorescent dyes [8,9] and enzymatic
reactions [10,11], gold nanoparticles (AuNPs) [12] have been extensively used due to their unique
optical property, stability, and ease of preparation. In the standard sandwich sensing configuration,
AuNP tags modified to bind to the molecular target are used to drastically increase the refractometric
signal associated to the capture of the target on the SPR sensor.

We have previously reported the novel concept of surface plasmon enhanced light scattering
(SP-LS) biosensing [13]. In this paradigm, the scattered light generated by AuNP tags is induced
by the excitation of propagating surface plasmons (PSPs) at the AuNP/water interface, which is
transmitted to optical power scattered by AuNPs. The enhanced sensitivity is associated to the strong
electromagnetic field enhancement of the AuNPs, which is converted into strong scattering signals and
allows the improved detection of the target analytes. SP-LS with spherical AuNP tags with diameters
of 36 nm resulted in approximately three orders of magnitude improvement in sensitivity as compared
with that of conventional refractometric SPR measurements for the detection of cardiac troponin-I
and miRNA [13,14]. However, while the AuNP size effect has been thoroughly investigated for
refractometric SPR sensing [15], as well as for SPR based on phase measurement [16,17], this knowledge
is missing for SP-LS sensing. Scattered light intensity is highly dependent on particle size according to
the Rayleigh-Gans-Debye approximation [18–20], and there is therefore significant scope to further
increase the performance of SP-LS biosensing by elucidating the effect of the size of the AuNP tags.
To this end, we conducted both simulation and experimental studies designed to fully investigate the
size dependence of AuNP tags. In addition, we also optimized a protocol for the bioconjugation of the
AuNP molecular tags. Previous studies have indeed shown that a careful balance is needed between
optimizing the signal enhancement associated to the binding of the AuNP tags onto the sensor surface
and maximizing the overall binding of the AuNP tags to the target captured on the surface [21]. Finally,
building on the simulation data, we also demonstrate the feasibility of a two-steps SP-LS biosensing
protocol based on a gold-enhancement method aimed at increasing the size, and therefore the signal of
the AuNP tags.

2. Materials and Methods

2.1. Materials

Chloroauric acid (HAuCl4·3H2O), sodium citrate, hydroquinone, Tween 20,
N-hydroxy-succinimide (NHS), N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride
(EDC), sodium chloride, hydroquinone and phosphate buffer saline (PBS) were purchased from Sigma
Aldrich (Castle Hill NSW, Australia). HS-(PEG)7-COOH (MW 456.8 Da) was acquired from Polypure
(Oslo, Norway) and HS-(PEG)x-OMe (MW 2000 and 5000 Da) was obtained from Rapp Polymere
(Tübingen, Germany). Mouse anti-goat IgG antibody (cat. No#. SAB3700264-1MG), Goat anti-mouse
IgG antibody (cat. No#. SAB3701071-2MG), bovine serum albumin (BSA), horseradish peroxidase
(HRP) enzyme were purchased from Sigma-Aldrich. Cellulose nitrate strip (pore size 0.45 µm)
was purchased from Sartorius Stedim Biotech GmbH (Goettingen, Germany). PBST was prepared
by addition of 0.1% tween-20 (Sigma-Aldrich) in PBS. TMB and H2O2 substrate were supplied by
Zhengzhou Humanwell Biocell Biotechnology (Zhengzhou, China).

2.2. Synthesis of Au Seeds and AuNPs

Au seeds of ~17 nm size were synthesized by the standard citrate reduction method [22]. AuNPs
of different sizes were subsequently synthesized by mixing specific volumes of the as-synthesized Au
seeds, AuHCl4 (1%), sodium citrate (1%) and hydroquinone (0.03 M) at room temperature. The size
distribution of the AuNPs was measured using a Zetasizer Nano ZS equipped with a 633 nm He-Ne
laser from Malvern Instruments (Malvern, UK). Fluctuations in the intensity of scattered light (at 90◦ to
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the incident) were analyzed through the use of first-order and second-order autocorrelation functions.
The Z-Average size and polydispersity index were obtained using the manufacturer’s software
based on the cumulants method. UV-Vis absorption spectra were acquired on a Cary 5 UV-Vis-NIR
spectrophotometer (Varian, CA, USA).

2.3. Growth of AuNPs with Gold Enhancement Reagent

As-prepared AuNPs were enlarged following a gold enhancement (GE) protocol [23]. The growth
reactions were performed in solution as well as directly on the SPR chip to increase the size of
surface-bound AuNPs. Briefly, fresh GE reagent was prepared immediately before the growth reaction
by mixing HAuCl4 with NH2OH at the volume ratio 6 to 1. In the solution phase, 1 volume of the
as-prepared AuNPs was mixed with 1 volume of the GE reagent and the mixture was incubated at
room temperature at three different time intervals. UV-Vis was used for monitoring the localized
SPR (LSPR) shift of the AuNPs before and after the growth reaction. The size and morphology of
the enlarged AuNPs were studied by SEM. In addition, the growth reactions were performed on the
surface of SPR chip by exposing the chip surface-bound AuNPs to the GE reagent for 5 min.

2.4. AuNP Conjugation with IgG

As-synthesized AuNPs were functionalized with goat anti-mouse IgG using EDC/NHS chemistry.
Briefly, AuNPs were washed by centrifugation at 16,000 rpm for 10 min. A fresh 4:1 (v/v) ratio of
HS-(PEG)7-COOH (2.18 mM) to HS-(PEG)x-OMe (2.18 mM) was added to the washed AuNPs and
the mixture was incubated overnight at room temperature. The resulting PEGylated AuNPs were
washed twice by centrifugation at 16,000 rpm for 10 min. The second pellet was reacted with a fresh
solution of EDC/NHS (0.4 M/0.1 M) for 10 min at room temperature to activate the carboxylic groups
of the PEGylated AuNPs. The excess EDC/NHS was washed off by centrifugation. Immediately,
mouse anti-goat IgG (1 mg/mL) was incubated with the activated AuNPs for 3 h at room temperature.
The excess reagents were removed from the bio-conjugated AuNPs by centrifugation of the mixture at
4 ◦C, and the samples were resuspended in PBST containing 1% BSA and stored at 4 ◦C until use.

2.5. Confirmation of Bioconjugation with Dot Blot Assay

A dot blot assay was used to investigate the immune-binding efficiency of the prepared
antibody-AuNP conjugate in recognizing mouse anti-goat IgG used as a model target antigen. Briefly,
three different concentrations of mouse anti-goat IgG (1, 0.1, 0.01 mg/mL) in PBS were spotted on
cellulose nitrate strips. Goat anti-mouse IgG (1 mg/mL) was spotted as control. The blotted samples
were left for 15 min at room temperature to air-dry. Then, the strip was immersed in 5% BSA for 30 min
at room temperature as a blocking step. The strip was incubated with the antibody-AuNP (17 nm)
conjugate (OD = 0.2) for 2 h at room temperature. The excess AuNPs were washed off twice with MQ
water containing 0.05% Tween-20. The color change was observed by the naked eyes.

2.6. SPR Sensor Preparation and Optical Setup

48 nm of gold film on top of 2 nm of Cr film was sputtered on LaSFN9 glass to prepare SPR
sensors as previously described [24]. The detailed optical setup for SP-LS is depicted in Figure S1.
Briefly, the flow-cell made of PDMS spacer with a volume of 25 µL was pressed against the antibody
functionalized sensor and a quartz lid connected with the tubing (inner diameter = 0.13 mm, Tygon
R3607) through the inlet and outlet linked to a peristaltic pump at the flow rate of 20 µL/min for sample
circulation. The scattered light emitted from the sensor surface was collected through the flow-cell
by a lens (numerical aperture NA = 0.3), passed through a ND filter, and its intensity was detected
by a photomultiplier tube (PMT). The measurement of refractometric scheme (angle of incidence
vs reflectance) was collected by photodiode and the measurement of scattered light scheme (angle
of incidence vs scatted light intensity) was monitored by PMT. Notably, these two schemes can be
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measured at the same time through the Wasplas software developed at the Max Planck Institute of
Polymer Research (Mainz, Germany).

2.7. Simulations

The simulation of the SPR-LSPR coupling system was conducted with the three-dimensional
(3D) finite element method using COMSOL Multiphysics 5.3 with the RF Module. The computational
domain is a unit cell consisting of one AuNP surrounded by water sitting on a multilayered SPR
substrate containing a prism LaSFN9, 2 nm-thick Cr film, 48 nm-thick Au film, and a 10 nm-thick
dielectric coating. The 10 nm spacing was chosen based on the approximated distance between the
Au film and AuNP tags for the anti-IgG model system used in the experimental study. The lateral
dimension of the unit cell was set as the pitch p, i.e., the center-to-center distance between AuNPs.
Periodic boundary conditions were employed at the sides of the unit cell, while water and LaSFN9
perfectly matched layers were applied at the top and bottom of the analyzed structure. In the
simulations, the refractive index of the 48 nm-thick Au film was taken as 0.18 + 3.5i under the
illumination of a 632.8 nm excitation light, and 0.6 + 2.25i for the AuNPs. The refractive index for the
chromium (Cr) film is 3.14 + 3.31i, and it is 1.333, 1.845, and 1.46 for water, prism LaSFN9, and the
dielectric coating, respectively.

A TM-polarized excitation light source with the fixed wavelength of 632.8 nm was introduced in
the LaSFN9 domain. The incident light propagates from the prism LaSFN9 into the Au film-AuNPs
coupling system, and was absorbed, reflected, or transmitted on striking the coupling system.
The absorbed power was calculated by the volume integration of the resistive heating in the metallic
nanostructure (i.e., Cr film, Au film, and AuNPs). The reflected (or transmitted) power was calculated
by the surface integration of far-field power flow in the prism LaSFN9 (or water) domain. The incident
angle of the TM-polarized light was varied to match the SPR condition.

After solving the 3D Maxwell’s equations, the absorption, reflection, and transmission as a
function of the incident angle was obtained. The scattered power from AuNPs was computed through
the difference of the transmitted power with and without AuNPs, and normalizing it with the area of
the simulated unit cell. In addition, the electric field distribution at the resonant angle was obtained
from the COMSOL simulations.

3. Results and Discussion

3.1. Theoretical Modeling

In the SP-LS sensing mode, SPs are excited with the Kretchmann configuration [25], when the
following condition is fulfilled:

kx = ksp (1)

where kx = k0nLaSFN9 sin θ0 is the x-component of the wavevector of incident light that is parallel to
the Au film, and ksp is the wavevector of SP oscillations. k0 = 2π/λ is the wavevector of the incident
light (with the wavelength λ = 632.8 nm) in free space, and nLaSFN9 = 1.845 is the refractive index
of the prism LaSFN9. θ0 = 52.4◦ is the angle of light at the interface between prism LaSFN9 and Au
film, while the incident angle at the air/prism interface is θinc = 58.75◦. Therefore, the excited SP
possesses the wavelength of λSP = 433 nm calculated from Equation (1). The excited PSP along the Au
film then interacts with the AuNPs, and excites the localized SPs (LSPs) of the AuNPs, resulting in
localized electromagnetic field around the AuNPs, as shown in Figure 1a. The AuNP size-dependent
reflectivity-incident angle curves are plotted in Figure 1b. The minimum reflectivity increases with
the AuNP size due to the increasing plasmon damping, which has been experimentally reported [25].
For the angular resonant dips, 17 nm-, 36 nm-, and 50 nm-sized AuNPs possess the same resonance
angle (58.75◦) as that of AuNPs-devoid case (see Figure 1b). The invariable resonance angle after the
adsorption of AuNPs can be attributed to the small size of AuNPs and the relatively low particle
surface coverage (p = 800 nm) has negligible effect on the plasmon shifts. With relatively large AuNPs
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(64 nm, 100 nm, 130 nm, and 170 nm), the resonance angle decreases with the AuNP size, as shown in
Figure 1b. The negative angular shift of the resonant dip has been previously reported by Uchiho et al.
for the adsorption of 150 nm AuNPs [26].
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Figure 1. (a) Simulation of the field enhancement distribution on the SPR sensor surface for AuNPs
with diameters ranging from 17 to 170 nm. Simulated angular SPR spectra (b) and scattered power (c) as
a function of the incident angle AuNP probes with diameters ranging from 17 to 170 nm. Configuration
for simulation: dielectric layer thickness of 10 nm; pitch between AuNPs at p = 800 nm.

The AuNP size-dependent scattered power as a function of the incident angle is shown in
Figure 1c. The power scattered from AuNPs increases with the AuNP size from 17 nm to 130 nm.
17 nm AuNPs exhibited negligible scattered power as compared to the larger AuNPs. The maximum
power (i.e., the peak) scattered from 130 nm AuNPs is found to be about 1700-fold higher than that
from 17 nm AuNPs. This result confirms that larger AuNPs provide higher signal amplification in
the SP-LS sensing scheme. However, the maximum scatter power for 170 nm AuNPs is about half
of that obtained for 100 nm and 130 nm AuNPs, demonstrating the existence of an optimized size.
This behavior is presumably due to the combined effect of the PSP-LSP coupling and the scattering
effect of AuNPs. It has been demonstrated that with the adsorption of AuNPs on the SPR sensor
surface, there is significant variations in the extinction and scattering spectrum of AuNPs [27,28].
The wavelength of LSP for the 17 nm-, 36 nm-, 50 nm-, 64 nm-, 100 nm-, 130 nm-, and 170 nm-sized
isolated AuNPs (i.e., not coupled with PSP) are 523 nm, 526 nm, 530 nm, 537 nm, 570 nm, 605 nm,
and 683 nm, respectively (see the normalized extinction efficiency Qext in Figure S2a, supporting
information). Therefore, the efficiency of PSP-LSP coupling decreases with the AuNP size due to the
increasing gap between the wavelengths of LSP and SP (λSP = 433 nm). The scattering efficiencies
Qsca for isolated AuNPs with different sizes were compared in Figure S2b, which reveals that smaller
AuNPs scatter less power at the wavelength of SP λSP. The combination of these two effects results
in the existence of an optimal AuNP size, 130 nm in this case, for the scattered power in the SP-LS
sensing scheme.
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3.2. Optimization of Mixed PEG Coatings

Simulation demonstrated that large AuNPs are preferable as they induce greater scattered
signals. AuNPs with various sizes were therefore synthesized to experimentally investigate the AuNP
size-dependence in the SP-LS scheme. AuNPs were first PEGylated prior to the bioconjugation of
antibodies. However, significant aggregation occurred for larger AuNPs (> 64 nm) during the antibody
modification step, which prevented their utilization in SP-LS measurements. The optimization of PEG
coatings is not trivial as the polymeric biointerface plays a crucial role in both maintaining the colloidal
stability of the samples as well as controlling the immuno-binding efficiency to biological targets [29,30].
The as-synthesized AuNPs were functionalized with the heterobifunctional PEG molecules. Building
on our previous study for Au nanorods [21], different molar ratios of high molecular weight PEG (MW
2000 Da and MW 5000 Da) and low molecular weight PEG (MW 458.6 Da) were employed to optimize
the colloidal stability as well as immuno-binding efficiency to molecular targets bound onto solid
substrates. For instance, AuNPs functionalized with low molecular weight PEG and high molecular
weight PEG at the molar ratio of 2 to 1 is denoted as PEG2k@2S1L. The carboxylate end group of the
PEG molecules was activated with standard carbodiimide chemistry to conjugate goat anti-mouse IgG.
Goat anti-mouse and mouse anti-goat IgG were used in this study as a model immunoassay [31,32] to
investigate the size-dependence of SP-LS. As shown in the UV-Vis spectra (Figure 2), an 8 nm blue
shift of the absorbance peak was measured after PEGylation in the case of 17 nm AuNPs; there was
no significant shift in the absorbance peak after the conjugation of antibodies. In order to further
validate the successful modification of antibody on AuNP surface, DLS was used to characterize the
increment of particle size. We measured increases of the hydrodynamic thickness (Table 1) for PEG2k
modified AuNPs of ~4 nm and ~19 nm, respectively, for PEG2k@S2L1 and PEG2k@S4L1, suggesting
that more antibodies can be conjugated on the AuNPs with more activated sites (i.e., higher ratio of
LMW PEG). However, there was negligible increase in the particle size in the case of PEG5k, which
might be attributed to the fact that longer PEG chain sterically limits the bioconjugation.
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anti-mouse IgG via various poly(ethylene glycol) linkers.
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Table 1. Hydrodynamic diameters of as synthesized AuNPs (17 nm), and PEGylated and anti-mouse
IgG bioconjugated AuNPs by dynamic light scattering.

17 nm
AuNP PEG2k_S2L1 PEG2k_S2L1_IgG PEG2k_S4L1 PEG2k_S4L1_IgG PEG5k_S2L1_IgG PEG5k_S4L1_IgG

Size (nm) 18.1 ± 0.1 30.6 ± 0.1 34.9 ± 0.3 32.2 ± 0.1 51.1 ± 0.1 35.0 ± 0.4 34.6 ± 0.2

PEG layer - 12.5 12.5 14.1 14.1 - -

IgG layer - - 4.3 - 18.9 - -

3.3. Confirmation of the Immuno-Binding Efficiency Based on Dot Blot Assay

An IgG immuno-dot blot assay was employed to further confirm antibody functionality after
conjugation onto AuNPs. As depicted in Figure 3, mouse anti-goat IgG was spotted on the first row of
membrane at serial of concentrations (1, 0.1, 0.01 mg/mL) and goat anti-mouse IgG was spotted on
the second row as a control at the same concentrations. Goat anti-mouse IgG functionalized AuNPs
were prepared and spotted on the membrane. One can easily see the presence of the goat anti-mouse
IgG-AuNPs on the mouse anti-goat IgG spotted strips as compared with the control goat anti-mouse
IgG strips, demonstrating the specific recognition of the AuNPs (Figure 3a). Additionally, there is a
concentration dependent positive signal in PEG2K@2S1L and the signals were significantly enhanced
with the increasing ratio of the low molecular weight PEG on AuNPs as in PEG2K@4S1L. However,
there was only negligible binding of the AuNPs functionalized with 5k PEG (Figure 3b), which is
in good agreement with the results from the UV-Vis and DLS characterization. Severe non-specific
adsorption only occurred in the case of AuNPs functionalized with low molecular weight PEG,
as shown in Figure 3c (high binding on the control goat anti-mouse IgG strips). This is likely due to the
severe particle aggregation after antibody functionalization as can also be seen from the broadening
of UV-Vis spectra (PEG@anti-mouse IgG, Figure 2). In fact, aggregation was observed during the
carbodiimide activation step as shown by change in the color of the solution. This phenomenon is
consistent with our previous finding [29]. Similar results were obtained for larger AuNPs. Based on
the physicochemical characterization with UV-Vis and DLS and the data obtained from the dot-blot
immunoassay, PEG2K@4S1L was selected as optimal PEGylation and employed subsequently for the
systematic investigation of the role of AuNP size in SP-LS.
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Figure 3. Dot-blot strips analysis of immune-binding efficiency for PEGylated AuNPs (17 nm) coated
with various ratios of short to long PEG molecules. Photographic images of the dot-blot strips showing
the specific (Mousse anti-goat IgG strips) and non-specific (Goat anti-mousse IgG strips) adsorption of
goat anti-mouse IgG bioconjugated AuNP probes with various PEG coatings: (a) PEG2K@2S1L and
PEG2K@4S1L; (b) PEG5K@2S1L and PEG5K4S1L; (c) only short PEG. (d) Photographic image of the
AuNP solutions at the tested concentrations.
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3.4. Confirmation of Immuno-Binding Efficiency Using SPR

To further investigate the specificity and sensitivity of the biofunctionalized AuNPs in standard
SPR refractometric biosensing, 17 nm AuNPs were PEGylated and conjugated with goat anti-mouse
IgG antibody as described above. Mouse anti-goat IgG functionalized SPR sensors were exposed to
goat anti-mouse IgG modified AuNPs of increasing concentrations and both the reflectivity versus
angular shift and kinetic measurement were collected as shown in Figure 4a–d. As expected, the
increment in angular shifts and changes in reflectivity were AuNP concentration dependent. Notably,
there was a 0.4% reflectivity change, even at highly diluted AuNP concentrations, confirming the high
binding ability of the Au tags on the biofunctionalized sensor surface which can be credited to the
optimized bioconjugation. We also performed control experiments to evaluate the specificity of the
biofunctionalized AuNPs. When goat anti-mouse IgG functionalized AuNPs were flowed over goat
anti-mouse IgG immobilized SPR sensor surface, no significant AuNPs adsorption was measured both
in angular and kinetic measurements. In addition, the specific adsorption of AuNPs on the SPR sensing
area can be easily observed by the naked eyes at high AuNP concentrations (inserts, Figure 4b,d).

Sensors 2019, 19, x FOR PEER REVIEW 8 of 12 

 

the optimized bioconjugation. We also performed control experiments to evaluate the specificity of 
the biofunctionalized AuNPs. When goat anti-mouse IgG functionalized AuNPs were flowed over 
goat anti-mouse IgG immobilized SPR sensor surface, no significant AuNPs adsorption was 
measured both in angular and kinetic measurements. In addition, the specific adsorption of AuNPs 
on the SPR sensing area can be easily observed by the naked eyes at high AuNP concentrations 
(inserts, Figure 4b and 4d). 

 

Figure 4. Validation of immune-binding assay for goat anti-mouse IgG functionalized 17 nm AuNPs 
on mouse anti-goat IgG SPR sensors. (a) Typical angular measurement as a function of AuNP 
concentration and (b) corresponding kinetic measurements; Control angular (c) and kinetic (d) 
measurements on goat anti-mouse IgG sensors as a function of AuNP concentration. 

3.5. AuNP Size-Dependence in SP-LS Sensing 

In our previous work, we have shown that 36 nm AuNPs used as SPR signal amplification tag 
yield approximately three orders of sensitivity enhancement in SP-LS sensing over conventional 
refractometric SPR. Simulation experiments shown in Figure 1 indicate that larger AuNPs results in 
higher scattered power in the SP-LS SPR sensing scheme. To experimentally verify this prediction, 
AuNPs with diameters of 17, 36, 50, and 64 nm were synthesized and modified with PEG2K@4S1L as 
described above and subsequently conjugated with goat anti-mouse IgG to investigate signal 
enhancement in SP-LS. However, larger AuNPs could not be acceptably bioconjugated as 
aggregation and sedimentation was observed for all the coatings tested. The SPR sensor surfaces were 
first modified with a mouse anti-goat antibody as for the previous refractometric SPR study. Typical 
angular reflectivity and scattering spectra are shown in Figure 5. Larger AuNPs with diameters of 50 
nm and 64 nm induced significantly higher scattered light as compared with smaller AuNPs (17 nm 
and 36 nm), which is in agreement with the simulation results shown in Figure 1c. The AuNP tags 
concentration used in this experiment was very low (normalized to an optical density OD = 0.1) as 
higher concentrations resulted in signal saturation owing to the high sensitivity of the SP-LS sensing 
scheme. As a result, no angular shifts were measured in the measurements presented in Figure 5. No 
significant increase was measured for the 64 nm AuNPs in comparison to the 50 nm ones, which 
might be explained by the presence of small extend of aggregation in this sample.  

Figure 4. Validation of immune-binding assay for goat anti-mouse IgG functionalized 17 nm AuNPs on
mouse anti-goat IgG SPR sensors. (a) Typical angular measurement as a function of AuNP concentration
and (b) corresponding kinetic measurements; Control angular (c) and kinetic (d) measurements on
goat anti-mouse IgG sensors as a function of AuNP concentration.

3.5. AuNP Size-Dependence in SP-LS Sensing

In our previous work, we have shown that 36 nm AuNPs used as SPR signal amplification
tag yield approximately three orders of sensitivity enhancement in SP-LS sensing over conventional
refractometric SPR. Simulation experiments shown in Figure 1 indicate that larger AuNPs results in
higher scattered power in the SP-LS SPR sensing scheme. To experimentally verify this prediction,
AuNPs with diameters of 17, 36, 50, and 64 nm were synthesized and modified with PEG2K@4S1L
as described above and subsequently conjugated with goat anti-mouse IgG to investigate signal
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enhancement in SP-LS. However, larger AuNPs could not be acceptably bioconjugated as aggregation
and sedimentation was observed for all the coatings tested. The SPR sensor surfaces were first
modified with a mouse anti-goat antibody as for the previous refractometric SPR study. Typical
angular reflectivity and scattering spectra are shown in Figure 5. Larger AuNPs with diameters of
50 nm and 64 nm induced significantly higher scattered light as compared with smaller AuNPs (17 nm
and 36 nm), which is in agreement with the simulation results shown in Figure 1c. The AuNP tags
concentration used in this experiment was very low (normalized to an optical density OD = 0.1) as
higher concentrations resulted in signal saturation owing to the high sensitivity of the SP-LS sensing
scheme. As a result, no angular shifts were measured in the measurements presented in Figure 5.
No significant increase was measured for the 64 nm AuNPs in comparison to the 50 nm ones, which
might be explained by the presence of small extend of aggregation in this sample.Sensors 2019, 19, x FOR PEER REVIEW 9 of 12 
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64 nm.

Further optimization of the bioconjugation strategy is warranted to fully take advantage of the
huge signal increase in the SP-LS scheme for very large AuNPs. However, in order to harness the
potential of large AuNPs as a signal amplification tag, we investigated the feasibility of a two-step
process referred to as AuNP enlargement mediated SP-LS. Gold and silver enhancement procedures
have been widely employed for the enlargement of AuNP tags in immunoassays. In this work,
PEGylated AuNPs with diameters of 17 to 64 nm were first enlarged with GE reagents in solution and
characterized by SEM to monitor the resulting size increase.

As shown in Figure 6a, the size of the AuNP increased to 43 nm, 88 nm, 134 nm and 186 nm,
respectively for the 17, 36, 50 and 64 nm AuNPs. AuNPs with diameters of 36 nm were therefore
selected to demonstrate the feasibility of AuNP enlargement mediated SP-LS as the size after GE
(~100 nm) is predicted to yield extremely high signal amplification in SP-LS as per the theoretical
modeling in Figure 1c. 36 nm of AuNPs bioconjugated with goat anti-mouse IgG reacted with the
mouse anti-goat IgG functionalized SPR sensors, which was followed by incubation with the GE
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solution for 5 min. The scattered signal as a function of the angle of incidence was monitored by SP-LS
as shown in Figure 6b. Approximately one-fold scattered signal enhancement was achieved after
GE confirming the successful enlargement of the 36 nm AuNPs on the surface. Control experiment
indicated no significant signal changes in the absence of the AuNP tags as shown in Figure S3,
supporting information. While the enhancement measured here is lower than that predicted by the
simulation, it conceptually demonstrates the feasibility of AuNP enlargement mediated SP-LS.
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4. Conclusions

Building on our previous report of the exquisite sensitivity afforded by SP-LS sensing scheme
in sandwich immunoassay format, we have investigated the size-dependent effect of AuNP signal
amplification tags in the SP-LS sensing scheme, from both theoretical and experimental standpoints.
Simulation demonstrated the direct relationship between the NP size and scattered signals. AuNPs
with sizes of 100–130 nm were predicted to induce extremely high scattered signal. We then
experimentally optimized a coating procedure based on mixed PEG molecules to maximize biding to
solid substrate, while preventing aggregation of the AuNPs. However, AuNPs larger than 64 nm could
not be satisfactorily bioconjugated with monoclonal antibodies, preventing their application in the
SP-LS experimental study. Using a model immunoassay, we confirm the AuNP size-dependence of the
SP-LS scheme. AuNPs with diameters of 50 nm and 64 nm provided a significantly increased signal in
comparison to 17 and 36 nm AuNPs. Finally, in order to fully harness the potential of large AuNPs
(>64 nm) as signal amplification tags for SP-LS, this study shows that a two-step protocol based on
the gold enlargement of the AuNPs following their binding to their molecular targets on the sensor
surface can be implemented.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/2/323/s1,
Figure S1: Optical setup of SP-LS in this study. Figure S2: Calculated spectra for (a) normalized extinction efficiency
Qext and (b) scattering efficiency Qsca for different sized AuNPs; Figure S3: Control experiment for goat anti-mouse
IgG functionalized SPR sensor surface exposed to GE reagent for 5 min and then measured by SP-LS. No signal
enhancement is observed.
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