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Abstract: In-liquid biosensing is the new frontier of health and environment monitoring. A growing
number of analytes and biomarkers of interest correlated to different diseases have been found, and
the miniaturized devices belonging to the class of biosensors represent an accurate and cost-effective
solution to obtaining their recognition. In this study, we investigate the effect of the solvent and of
the substrate modification on thin films of organic semiconductor Poly(3-hexylthiophene) (P3HT) in
order to improve the stability and electrical properties of an Electrolyte Gated Organic Field Effect
Transistor (EGOFET) biosensor. The studied surface is the relevant interface between the P3HT and
the electrolyte acting as gate dielectric for in-liquid detection of an analyte. Atomic Force Microscopy
(AFM) and X-ray Photoelectron Spectroscopy (XPS) characterizations were employed to study the
effect of two solvents (toluene and 1,2-dichlorobenzene) and of a commercial adhesion promoter (Ti
Prime) on the morphological structure and electronic properties of P3HT film. Combining the results
from these surface characterizations with electrical measurements, we investigate the changes on the
EGOFET performances and stability in deionized (DI) water with an Ag/AgCl gate electrode.

Keywords: biosensor; bioelectronics; EGOFET

1. Introduction

The promise for precise and low-cost health monitoring [1] to obtain an early stage alert on
critical diseases (i.e., heart attacks, tumors, diabetes, etc.), as well as the interest to detect drugs
and contaminants with potential carcinogenic effects in food [2,3] and water [4,5], has pushed the
investigation on an increasing amount of significative biomarkers and analytes and, in parallel, a search
for cost-effective and accurate methods for their recognition. To match this goal, a highly efficient
solution is represented by electrochemical and electric based biosensors, a class of devices that are easy
to integrate with consumer electronics [6] already present in smartphones, cars, and domotic systems,
processable on flexible substrates [7], to be applied in smart textiles [8], accurate and tailorable to
detect different analytes [9,10]. In this view, a must for these kinds of devices is represented by the
response stability, a requirement which is often in contrast with the used materials, especially when
polymers are employed. On the other hand, the devices’ production can enormously take advantage
of the use of polymers in terms of cost and processability. Hence, recent studies have been focused on
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processing and materials testing with the final aim to increase device performances and stability [11,12].
Electrolyte Gated Organic Field Effect Transistors (EGOFETs) are emerging as a promising technology
for biosensing applications due to their known high sensibility, low-voltage operation, biocompatibility
and low-cost fabrication [13].

Poly(3-hexylthiophene) (P3HT) is one of the most used semiconductive polymers for these kinds
of devices due to its relatively high carrier mobility and easy processability [14]. Recent works have
exploited P3HT as an organic semiconductor for EGOFET biosensors [15], but the main drawback still
affecting these devices is their fast degradation when working in ambient conditions [16], also with
respect to similar devices like Organic Electro Chemical Transistors (OECTs), which exhibit a better
stability in-liquid [17] and a tailorable conductive behavior [18]. Previous studies report a correlation
between the organic semiconductor behavior and the rearrangement induced by the surface [19,20],
which is related to different factors, such as type of substrates, deposition methods, and thermal
treatments. Moreover, for an EGOFET biosensor, the semiconductor surface represents the direct
interface with the electrolyte solution, and hence it is mandatory to maintain its stability as much as
possible to avoid signal drifting or device failure [21].

In this study we investigate the effect of solvents and adhesion promoters on the morphology and
electronic structure of a P3HT thin film in order to improve the stability and electrical properties of an
EGOFET biosensor. After the study of the surface properties and fabrication process optimization, we
investigate the effects on the device by evaluating the performances and response stability in DI water
with an Ag/AgCl gate electrode.

2. Materials and Methods

2.1. Materials and Reagents

Poly(3-hexylthiophene-2,5-diyl) (P3HT) was purchased from Rieke Metals (Mw = 37 kDa,
regioregularity > 96%, RMI001-EE), Ti prime adhesion promoter was purchased from MicroChemicals,
all other chemicals were purchased from Sigma-Aldrich.

2.2. Device Fabrication

Standard clean room processes were employed to develop the EGOFET. A Ti adhesion layer (10 nm)
and Au layer (100 nm) were e-beam evaporated on p-type (100) Si wafers finished with a 1000 nm SiO2

coating. Afterwards, source and drain interdigitated electrodes were photolithographically patterned
and wet-etched (channel length L = 10 µm, channel width W = 9590 µm). After photolithography and
etching, half of the samples were treated with the adhesion promoter. Ti prime was spin coated at
4000 rpm for 30 s and dried at 120 ◦C for 2 min on a hot plate. P3HT solutions were prepared with
concentration of 2.5 mg/mL in toluene or in 1,2-dichlorobenzene (oDCB) and spin coated at 2000 rpm
for 30 s. Finally, the devices were dried at 75 ◦C under vacuum for 1 h to completely remove any
solvent residue. Samples for XPS and AFM analyses were fabricated following the same procedures
but on clean Si/SiO2 substrates without patterned source and drain electrodes. The four different
processes, namely No prime tol, Ti prime tol, No prime oDCB, and Ti prime oDCB are summarized
in Table 1, the electrical characterizations have been performed on five devices for each process, the
device with better performances was then used for the stability measurements.
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Table 1. Devices were fabricated following four different processes. No prime tol and no prime oDCB
are processes without adhesion promoter, using as solvent toluene or oDCB respectively. During
Ti prime tol and Ti prime oDCB processes the samples were treated with adhesion promoter (Ti
prime) before spin coating of poly(3-hexylthiophene) (P3HT) dissolved respectively in toluene or in
1,2-dichlorobenzene (oDCB).

Process Solvent Adhesion Promoter

No prime tol Tol ×

Ti prime tol Tol X
No prime oDCB oDCB ×

Ti prime oDCB oDCB X

2.3. Characterizations

AFM characterizations have been performed in tapping mode with a Bruker Innova Atomic Force
Microscope to monitor the quality of the P3HT film surface.

XPS analysis has been performed using the X-ray source Al Kα 1486.6 eV, pass energy 187.85 eV
for survey analysis, and 23.50 eV for peaks and valence band analysis.

Electrical characterizations have been performed in a probe station with a Keysight B2912A
Source/Measure unit connected to the micromanipulators through triax cables. Resistances R have
been extracted from I-V curves and sheet resistances of P3HT films (thickness t = 30 nm) have been
estimated as Rs = R · W

L . The results have been validated with sheet resistance measurements carried
out exploiting the 4 probes method on 5 other different samples for each process. Then the devices were
characterized in EGOFET configuration using DI water as gate electrolyte and an Ag/AgCl leak-free
reference electrode as gate electrode. A PDMS well with volume of 60 µL was placed on top of the
interdigitated electrodes and filled with DI water, the gate electrode was placed inside the well and
contacted from top. Output and transfer characteristics were measured at different gate and drain
voltages on each device, with a scan rate of 40 mV/s. In order to investigate device stability, on one
device for each process the transfer curve has been measured multiple times (100 repetitions) at a
scan rate of 40 mV/s. Transfer curves have also been measured at a scan rate = 400 mV/s in order
to investigate the hysteresis and switching speed of the devices. The gate leakage current has been
continuously monitored during all measurements

3. Results and Discussion

3.1. Tapping Mode AFM

AFM analysis has been carried out on four different samples for each process (toluene or oDCB
based P3HT solutions, with or without Ti prime). Figure 1a,b respectively show 5 µm × 5 µm
topography maps of P3HT deposited using toluene solution on clean SiO2 substrate and on SiO2

treated with adhesion promoter. The presence of Ti prime increases the RMS surface roughness from
1.92 ± 0.65 nm given by the No prime Tol process to 4.10 ± 0.90 nm. In both cases the surface is
strongly disordered. In contrast, films obtained using oDCB as solvent (Figure 1c,d) present a flatter
surface topography with an RMS roughness of 0.78 ± 0.08 nm for the No prime oDCB process and
0.74± 0.18 nm for the Ti prime oDCB process, and organization in nanocrystalline domains.
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lineshapes (90% Gaussian) and Shirley background. 

C1s peaks (Figure 2) were deconvoluted with five components: the main component around 
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eV and 285.50 eV accounting for C=C and C–S bonds in the thiophene ring respectively [22][23], a 
fourth component at around 2.5 eV higher binding energy with respect to the main one, related to 
carbonyl group [24] most probably formed due to incorporation of oxygen impurities during 
fabrication process, and a fifth component around 289.90 eV attributed to 𝜋 െ 𝜋∗ transitions. 
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of delocalization of 𝜋 orbitals along the polymer backbones and inside the polymeric film; stronger 
satellite peaks are due to a less efficient screening of the core hole formed during the photoionization 
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Figure 1. AFM topography maps acquired in tapping mode of P3HT deposited on Si/SiO2 substrate
(a) from toluene solution without adhesion promoter, (b) from toluene solution with Ti prime, (c) from
oDCB solution without adhesion promoter, and (d) from oDCB solution with Ti prime.

3.2. XPS Characterization

XPS characterization has been performed on three samples for each set of devices in order to
study the influence of different fabrication processes on the electronic properties of P3HT thin films.
C1s, S2p, and valence band region high resolution spectra have been investigated. The energy scale
was aligned fixing the C1s peak at 284.80 eV, all the peaks were fitted with mixed Gauss–Lorentzian
lineshapes (90% Gaussian) and Shirley background.

C1s peaks (Figure 2) were deconvoluted with five components: the main component around
284.80 eV accounting for C–C bond atoms in in the alkyl side chains, two components around 284.00 eV
and 285.50 eV accounting for C=C and C–S bonds in the thiophene ring respectively [22,23], a fourth
component at around 2.5 eV higher binding energy with respect to the main one, related to carbonyl
group [24] most probably formed due to incorporation of oxygen impurities during fabrication process,
and a fifth component around 289.90 eV attributed to π−π∗ transitions.

The intensity of π − π∗ shake-up satellites can be used to qualitatively understand the degree
of delocalization of π orbitals along the polymer backbones and inside the polymeric film; stronger
satellite peaks are due to a less efficient screening of the core hole formed during the photoionization
process and are associated with a lower degree of delocalization of π orbitals [25]. When using
toluene as solvent (Figure 2a,b) the area percentage associated with π−π∗ satellites decreases from
0.60%± 0.20% for the No prime tol process to 0.40%± 0.15% for the Ti prime tol process, suggesting
that Ti Prime may slightly improve the π stacking of polymer chains and reduce the conformational
disorder along polymer backbones. When using oDCB as solvent, the intensity of the shake-up
satellite is systematically lower than the background noise, indicating better delocalization of the
molecular orbitals.
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Figure 2. High resolution C1s spectra of P3HT deposited on Si/SiO2 substrate (a) from toluene solution
without adhesion promoter, (b) from toluene solution with Ti prime, (c) from oDCB solution without
adhesion promoter, and (d) from oDCB solution with Ti prime. The insets show a zoom on the π−π∗
shake-up satellite region.

The S2p core-line (Figure 3) spectra have been fitted with four components. The first two relate to
the spin orbit doublet of sulfur bonded only to carbon in the thiophene rings, with S2p3/2 centered
around 163.80 eV, peak separation of 1.18 eV, and area ratio of 1

2 . The other two components were
used to fit a second doublet at higher binding energy (1.8–1.9 eV) related to sulfur bonded to more
electronegative atoms, indicating sulfur oxidation in the thiophene ring. When using toluene as solvent
the area percentage occupied by the second doublet decreases from 5.4%± 1.9% for the No prime tol
process to 4.3% ± 1.8% for the Ti prime tol process. When using oDCB, the same trend is obtained,
with 4.6%± 1.0% for No prime oDCB and 2.7%± 0.6% for the Ti prime oDCB process. These results
suggest that the use of oDCB as a solvent and Ti prime as an adhesion promoter may reduce sulfur
oxidation during the fabrication process and thus polymer degradation.

The density of states in the valence band region has been investigated via XPS spectroscopy.
Figure 4 shows the typical spectra obtained for the different processes. Samples fabricated with the
same process did not show appreciable differences in the valence band region. Contributions at a high
binding energy (B.E. > 5 eV) are due to binding σ orbitals from the alkyl chains, while between 0 and
5 eV there are only contributions coming from π orbitals of the conjugated backbones. The peak at
3.4 eV in the spectrum of P3HT deposited from the toluene solution without an adhesion promoter
(black curve in Figure 4) can be attributed to localized states. A slight broadening is seen in the spectra
corresponding to the Ti prime tol process (red curve in Figure 4). The broadening is more evident for



Sensors 2019, 19, 4497 6 of 12

P3HT deposited from oDCB solution and may be related to a higher degree of delocalization of the
molecular orbital, in agreement with the disappearance of the shake-up satellites in C1s peaks. This
indicates a higher degree of π–π conjugation of different polymer backbones, which is expected to
improve the electrical properties of the material [24].Sensors 2019, 19, x FOR PEER REVIEW 6 of 12 
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3.3. Electrical Characterization

Sheet resistance measurements (Figure 5) show that films obtained using oDCB as solvent are more
conductive than the corresponding films obtained from toluene. This result supports the hypothesis of
a better delocalization of states coming from the XPS spectra analysis when oDCB is used. In contrast
to XPS analysis however the presence of the adhesion promoter lowers samples’ conductivity. When
Ti prime is used, sheet resistances increase of one order of magnitude for films deposited from oDCB
solution and double for films deposited from toluene solution. Samples treated with Ti prime show
lower standard deviation independently on the solvent, suggesting that the presence of the adhesion
promoter can improve the device-to-device reproducibility.
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Figure 5. Sheet resistances extrapolated from a set of five devices for each process (black symbols)
and measured with the four probes method on the other five samples for each process (red symbols).
Devices fabricated starting from oDCB solution generally show higher conductivity with respect
to those fabricated with toluene. Ti prime improves reproducibility but reduces the conductivity
independently on the solvent.

Transfer characteristics (Ids vs. Vgs) and output characteristics (Ids vs. Vds) of a device fabricated
without an adhesion promoter using oDCB as solvent are shown in Figure 6a,b respectively. Transfer
and output characteristics have been measured on a set of five devices for each different process using
DI water as a gate electrolyte and a leak free Ag/AgCl reference electrode as a gate electrode.
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First of all, threshold voltages Vth have been extrapolated from the linear fit of
√

Ids vs Vgs in the
saturation region, where the drain current is given by Equation (1):

Ids =
1
2
µCg

W
L

(
Vgs −Vth

)2
(1)

with Cg = 3 µF/cm2 as the gate capacitance [4].
The mean Vth obtained from five devices are shown in Figure 7a. Afterwards, the field-effect

mobility µ of charge carriers in the P3HT deposited from toluene and oDCB, with and without Ti prime,
has been extracted from the output characteristics in the linear region, where |Vgs| > |Vth|, |Vds| <
|Vgs| − |Vth| and:

Ids = µCg
W
L

(
Vgs −Vth

)
Vds (2)

For each device, a linear fit of output curves measured at gate voltages higher (in absolute value)
than the threshold voltage obtained from the corresponding transcharacteristics have been performed.
µ has been calculated from the slope of the linear fit. Figure 7b shows the average mobilities obtained
from output characteristics of five devices for each process. Devices fabricated without Ti prime show
higher mobilities (µ = 1.53× 10−1 cm2

Vs for the No prime oDCB process and 5.6 × 10−2 cm2

Vs for the No
prime tol process) with respect to devices fabricated with the adhesion promoter (µ = 1.5× 10−2 cm2

Vs

for the Ti prime oDCB process and 7× 10−3 cm2

Vs for the Ti prime tol process). Ti prime processes, on the
other hand, have better device-to-device reproducibility.
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for each process.

Repeated measurements of transfer characteristics have been performed on one device for each
process, at fixed Vds = −500 mV, sweeping the gate voltage from 0 V to −600 mV and back. The cycle
was repeated 100 times. Each of the 100 repeated measurements was acquired with one point every
10 mV and 250 ms of delay between subsequent points, resulting in a scan rate of 40 mV/s. Each single
transfer curve took 30 s to be measured from 0 V to −0.6 V and back, and the following cycle started
after 250 ms. Each stability test lasted 50 min in total. The transfer characteristics have been used for
the stability analysis, monitoring the behavior of the threshold voltage Vth and the transconductance
gm. The stability of these two parameters is of paramount importance in order to obtain reliable
results during sensing experiments. Drift over time of these parameters should be taken into account
when analyzing sensing results. In order to monitor transconductances variations, the maximum
transconductance gm,max has been chosen as figure of merit and has been calculated as:

gm,max = max
(
∂Ids
∂Vgs

)
(3)
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In Figure 8a,b are shown the behaviors of threshold voltages and transconductances during
repeated measurements. The same quantities normalized with respect to their initial value are reported
respectively in Figure 8c,d.
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Threshold voltages obtained for No prime oDCB and Ti prime oDCB are stable within 2% of their
initial Vth, while No prime tol and Ti prime tol samples rapidly increase by 3% and 8% during the first
20 measurements, and then stabilize within 4% and 10% respectively.

The degradation of device performances when using oDCB can be primarily ascribed to a reduction
of transconductance. As can be seen in Figure 8b,d, a linear decrease of gm,max is present both for No
prime oDCB and Ti prime oDCB. When using toluene as a solvent instead, the presence of Ti prime
enhances the transconductance stability.

Transfer curves measured at different scan rates are shown in Figure 9. Independent of the
scan speed, a small hysteresis is present on the drain currents, most likely due to trap filling at the
semiconductor/electrolyte interface [26]. This indicates that the devices are operating in field effect
mode, with negligible electrochemical doping. The gate leakage current is between two and three
orders of magnitude lower than the drain current above threshold for almost all devices shown in
Figure 9, with only the Ti prime oDCB (Figure 9d) showing a leakage current comparable to the drain
one. The No prime tol sample exhibits the lower gate leakage and thus the higher Ion/Ioff ratio.
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4. Conclusions

In conclusion, AFM and XPS results suggest that the use of oDCB improves the polymer
crystallization, resulting in a film with a smoother surface and a higher degree of delocalization of
electronic states at the HOMO level (valence band). Sheet resistance measurements quantitatively assess
the improvement in conductivity due to the choice of the solvent and suggest that an adhesion-promoter
treatment improves conductivity reproducibility. Finally, EGOFET’s characterizations demonstrate
that a device fabricated exploiting oDCB as solvent with no adhesion promoter provide high response
stability as shown by the repeated measurements, while, when using toluene, the adhesion promoter
reduces the transconductance degradation. oDCB also seems to slightly prevent sulfur oxidation in
the thiophene ring, reducing the fast degradation obtained for the EGOFET fabricated with toluene
solution. Future investigations will be focused on testing the optimized EGOFETs in liquid medium of
interest to detect biomarkers and analytes in human body (cells medium, plasma and blood) and in
food (milk, honey, and eggs).
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