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Abstract: In this paper, a mobile anchor node assisted RSSI localization scheme in underwater
wireless sensor networks (UWSNs) is proposed, which aims to improve location accuracy and
shorten location time. First, to improve location accuracy, we design a support vector regression
(SVR) based interpolation method to estimate the projection of sensor nodes on the linear trajectory
of the mobile anchor node. The proposed method increases the accuracy of the nonlinear regression
model of noisy measured data and synchronously decreases the estimation error caused by the
discreteness of measured data. Second, to shorten location time, we develop a curve matching
method to obtain the perpendicular distance from sensor nodes to the linear trajectory of the mobile
anchor node. The location of the sensor node can be calculated based on the projection and the
perpendicular distance. Compared with existing schemes that require the anchor node to travel at
least two trajectories, the proposed scheme only needs one-time trajectory to locate sensor nodes,
and the location time is shortened with the reduction in the number of trajectories. Finally, simulation
results prove that the proposed scheme can obtain more accurate sensor node location in less time
compared with the existing schemes.

Keywords: underwater wireless sensor networks (UWSNs); localization; mobile anchor node; RSSI

1. Introduction

With the rapid development of communication and sensor technology, underwater wireless
sensor networks (UWSNs) have become a fast-growing field [1]. UWSNs have a wide range
of applications, such as pollution monitoring, off-shore oil exploration, and oceanography data
collection [2–4]. In UWSNs, localization is a fundamental issue, because only the data associated
with the location of the sensor node can be meaningfully interpreted by data users [5]. Compared
with the terrestrial localization issue, underwater localization has some fundamental differences.
First, the Global Positioning System (GPS) technology is unavailable in the underwater environment,
because of the strong attenuation of radio waves in water [6]. Thus, the underwater node cannot
directly locate itself through the GPS. Second, due to the large propagation delay in underwater
acoustic channels, the cost of maintaining clock synchronization is high and underwater nodes are
usually clock asynchronous [7]. Third, the transmitting energy consumption of the underwater sensor
node is several times or even hundreds of times the receiving energy consumption. To save energy,
the underwater sensor node should reduce message transmission during the localization process [8].

The localization method based on Received Signal Strength Indicator (RSSI) does not require clock
synchronization, which avoids the high cost of maintaining clock synchronization [9]. Localization
methods require anchor nodes to provide reference locations [10]; since the cost of the anchor node
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is much higher than that of the ordinary sensor node, it is expensive to deploy a large number of
static anchor nodes in UWSNs [11]. Hence, using a small number of mobile anchor nodes to assist
localization is an economical method [12]. Localization schemes [13–15] jointly use the RSSI and
one mobile anchor node to reduce location cost. Guo [13] proposed a mobile anchor node-assisted
localization scheme called Perpendicular Intersection (PI). By comparing the received RSSI values
on a node, this scheme achieved the locating of nodes using the geometric relationship between the
node and the trajectory of the mobile beacon. In this scheme, the error of determined projection in the
localization process led to the error of the node location. To improve location accuracy, Pratap et al. [14]
adopted a piecewise polynomial curve fitting method to reduce the error of determined projection.
Zhao et al. [15] applied the polynomial curve fitting method and the derivative method to reduce the
error of determined projection. Compared with the scheme in [13], the schemes in [14,15] improve the
location accuracy. However, there are two points worthy of further study in [13–15]: (1) To improve
location accuracy, is there any other better way to reduce the error of determined projection than
existing schemes? (2) In existing schemes, the anchor node needs to travel at least two trajectories to
locate the sensor node. Can the anchor node only travel one trajectory to shorten the location time?

Based on the above two considerations, in this paper, we propose a mobile anchor node assisted
RSSI localization scheme in UWSNs. First, to improve location accuracy, we design a support vector
regression (SVR) based interpolation method to estimate the projection of sensor nodes on the linear
trajectory of the mobile anchor node. The proposed method increases the accuracy of the nonlinear
regression model of noisy measured data and synchronously decreases the estimation error caused by
the discreteness of measured data. The SVR based interpolation method achieves an improvement in
location accuracy by reducing the error between the determined projection and the actual projection.
Second, we develop a curve matching method to obtain the perpendicular distance from sensor nodes
to the linear trajectory of the mobile anchor node. The location of the sensor node can be calculated
based on the projection and the perpendicular distance. Compared with existing schemes that require
the anchor node to travel at least two trajectories, the proposed scheme only needs one trajectory to
locate sensor nodes, and the location time is shortened with the reduction in the number of trajectories.
Finally, simulations prove that, compared with existing schemes, the proposed scheme can obtain
more accurate sensor node location in less time. The main contributions of this paper are twofold:

• To improve location accuracy, we design an SVR based interpolation method to estimate the
projection of sensor nodes on the linear trajectory of the mobile anchor node. This method
increases the accuracy of the nonlinear regression model of noisy measured data and
synchronously decreases the estimation error caused by the discreteness of measured data.

• To shorten location time, we develop a curve matching method to obtain the perpendicular
distance from sensor nodes to the linear trajectory of the mobile anchor node. Compared with
existing schemes, the proposed scheme only needs one trajectory of the mobile anchor node to
locate sensor nodes, which significantly shortens the location time.

The remainder of this paper is organized as follows. Section 2 discusses the related work.
In Section 3, we describe the details of the proposed localization scheme. Performance evaluations by
simulation are presented in Section 4, followed by the conclusion and future work in Section 5.

2. Related Works

2.1. Overview of Localization Approaches

Generally speaking, localization approaches can be classified into range-free and range-based [16].
Range-free approaches usually employ the local topology connectivity to estimate the location of the
sensor node and obtain a coarser location [17]. The authors of [18] proposed a range-free method,
named Area Localization Scheme (ALS). In ALS, anchor nodes broadcast acoustic signals that can
be transmitted at varying power levels, underwater sensor nodes passively listen to the signals and
record the information, and the sink node can use the information to localize the sensor within
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a certain area. In contrast, range-based approaches determine the location of sensor nodes using
various ranging methods and provide an accurate location [19]. Ranging methods can be classified
into four categories [20]: Time of Arrival (TOA) [21–24], Time Difference of Arrival (TDOA) [25–27],
Angle of Arrival (AOA) [28–30] and Received Signal Strength Indicator (RSSI) [31–33]. In underwater
environments, distance information obtained by the TOA method is usually used, such as wide
coverage positioning system (WPS) [34], GPS-less localization protocol (GPS-less) [35], motion-aware
sensor localization (MASL) [36], underwater sparse positioning (USP) [37] and 3D underwater
localization (3DUL) [38]. TOA and TDOA methods require highly precise time synchronization
of sensor nodes, which is hard to achieve due to the characteristics of acoustic signal when traveling
in water [7]. The AOA method requires special devices for directional transmission and reception,
which increase the cost of localization [19]. The RSSI method is cost-efficient and convenient because
it does not require time synchronization and special devices. Since the RSSI value is vulnerable to
environment disturbances, it is difficult to achieve accurate ranging by directly mapping the absolute
RSSI value to the physical distance [9].

2.2. Localization Approaches Related to the Mobile Anchor Node

Both range-free and range-based localization approaches require anchor nodes, which are
equipped with GPS units to provide reference locations [10]. Since the cost of the anchor node
is much higher than that of the sensor node, it is expensive to deploy a large number of anchor nodes
in UWSNs [11]. Hence, using mobile anchor nodes to assist nearby sensor nodes in localization
is an economical and flexible approach [12]. In [39], a Dive and Rise (DNR) positioning method
is presented, in which mobile anchor nodes are used to replace static ones. While sinking and
rising, DNR anchor nodes broadcast their positions. Unknown nodes are localized by passively
listening to DNR anchor nodes’ messages. DNR method reduces communication overhead and energy
consumption by passively listening, but localization performance heavily depend on frequency of
location updates and the number of anchor nodes.

2.3. Localization Approaches Jointly Using the RSSI and the Mobile Anchor Node

Localization schemes [13–15] not only jointly use the RSSI and the mobile anchor node to reduce
location cost, but also use a method of contrasting RSSI values to avoid the inaccurate ranging caused
by directly mapping the RSSI value to the physical distance. In [13], a mobile anchor node moves
along a linear trajectory and sends a message at each broadcast point on the trajectory. The sensor
node measures the RSSI value of each received message. The broadcast point with the maximum
measured RSSI value is approximately determined as the projection of the sensor node on the trajectory.
Using two non-parallel trajectories, the location of the sensor node can be determined by calculating
the intersection of perpendiculars passing through the determined projection on each trajectory.
The location accuracy depends on the error between the determined projection and the actual projection.
To improve location accuracy, different schemes are proposed to make the determined projection
closer to the actual projection. Pratap et al. [14] tried to find an increasing as well as decreasing
trends of measured RSSI values for each trajectory, and then used polynomial curve fitting for each
trend, and determined the intersection of the increasing trend polynomial and the decreasing trend
polynomial as the projection of the node on the trajectory. Zhao et al. [15] applied the polynomial
curve fitting method to measured RSSI values, used the derivative method to calculate the point with
the maximum value of the polynomial, and determined the point as the projection of the nodes on
the trajectory. Compared with the scheme in [13], the schemes in [14,15] reduce the error between the
determined projection and the actual projection, and improve the location accuracy. However, the error
of the determined projection of existing schemes can be further reduced, and the location accuracy of
the sensor node can be further improved. In addition, existing schemes require at least two trajectories;
the number of trajectories can be reduced to one and the location time can be further shortened. In this



Sensors 2019, 19, 4369 4 of 22

paper, we mainly research these two points, and the details of our proposed localization scheme are
given in Section 3.

3. Detailed Description of the Proposed Localization Scheme

The proposed localization scheme consists of four steps: Firstly, the network system architecture
and trajectory of the mobile anchor node are designed to obtain a set of measured RSSI values.
Secondly, an SVR-based interpolation method is designed to process measured RSSI values to estimate
the projection of a sensor node on the trajectory. Thirdly, a curve matching method is developed to
process measured RSSI values to obtain the perpendicular distance from a sensor node to the trajectory.
Finally, the location of the sensor node is calculated by a geometric method. Table 1 shows the main
notations used in this paper.

Table 1. Main notations used in this paper.

Notation Definition

L The length of the trajectory
∆L The interval between adjacent broadcast points
m The number of broadcast points on the trajectory
xi The x-coordinate of the ith broadcast point
X The location vector consisting of x-coordinates of all broadcast points
ri The noiseless RSSI value of the message from the ith broadcast point
R The noiseless RSSI value vector
r̃i The measured RSSI value of the message from the ith broadcast point
R̃ The measured RSSI value vector
r̂i The predicted RSSI value of the message from the ith broadcast point
R̂ The predicted RSSI value vector
x̀ik The x-coordinate of the kth point inserted after the ith broadcast point
X̀ The extended location vector
r̀ik The RSSI value of the kth point inserted after the ith broadcast point
R̀ The extended RSSI value vector
Ri The reference RSSI value vector of the ith reference trajectory
di The perpendicular distance corresponding to the ith reference trajectory
b·c Floor function
X̌ The vector formed by the location of all feature points
Ř The vector formed by the RSSI value of all feature points
X The vector formed by the location of selected feature points
Ri The vector formed by the RSSI value of selected feature points on the ith reference trajectory

3.1. Network System Architecture, Mobile Anchor Node Trajectory, and Obtaining a Set of Measured RSSI Values

3.1.1. Network System Architecture

Figure 1 illustrates the network system architecture of the proposed localization scheme,
which consists of one mobile anchor node and a number of underwater sensor nodes. The mobile
anchor node is a ship which patrols on the sea surface of the sensing area based on a planned trajectory.
The mobile anchor node is fitted with a Global Positioning System (GPS) receiver, which can obtain its
real-time geographic location. The mobile anchor node can broadcast messages through a spherical
omnidirectional acoustic transceiver. Sensor nodes are deployed in the sensing area and stay at their
locations by anchor chains and sub-surface buoys. Each sensor node is equipped with an acoustic
transceiver, which can receive messages and measure the RSSI value of each message, and has a
pressure sensor installed, which can obtain its depth information.
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Figure 1. The network system architecture of the proposed localization scheme.

3.1.2. The Trajectory of the Mobile Anchor Node

As shown in Figure 2, the mobile anchor node starts at point x1, moves along a linear trajectory,
and ends at point xm. In the whole process, the mobile anchor node moves at a uniform speed and
periodically broadcasts its real-time location message at a fixed transmission power. The length of
the trajectory is L, the interval between adjacent broadcast points is ∆L, and the number of broadcast
points on the trajectory is

m = L/∆L + 1 (1)

x1 x2 xm●●● 

Sensor node

Projection

Broadcast point

Perpendicular  distance

Trajectory

Figure 2. The trajectory of the mobile anchor node.

3.1.3. Obtaining a Set of Measured RSSI Values

When the mobile anchor node moves along the trajectory, the underwater sensor node receives
messages and measures the RSSI value of each messages. The measured RSSI value in the underwater
environment can be expressed as [40]

r̃(l) = SL− TL(l) + ζ (2)

where SL is source level, ζ is a random noise which is assumed to be a zero-mean gaussian random
variable with variance σ2, and TL(l) is the transmission loss for an underwater acoustic signal,
which can be expressed as

TL (l) = 10 · k · log (l) + α · l (3)

where k is the spreading coefficient, α is the absorption coefficient, and l is the transmission distance,
which is expressed as

l =
√
(x− xN)2 + (y− yN)2 + (z− zN)2 (4)

where (x, y, z) is the location of any point on the trajectory and (xN , yN , zN) is the location of a sensor
node. Since the trajectory is on the surface of the sea and is a straight line, z is 0, and y can be linearly
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represented by x. We use the x-coordinate to indicate the location of broadcast points. The x-coordinate
of all broadcast points of the trajectory can form an original location vector

X = [x1, x2, . . . , xm] (5)

All measured RSSI values can also form a vector

R̃ = [r̃1, r̃2, . . . , r̃m] (6)

When ζ in Equation (2) is 0, a noiseless RSSI value vector is

R = [r1, r2, . . . , rm] (7)

The sensor node uses X and R̃ to determine the projection of a sensor node on the trajectory and
the perpendicular distance from a node to the trajectory, and then locates itself using the projection
and the perpendicular distance.

3.2. Determining the Projection of a Node on the Trajectory

In this section, to determine the projection of a sensor node on the trajectory, a three-step method
is designed, as shown in Figure 3. First, to model the nonlinear relationship between the arbitrary point
location and the RSSI value on the trajectory, we perform SVR training on the discrete original location
and the measured RSSI value to obtain a regression function. Then, to get more points and RSSI values,
we extend the original location vector and the measured RSSI vector. An extended location vector is
obtained by uniformly inserting new points in the original location vector, and the extended location
vector is input to the regression function to predict the extended RSSI value vector. Finally, to select the
point with the largest RSSI value, we compare the elements in the extended RSSI value vector. The point
corresponding to the largest RSSI value is determined as the projection of the node on the trajectory.

SVR

training

SVR

predicting

Inserting 

points

 
Measured 

RSSI value 

vector
 

Measured 

RSSI value 

vector
 

Regression 

function
 

Regression 

function

 
Extended 

location 

vector
 

Extended 

location 

vector
 

Extended 

RSSI value

vector
 

Extended 

RSSI value

vector
 

Original 

location 

vector

 
Determined 

projection 

location
 

Determined 

projection 

location

Vector element 

comparison

1) Modeling the relationship using SVR

2) Extending vectors

3) Determining projection

Figure 3. The process of determining the projection of a sensor node on the trajectory.

3.2.1. Modeling the Nonlinear Relationship Using SVR

According to Equations (2)–(4), there is a nonlinear relationship between X and R̃. Since SVR has
a rather strong nonlinear approximation ability and antinoise ability [41], we use SVR to learn the
regression function by identifying structures in the mapping of input X to output R̃.

The mobile anchor node starts at point x1, moves along a linear trajectory, and ends at point xm.
Then, the node to be located obtains data: the location of m broadcast points x1, x2, . . . , xm, and the
measured RSSI value r̃1, r̃2, . . . , r̃m. The location of ith broadcast points and the ith measured RSSI
value together form a data sample {(xi, r̃i)|xi ∈ X, r̃i ∈ R̃, i = 1, 2, ..., m}. These m data samples are
used as a dataset for SVR training. We need find an approximation function with the form

f (x) = w · ϕ (x) + b (8)
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where ϕ (x) is a mapping function, w is the weight, and b is the threshold. Define the ε-insensitive loss
function as

|r̃i − f (xi)|ε =
{

0, |r̃i − f (xi)| ≤ ε

|r̃i − f (xi)| − ε, |r̃i − f (xi)| > ε
(9)

By introducing slack variables ξi and ξ∗i , the SVR problem is transformed into

min
w,b,ξi ,ξ∗i

1
2
‖w‖2 + C

m

∑
i=1

(ξi + ξ∗i ) (10)

subject to 
f (xi)− r̃i ≤ ε + ξi

r̃i − f (xi) ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

i = 1, 2, ..., m

(11)

where C is the penalty factor. By introducing Lagrange multipliers βi, β∗i , αi, α∗i ≥ 0, the Lagrangian
function of Equation (10) can be expressed as

L =
1
2
‖w‖2 + C

m

∑
i=1

(ξi + ξ∗i )−
m

∑
i=1

βiξi −
m

∑
i=1

β∗i ξ∗i

+
m

∑
i=1

αi ( f (xi)− r̃i − ε− ξi)

+
m

∑
i=1

α∗i (r̃i − f (xi)− ε− ξ∗i )

(12)

Letting the partial derivative of a function L with respect to the variable w, b, ξi, ξ∗i be equal to 0,
we can obtain

w =
m

∑
i=1

α∗i xi −
m

∑
i=1

αixi (13)

0 =
m

∑
i=1

(α∗i − αi) (14)

C =αi + βi (15)

C =α∗i + β∗i (16)

Substituting Equations (13)–(16) into Equation (12), we can obtain

max
α,α∗

(−1
2

m

∑
i=1

m

∑
j=1

(α∗i − αi)
(

α∗j − αj

)
K
(
xi, xj

)
−ε

m

∑
i=1

(α∗i + αi) +
m

∑
i=1

r̃i (α
∗
i − αi))

(17)

subject to 
m
∑

i=1

(
α∗i − αi

)
= 0

0 ≤ αi, α∗i ≤ C
(18)
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where K
(

xi, xj
)

is a RBF kernel function

K
(

xi, xj
)
= exp

(
−
∥∥xi − xj

∥∥2

σ2

)
(19)

KKT conditions for Equation (18) are
αi ( f (xi)− r̃i − ε− ξi) = 0

α∗i
(
r̃i − f (xi)− ε− ξ∗i

)
= 0

βiξi = 0, β∗i ξ∗i = 0

(C− αi)ξi = 0,
(
C− α∗i

)
ξ∗i = 0

(20)

The final regression function is obtained:

f (x) =
m

∑
i=1

(α∗i − αi)K (x, xi) + b (21)

The regression function is the nonlinear relationship between X and R̃. We use the regression
function to predict the location vector X, and obtain the predicted RSSI vector

R̂ = [r̂1, r̂2, . . . , r̂m] (22)

We embed X of Equation (5), R̃ of Equation (6), R of Equation (7), and R̂ of Equation (22)
into Figure 4. The measured RSSI curve (black dashed line) is drawn using all the elements in
R̃. The predicted RSSI curve (red dash-dot line) is drawn using all the elements in R̂. The noiseless
RSSI curve (purple solid line) is drawn using all the elements in R. Since the SVR has a good noise
reduction effect, the predicted RSSI curve should be closer to the noiseless RSSI curve than the
measured RSSI curve.

RSSI

x1 x2

●●● xj

●●● xmxi

Maximum noiseless RSSI value
Maximum predicted RSSI value after extension

Maximum predicted RSSI value before extension

Actual projection

Determined projection before extension

Determined projection before extension

Measured RSSI value

Predicted RSSI value

Predicted RSSI curve

Measured RSSI curve

Noiseless RSSI curve

xig

Figure 4. Determining the projection of a node on the trajectory by the SVR-based interpolation method.

3.2.2. Extending Vectors

Since the trained regression function by SVR is a black box, it can transform the input into the
output, but the inner working is difficult to interpret because the underlying models are based on
complex mathematical systems [42]. The derivative method cannot be used to find the point with the
maximum value on the predicted RSSI curve. We extend the location vector X and predicted RSSI
vector R̂ to determine a point closer to the actual projection.
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As shown in Figure 4, the predicted RSSI curve has first and second maximum RSSI values at
points xi and xj, respectively. Before extending vectors, xi is determined as the projection, but has a
large error with the actual projection. Although shortening the distance between broadcast points can
reduce the error, it is difficult to reduce this distance to a small value in an actual sea environment.
To determine a point closer to the actual projection position, we evenly insert k points between xi and
xj, as shown in Figure 5. The extended location vector is

X̀ = [x̀1, . . . , x̀i, x̀i1, x̀i2, . . . , x̀ik, x̀j, . . . , x̀m] (23)

After using the regression function to predict all the elements in X̀, the extended RSSI vector can
be obtained

R̀ = [r̀1, . . . , r̀i, r̀i1, r̀i2, . . . , r̀ik, r̀j, . . . , r̀m] (24)

Inserting

k points

x1 xi… xi1 xi2 xj xm… 

x1 xi xj xm… … 

xik… 

Figure 5. The extension of the location vector.

3.2.3. Determining the Projection

We find the maximum element in R̀ by the element comparison, and determine the corresponding
element in X̀ as the projection of a node on the trajectory. As shown in Figure 4, the predicted RSSI
curve has the maximum predicted RSSI value at xig after vectors are extended, and xig is determined
as the projection of the node. xig is closer to the actual projection than xi, and the error between the
determined projection and the actual projection position is reduced.

3.3. Determining the Perpendicular Distance from a Node to the Trajectory

In this section, to determine the perpendicular distance from a node to the trajectory, we design a
three-step method, as shown in Figure 6. First, to establish the reference RSSI curve library, we calculate
the RSSI value of the broadcast point on n reference trajectories. Then, to accurately compare the
similarities between curves, we extract the parts to be compared from the predicted curve and reference
curves, and select the feature points on the extracted parts, so as to get the feature point vectors for
comparison. Finally, to select the feature point vector with the highest similarity, we compare the
similarity between the feature point vectors. The distance corresponding to the selected feature point
vector is determined as the perpendicular distance from the node to the trajectory.
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Figure 6. The process of determining the perpendicular distance from a node to the trajectory.
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3.3.1. Establishing the Reference RSSI Curve Library

As shown in Figure 7a, there are n parallel and identical trajectories with m broadcast points on
each trajectory. The spacing between adjacent trajectories is ∆d, and the interval between adjacent
broadcast points is ∆L. The projection of the reference node on all the trajectories are their respective
midpoints. The perpendicular distance from the reference node to trajectory 1, trajectory 2, ..., trajectory
n are d1, d2, ..., dn, respectively. When the random noise ζ in Equation (2) is 0, we name the RSSI value
received by the reference node as the reference RSSI value. Each trajectory corresponds to a reference
RSSI curve, as shown in Figure 7b. For the ith trajectory, a reference RSSI vector Ri can be constructed
using the reference RSSI value of the broadcast point at x1, x2, ..., xm,

Ri = [ri1, ri2, . . . , rim] (25)

We use Ri to represent the ith reference RSSI curve. All reference RSSI curves can establishing a
reference RSSI curve library, which can be expressed as

Lc =



R1 = [r11, r12, . . . , r1m]

R2 = [r21, r22, . . . , r2m]
...

Rn = [rn1, rn2, . . . , rnm]

(26)

●
●
●

 

 Reference Node

d1

Trajectory n

Trajectory 1
Trajectory 2

●
●
●

 

●
●
●

 

●
●
●

 

●
●
●

 

d2dn

 Midpoint Δdx1 x2 xm

x1 x2 xm

x1 x2 xm

ΔLΔL

(a)

●
●
●

RSSI

Reference curve n

Reference curve 1
Reference curve 2

●
●
●

 

●
●
●

 

●
●
●

 

●
●
●

 

x1 x2 xm

(b)

Figure 7. The establishment of the reference RSSI curve library: (a) the positional relationship between
the reference node and n trajectories; and (b) the reference RSSI curve library.
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Since the perpendicular distance from the node to each trajectory is different, the transmission
distance from the same broadcast point of each trajectory to the reference node are different,
the reference RSSI values of the respective trajectories at the same broadcast point are different,
and the reference RSSI vector of each trajectory are different. Therefore, there is a mapping relationship
between the perpendicular distance from the reference node to the trajectory and the reference RSSI
curve, which can be expressed as

di = F (Ri) (27)

where i = 1, 2, ..., n, F represents the mapping relationship. All mapping relationships between the
reference RSSI vector and its perpendicular distance can establish a mapping relationship library,
which can be expressed as

Lr =



d1 = F(R1)

d2 = F(R2)
...

dn = F(Rn)

(28)

3.3.2. Data Processing for Curves Used for Comparison

Three steps of data processing are required before the measured RSSI curve is compared with
each curve in the reference RSSI curve library. Firstly, the measured RSSI value contains noise which
would cause a large error in the result of the curve matching. Since SVR has a strong ability [41],
we use the predicted RSSI curve instead of the measured RSSI curve to perform curve matching.

Secondly, the projection of a node on the trajectory is difficult to coincide with the midpoint of the
trajectory, which causes the predicted RSSI curve to be offset from the reference RSSI curve. This offset
causes us to extract only a part of the predicted RSSI curve to compare with the corresponding part of
the reference RSSI curve.

As shown in Figure 8, the projection of the node has three positional relationships with the
midpoint of the trajectory: on the left (Figure 8a), coincident (Figure 8b), and on the right (Figure 8c).
When the projection of the node is on the left of the midpoint, the predicted RSSI curve has a left offset
relative to the reference RSSI curve. The predicted RSSI curve can be divided into four parts: S1, S2, S3,
and S4. The reference RSSI curve can be divided into three parts: R1, R2, and R3. The S1 part of the
predicted RSSI curve corresponds to the R1 part of the reference RSSI curve. However, the left offset of
the curve causes the trajectory of the S1 part to exceed the actual travel range of the mobile anchor
node, that is, the S1 part does not exist, and does not need to be compared with R1. The trajectory
of the S4 part is within the range of actual travel of the mobile anchor node. However, the distance
from the node to the point on the S4 part of the trajectory is too large, so that there is no part on the
reference RSSI curve that can be compared with S4. Therefore, when the projection of the node is on
the left of the midpoint, S2 + S3 of the predicted RSSI curve are compared with R2 + R3 of the reference
RSSI curve. Similarly, when the node projection coincides with the midpoint, S1 + S2 of the predicted
RSSI curve are compared with R1 + R2 of the reference RSSI curve. When the projection of the node is
on the right of the midpoint, S2 + S3 of the predicted RSSI curve are compared with R1 + R2 of the
reference RSSI curve.

Thirdly, we need select feature points on the predicted RSSI curve to compare with the
corresponding feature points on the reference RSSI curve. As shown in Figure 8a, when the projection
of the node is on the left of the midpoint, assuming that the projection of the node on the trajectory is
xpro, the midpoint of the trajectory is xmid. The offset of the predicted RSSI curve from the reference
RSSI curve is

Lo f f =
∣∣xmid − xpro

∣∣ (29)



Sensors 2019, 19, 4369 12 of 22

Starting from the projection, we select a feature point every ∆L in the S2 part and the S3 part,
respectively. The number of feature points in the S2 part, the S3 part, the S2 + S3 part are NL, NR,
and NT, respectively. They can be expressed as

NL =
⌊
(L/2− Lo f f )/∆L

⌋
NR = b(L/2)/∆Lc
NT = NL + 1 + NR

(30)

The location of the leftmost feature point is

x̌1 = xpro − NL ∗ ∆L (31)

and the location of any feature point in S2 + S3 is

x̌i = x̌1 + (i− 1) ∗ NT ∗ ∆L (32)

where i = 1, 2..., NT.
The vector formed by the location of each feature point is

X̌ = [x̌1, x̌2, . . . , x̌NT ] (33)

We use the obtained regression function in Section 3.2 to predict each element in X̌, and obtain the
RSSI value vector of the feature point, which can be expressed as

Ř = [ř1, ř2, . . . , řNT ] (34)

We select the broadcast point of the R2 + R3 of the reference RSSI curve as the location of the
feature point, and the RSSI value corresponding to the broadcast point as the value of the feature point.
The location vector X and RSSI value vector R formed by the feature points on the R2 + R3 of the ith
reference RSSI curve are {

X = [xm−(Nt−1), xm−(Nt−2), . . . , xm]

Ri = [ri(m−(Nt−1)), ri(m−(Nt−2)), . . . , rim]
(35)

Ř and Ri are used for similarity comparison. When the node projection coincides with the
midpoint, Ř and Ri are {

Ř = [r̂1, r̂2, . . . , r̂m]

Ri = [ri1, ri2, . . . , rim]
(36)

When the projection of the node is to the right of the midpoint, some equations that differ from
the projection on the left of the midpoint are

NL = b(L/2)/∆Lc (37)

NR =
⌊
(L/2− Lo f f )/∆L

⌋
(38)

Ri = [ri1, ri2, . . . , ri(m−(NT−1))] (39)



Sensors 2019, 19, 4369 13 of 22

R
S

S
I

Node

R1 R2 R3

S1 S2 S3 S4

Predicted RSSI curve

Reference RSSI curve

Reference feature point

Predicted feature point

Trajectory Midpoint Trajectory Midpoint Node projectionNode projection

x1 x2 xmxRxL

(a)

R
S

S
I

Trajectory

R1 R2

S1 S2

NodePredicted RSSI curve

Reference RSSI curve

Reference feature point

Predicted feature point

Trajectory Midpoint Node projection

x1 x2 xm

(b)

Trajectory

R
S

S
I

R1 R2 R3

S1 S2 S3 S4

NodePredicted RSSI curve

Reference RSSI curve

Reference feature point

Predicted feature point

Trajectory midpoint Node projection

x1 x2 xmxRxL

(c)

Figure 8. Three positional relationships between the projection of the node and the midpoint of the
trajectory: (a) the projection of the node is on the left of the midpoint; (b) the node projection coincides
with the midpoint; and (c) the projection of the node is on the right of the midpoint.
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3.3.3. Determining the Perpendicular Distance by Comparing Curve Similarities

We need compare the similarity between Ř and each Ri, find the Ri that is most similar to Ř,
and determine the di corresponding to the Ri as the perpendicular distance from the node to the
trajectory. Before calculating the similarity, it is necessary to normalize the elements of the vector to
avoid the weight of the elements with larger absolute values in the similar calculation results being too
large. We combine the Ř with all Ri to construct a new matrix

A =
[
Ř, R1, R2, . . . , Rn

]T (40)

x is the element at the ith row and jth column of the matrix A, and the normalized value of x is

y = (x− xmean)× (ystd/xstd) + ymean (41)

where xmean is the mean value for the jth column of the matrix A, xstd is the standard deviation for
the jth column of the matrix A, ymean is 0, and ystd is 1. The normalized vector Ř is represented as Ř

′
,

the normalized vector Ri is represented as R
′

i, We compare the similarity of Ř
′

and R
′

i by calculating
the Euclidean distance:

Ei =
∥∥∥Ř

′ −R
′

i

∥∥∥ (42)

The smaller is the value of Ei, the higher is the similarity between vectors. The reference RSSI
curve with the smallest euclidean distance is most similar to the predicted RSSI curve. According to
Equation (27), the perpendicular distance corresponding to the reference curve is determined as the
perpendicular distance from the node to the trajectory.

3.4. Calculating the Node Location

In this section, the location of the sensor node is determined using the obtained projection
in Section 3.2 and perpendicular distance in Section 3.3. We first transform the three-dimensional
(3D) underwater sensor node localization problem into a two-dimensional (2D) localization problem.
Then, we describe in detail the calculation process of localization.

3.4.1. Transforming 3D Localization into 2D Localization

As shown in Figure 9, the to-be-localized node A is at the lower right of the trajectory, B is the projection
of node A on the trajectory, and C is the projection of node A on the trajectory plane. The coordinates of
point A, B, and C are (xA, yA, zA), (xB, yB, 0), and (xC, yC, 0), respectively. (xB, yB, 0) can be obtained by
the method in Section 3.2. dAB is the perpendicular distance from node A to the trajectory, which can be
obtained by the method in Section 3.3. dAC or zA is the depth of node A, which can be measured by a
pressure sensor. dBC is the projection of dAB on the plane, as well as the perpendicular distance from C to
the trajectory. ∆ABC is a right-angle triangle, and dBC can be calculated as

dBC =
√

d2
AB − d2

AC (43)

A

B

C

dAB

 Anchor node

dAC

dBC

Node projection 

on the trajectory

Node projection 

on the plane

 Sensor node

Trajectory

Figure 9. Transforming 3D localization into 2D localization.
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After the above operations, the task of localizing node A in a 3D space has been transformed into
localizing C in a 2D plane.

3.4.2. The Calculation Process of Localization

The equation of the trajectory can be expressed as

y = k× x + b (44)

k and b can be obtained by bringing the coordinates of two broadcast points into Equation (44).
The coordinates of point C can be computed by solving

dBC =
|k× xC − yC + b|√

k2 + 1
yC − yB
xC − xB

= −1
k

(45)

However, solving Equation (45) will get two candidate positions, as shown in Figure 10.
To determine the true position of point C, when the anchor node reaches the end of the trajectory,
it continues to travel a distance along the right perpendicular line of the trajectory. If RSSI values
received by the node become larger relative to the RSSI value of the end point, point C in Figure 10 is
the true position. If RSSI values received by the node become smaller relative to the RSSI value of the
end point, then point C

′
in Figure 10 is the true position. After obtaining the true coordinates of point

C, the coordinates of point A can be determined as (xC, yC, zA).

C

C'

Figure 10. Judging the location of the point C.

4. Simulation

The performance of the proposed schemes was evaluated through MATLAB simulations. Since the
proposed scheme addresses the shortcomings of the PI scheme and the DuRT scheme, we compared
our scheme with the PI scheme [13] and the DuRT scheme [14] in the simulation. In [14], the DuRT
scheme actually includes three localization methods, DuRT-M1, DuRT-M2, and DuRT-ALL, and the
working conditions of the three methods are different. In our simulation, the conditions for using
DuRT-M1 were satisfied, but the conditions for using DuRT-M2 and DuRT-ALL were not satisfied.
Thus, in the simulation, we used DuRT-M1. For convenience, DuRT-M1 is denoted as DuRT.

4.1. Simulation Parameter Setting

Since the PI scheme and DuRT scheme require two trajectories, we designed a triangular prism
sensing area. The top of the triangular prism is an equilateral triangle, the left side of the top triangle
is the trajectory 1 of the mobile anchor node, and the right side of the top triangle is the trajectory 2.
The length of the trajectory is L = 600 m, and the depth of the triangular prism is H = 100 m.
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N = 100 nodes are randomly deployed in a triangular prism. The interval between adjacent broadcast
points ∆L was set to 1 m, 5 m, 10 m, 15 m, and 20 m. The interval between adjacent extended broadcast
points is ∆Lext = 0.5 m. The spacing between adjacent reference trajectories ∆d is 1 m. The acoustic
parameters are: SL = 100 db, f = 24 KHz, and k = 2. The speed of the ship is v = 5 m/s. In the
localization process of this paper, the underwater sensor node does not need to transmit messages,
thus the coverage distance of the underwater sensor node is short and is set to cds = 100 m. The mobile
anchor node needs a large enough coverage distance so that the transmitted message can be received
by all sensor nodes in the area, and is set to cda = 600 m. For the convenience of viewing, the parameter
settings of the simulation are as shown in Table 2.

Table 2. Parameters used in the simulation.

Parameter Value Parameter Value

L 600 m H 100 m
N 100 ∆L 1, 5, 10, 15, 20 m

∆Lext 0.5 m ∆d 1 m
SL 100 db f 24 KHz
k 2 v 5 m/s

cds 100 m cda 600 m

4.2. Simulation Results and Discussion

In this section, we provide the system architecture used in the simulation, and analyze simulation
results from three aspects. First, we use three schemes to determine the projection of the node,
and compare the mean error of node projections. Then, we compare the measured RSSI curve with
the selected RSSI curve, and analyze the error of the perpendicular distance. Finally, we compare the
mean location error of the three schemes.

4.2.1. The Network System Architecture in the Simulation

As shown in Figure 11, 100 nodes (circles of various colors) are randomly deployed in the
triangular prism area. The mobile anchor node starts at (0, 0, 100), moves along trajectory 1 (blue solid
line) and trajectory 2 (blue dotted line), and ends at (600, 0, 100). After the mobile anchor node finishes
moving, underwater sensors use receiving messages to locate themselves. The localization process
needs to run five times. In the five localization processes, the interval between adjacent broadcast
points ∆L is set to 1 m, 5 m, 10 m, 15 m, and 20 m, respectively.

0
600

20

40

600

Z(
m

)

400

60

Y(m)

80

400

X(m)

100

200 200
0 0

Trajectory 1
Trajectory 2
Node

Figure 11. The network system architecture in the simulation.
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4.2.2. The Error of a Node Projection on the Trajectory

The PI scheme, the RuDT scheme and the scheme proposed in this paper must first determine
the projection position of the node on the trajectory. Therefore, we first compare the error of one node
projection of different schemes. As shown in Figure 12, the actual projected position of the node on the
trajectory is the position corresponding to the highest point of the curve without noise (Blue curve).
The PI scheme selects the position with the largest value on the RSSI curve with noise (Magenta curve
with diamond) as the node projection. The DuRT scheme uses a polynomial fitting method to fit an
increased curve (Green dotted line) to the left part and a decreased curve (Light blue dotted line with
circles) to the right part. The position corresponding to the intersection of the increased curve and the
decreased curve is the node projection determined by the DuRT scheme. The scheme in this paper
uses SVR to fit a curve and select the position corresponding to the maximum value of this curve as
the node projection. The actual projection position is 141. The projection positions determined by
the PI scheme, the DURT scheme, and the scheme in this paper are 130, 155, and 140, respectively.
The scheme in this paper has the least error of the three schemes.

As shown in Figure 13, we compare the mean error of node projections for 100 nodes at different
broadcast point intervals in three schemes. The mean error of the three schemes increases as the
broadcast point interval increases. In the case of the same broadcast point interval, the mean error of
the three schemes is sorted from biggest to smallest: the PI scheme, the RuDT scheme, and the scheme
proposed in this paper. Due to the influence of noise, the broadcast position with the largest RSSI value
is often not the closest broadcast position to the actual projection, as shown in Figure 13. Since the
PI scheme only selects the broadcast position with the largest RSSI value, the PI scheme has a large
error in determining the node projection. Although the polynomial curve fitting method can fit all
RSSI values, the fitting effect is poor. Thus, the DuRT scheme fits the RSSI values on the left and right
sides separately. When the left polynomial and the right polynomial have an intersection between the
broadcast position with the largest RSSI value and the broadcast position with the second largest RSSI
value, the DuRT scheme selects this intersection as the node projection. However, this intersection can
only be controlled between two broadcast locations, and it is not possible to control the intersection to
be close to the actual projection. Thus, the error of the DuRT scheme is smaller than the error of the PI
method, but it is still very large. The scheme in this paper solves the noise problem and fits a good
curve to all RSSI values. Therefore, our scheme is an effective scheme for reducing the error of the
determined node projection.

0 50 100 150 200 250 300
X(m)

22

23

24

25

26

27

28

29

30

RS
SI

(d
B)

Without noise
With noise
This paper
RuTU (Inc)
RuTU (Dec)

Figure 12. Determining the projection of one node on the trajectory by three schemes (∆L = 10 m).
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Figure 13. Mean error of the projection of the node on the trajectory determined by different schemes.

4.2.3. The Error of the Perpendicular Distance from the Node to the Trajectory

In Figure 14, the blue curve with circles is the measured curve after data processing, and the
red curve with triangles is the selected reference curve after data processing. After the normalization
operation, the range of the RSSI curve is reduced, which narrows the weight difference between the
comparison results of each feature point in all comparison results. At the same time, the shape of
the two curves has been greatly changed from that of Figure 12 after normalization. The total length
of the X-axis of the two curves is shortened from 300 to 60, indicating that only a part of the curve
is compared. The marks on the two curves are the selected feature points. As shown in Figure 14,
the measured curve is very similar to the selected reference curve, so the perpendicular distance
corresponding to the reference curve can be determined as the perpendicular distance from the node
to the trajectory.

As shown in Figure 15, the mean error of the perpendicular distance does not become larger as
the broadcast point interval becomes larger, and it is greater than the mean error of the projection.
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Figure 14. Comparison of curves after data processing.
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Figure 15. Comparison of mean error between node projection and Perpendicular distance.

4.2.4. The Error of the Node Location

Figure 16 shows the comparison of the mean location error of the three schemes. In the case
of different broadcast point intervals, the location error of the three schemes becomes larger as the
broadcast point interval becomes larger. In the case of the same broadcast position interval, the location
errors of the three schemes are in descending order: PI scheme, DuRT scheme, and the scheme in this
paper. This sorting indicates that the localization scheme proposed in this paper is far superior to the
PI scheme and the DuRT scheme.
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Figure 16. Comparison of the mean location error of the three schemes.

5. Conclusions and Future Work

In this paper, a novel mobile anchor node assisted RSSI localization scheme for UWSNs is
proposed. After one mobile anchor travels along the planned linear trajectory on the water surface,
all underwater sensor nodes in the area near the trajectory can locate their positions. We design an
SVR-based interpolation method to improve the technique of determining node projection in existing
methods. This method increases the accuracy of the nonlinear regression model of noisy measured data
and decreases the estimation error caused by the discreteness of measured data, which greatly reduces
the error of the determined projection and then improves the location accuracy of the underwater
sensor node. By developing a curve matching method to obtain the perpendicular distance from the
sensor nodes to the linear trajectory, the location of the sensor node can be calculated based on the
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determined projection and the obtained perpendicular distance. Compared with existing schemes
that require the anchor node to travel at least two trajectories, the proposed scheme only needs one
trajectory to locate sensor nodes, and the location time is shortened with the reduction in the number of
trajectories. Simulation results show the validity of our proposed localization scheme, the SVR-based
interpolation method, and the curve matching method. In the future, we aim to enhance the curve
matching method to reduce the error between the obtained perpendicular distance and the actual
perpendicular distance, so as to further improve the location accuracy.
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