Prediction of Relative Physical Activity Intensity Using Multimodal Sensing of Physiological Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Data Acquisition
2.4. Ground Truth Annotation
2.5. Relative Intensity Category Prediction System
2.5.1. Pre-Processing
2.5.2. Feature Extraction
2.5.3. Normalisation and Feature Selection
2.6. Classification Algorithms
2.7. Fusion to Combine Multiple Sensor Modalities
2.8. Performance Evaluation
2.9. Statistical Comparison
3. Results
3.1. Relative Intensity Classification from a Single Modality
3.2. Feature Fusion Results
3.3. Decision Fusion Results
3.4. Statistical Comparison Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Lancet Physical Activity Series Working Group Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Booth, F.W.; Chakravarthy, M.V.; Gordon, S.E.; Spangenburg, E.E. Waging war on physical inactivity: Using modern molecular ammunition against an ancient enemy. J. Appl. Physiol. 2002, 93, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Erikssen, G.; Liestøl, K.; Bjørnholt, J.; Thaulow, E.; Sandvik, L.; Erikssen, J. Changes in physical fitness and changes in mortality. Lancet 1998, 352, 759–762. [Google Scholar] [CrossRef]
- Jefferis, B.J.; Whincup, P.H.; Lennon, L.; Wannamethee, S.G. Longitudinal associations between changes in physical activity and onset of type 2 diabetes in older British men: The influence of adiposity. Diabetes Care 2012, 35, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Information Sheet: Global Recommendations on Physical Activity for Health 18–64 Years Old. 2011. Available online: http://www.who.int/dietphysicalactivity/publications/recommendations18_64yearsold/en/ (accessed on 3 September 2015).
- Ahangama, S.; Lim, Y.S.; Koh, S.Y.; Poo, D.C.C. (Eds.) Revolutionizing mobile healthcare monitoring technology: Analysis of features through task model. In Proceedings of the International Conference on Social Computing and Social Media, Heraklion, Greece, 22–27 June 2014; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Anderson-Bill, E.; Thomas, J.; De Cocker, K.; Kirwan, M.; Duncan, M.J.; Vandelanotte, C.; Mummery, W.K. Using Smartphone Technology to Monitor Physical Activity in the 10,000 Steps Program: A Matched Case–Control Trial. J. Med. Internet Res. 2012, 14, e55. [Google Scholar]
- Bauer, S.; De Niet, J.; Timman, R.; Kordy, H. Enhancement of care through self-monitoring and tailored feedback via text messaging and their use in the treatment of childhood overweight. Patient Educ. Counseling 2010, 79, 315–319. [Google Scholar] [CrossRef]
- Altini, M.; Vullers, R.; Van Hoof, C.; van Dort, M.; Amft, O. (Eds.) Self-calibration of walking speed estimations using smartphone sensors. In Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Hungary, Budapest, 24–28 March 2014; pp. 10–18. [Google Scholar]
- Chowdhury, A.; Tjondronegoro, D.; Chandran, V.; Trost, S.G. Physical activity recognition using posterior-adapted class-based fusion of multi-accelerometers data. IEEE J. Biomed. Health Inform. 2018. [Google Scholar] [CrossRef]
- Chowdhury, A.K.; Tjondronegoro, D.; Chandran, V.; Trost, S.G. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry. Med. Sci. Sports Exerc. 2017, 49, 1965–1973. [Google Scholar] [CrossRef] [Green Version]
- Parkka, J.; Ermes, M.; Korpipaa, P.; Mantyjarvi, J.; Peltola, J.; Korhonen, I. Activity Classification Using Realistic Data from Wearable Sensors. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 119–128. [Google Scholar] [CrossRef]
- Trost, S.G.; Zheng, Y.; Wong, W.K. Machine learning for activity recognition: Hip versus wrist data. Physiol. Meas. 2014, 35, 2183–2189. [Google Scholar] [CrossRef]
- Kujala, U.; Pietilä, J.; Myllymäki, T.; Mutikainen, S.; Föhr, T.; Korhonen, I.; Helander, E. Physical Activity: Absolute Intensity versus Relative-to-Fitness-Level Volumes. Med. Sci. Sports Exerc. 2017, 49, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.E.; Strath, S.J.; Swartz, A.M.; Cashin, S.E. Estimating absolute and relative physical activity intensity across age via accelerometry in adults. J. Aging Phys. Act. 2010, 18, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.R. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995, 273, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Fan, X.; Moe, S.T. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: A meta-analysis. J. Sports Sci. 2002, 20, 873–899. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Freedson, P.; Bowles, H.R.; Troiano, R.; Haskell, W. Assessment of physical activity using wearable monitors: Recommendations for monitor calibration and use in the field. Med. Sci. Sports Exerc. 2012, 44 (Suppl. S1), 1–4. [Google Scholar] [CrossRef]
- Chen, K.Y.; Janz, K.F.; Zhu, W.; Brychta, R.J. Re-defining the roles of sensors in objective physical activity monitoring. Med. Sci. Sports Exerc. 2012, 44 (Suppl. S1), 13. [Google Scholar] [CrossRef]
- Lee, I.M.; Sesso, H.D.; Oguma, Y.; Paffenbarger, R.S., Jr. Relative intensity of physical activity and risk of coronary heart disease. Circulation 2003, 107, 1110–1116. [Google Scholar] [CrossRef]
- Mann, T.; Lamberts, R.P.; Lambert, M.I. Methods of Prescribing Relative Exercise Intensity: Physiological and Practical Considerations. Sports Med. 2013, 43, 613–625. [Google Scholar] [CrossRef]
- Whang, W.; Manson, J.E.; Hu, F.B.; Chae, C.U.; Rexrode, K.M.; Willett, W.C.; Stampfer, M.J.; Albert, C.M. Physical Exertion, Exercise, and Sudden Cardiac Death in Women. JAMA 2006, 295, 1399–1403. [Google Scholar] [CrossRef]
- Altini, M.; Casale, P.; Penders, J.; Amft, O. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models. J. Biomed. Inform. 2015, 56, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Strath, S.J.; Swartz, A.M.; Bassett, D.R., Jr.; O’Brien, W.L.; King, G.A.; Ainsworth, B.E. Evaluation of heart rate as a method for assessing moderate intensity physical activity. Med. Sci. Sports Exerc. 2000, 32 (Suppl. S9), 465–470. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Fairbarn, M.S.; Blackie, S.P.; McElvaney, N.G.; Wiggs, B.R.; Paré, P.D.; Pardy, R.L. Prediction of Heart Rate and Oxygen Uptake During Incremental and Maximal Exercise in Healthy Adults. Chest 1994, 105, 1365–1369. [Google Scholar] [CrossRef]
- Brawner, C.; Ehrman, J.; Schairer, J.; Cao, J.; Keteyian, S. Predicting maximum heart rate among patients with coronary heart disease receiving beta-adrenergic blockade therapy. Am. Heart J. 2004, 148, 910–914. [Google Scholar] [CrossRef]
- Brubaker, P.H.; Kitzman, D.W. Chronotropic incompetence: Causes, consequences, and management. Circulation 2011, 123, 1010–1020. [Google Scholar] [CrossRef]
- Brage, S.; Ekelund, U.; Brage, N.; Hennings, M.A.; Froberg, K.; Franks, P.W.; Wareham, N.J. Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity. J. Appl. Physiol. 2007, 103, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.K.; Tjondronegoro, D.; Zhang, J.; Pratiwi, P.S.; Trost, S.G. (Eds.) Towards non-laboratory prediction of relative physical activity intensities from multimodal wearable sensor data. In Proceedings of the 2017 IEEE Life Sciences Conference (LSC), Sydney, Australia, 13–15 December 2017; pp. 230–233. [Google Scholar]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998; p. 104. [Google Scholar]
- Scherr, J.; Wolfarth, B.; Christle, J.W.; Pressler, A.; Wagenpfeil, S.; Halle, M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur. J. Appl. Physiol. 2013, 113, 147–155. [Google Scholar] [CrossRef]
- Hsia, P.Y.; Lin, S.K.; Chen, Y.L.; Chen, C.C. Relationships of Borg’s Rpe 6–20 Scale and Heart Rate in Dynamic and Static Exercises among a Sample of Young Taiwanese Men. Percept. Mot. Ski. 2013, 117, 971–982. [Google Scholar]
- Australian Institute of Health and Welfare. The Active Australia Survey: A Guide and Manual for Implementation, Analysis and Reporting; Australian Institute of Health and Welfare: Canberra, Australia, 2003.
- Poh, M.Z.; Swenson, N.C.; Picard, R.W. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 2010, 57, 1243–1252. [Google Scholar]
- Rice, K.R.; Gammon, C.; Pfieffer, K.; Trost, S.G. Age Related Differences in the Validity of the OMNI Perceived Exertion Scale During Lifestyle Activities. Pediatr. Exerc. Sci. 2015, 27, 95–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef] [PubMed]
- Heaton, J. Introduction to Neural Networks for Java, 2nd ed.; Heaton Research, Inc.: Chesterfield, MO, USA, 2008. [Google Scholar]
- Reiss, A.; Weber, M.; Stricker, D. (Eds.) Exploring and extending the boundaries of physical activity recognition. In Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Anchorage, AK, USA, 9–12 October 2011; pp. 46–50. [Google Scholar]
- Forman, G.; Scholz, M. Apples-to-apples in cross-validation studies: Pitfalls in classifier performance measurement. ACM SIGKDD Explor. Newsl. 2010, 12, 49–57. [Google Scholar] [CrossRef]
- Singh, N.; Moneghetti, K.; Christle, J.; Hadley, D.; Plews, D.; Froelicher, V. Heart Rate Variability: An old metric with new meaning in the era of using MHealth: Technologies for health and exercise training guidance. Arrhythmia Electrophysiol. Rev. 2018, 7, 247–255. [Google Scholar]
- Altini, M.; Penders, J.; Vullers, R.; Amft, O. (Eds.) Combining wearable accelerometer and physiological data for activity and energy expenditure estimation. In Proceedings of the 4th Conference on Wireless Health, Baltimore, MD, USA, 1–3 November 2013. [Google Scholar]
- Bakker, J.; Pechenizkiy, M.; Sidorova, N. (Eds.) What’s your current stress level? Detection of stress patterns from GSR sensor data. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW), Vancouver, BC, Canada, 11 December 2011; pp. 573–580. [Google Scholar]
- Boettger, S.; Puta, C.; Yeragani, V.K.; Donath, L.; Müller, H.J.; Gabriel, H.H.W.; Bär, K.J. Heart Rate Variability, QT Variability, and Electrodermal Activity during Exercise. Med. Sci. Sports Exerc. 2010, 42, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Pingitore, A.; Salvo, P.; Mastorci, F.; Catapano, G.; Sordi, L.; Piaggi, P.; Di francesco, F. Sweat Rate Monitoring During Maximal Exercise in Healthy Soccer Players: A Close Relationship with Anaerobic Threshold. Ann. Sports Med. Res. 2015, 2, 1047–1055. [Google Scholar]
- Cuddy, J.S.; Buller, M.; Hailes, W.S.; Ruby, B.C. Skin Temperature and Heart Rate Can Be Used to Estimate Physiological Strain During Exercise in the Heat in a Cohort of Fit and Unfit Males. Mil. Med. 2013, 178, e841–e847. [Google Scholar] [CrossRef] [Green Version]
- Penders, J.; Vullers, R.; Amft, O.; Altini, M. Automatic Heart Rate Normalization for Accurate Energy Expenditure Estimation. Methods Inf. Med. 2014, 53, 382–388. [Google Scholar] [CrossRef] [Green Version]
1. HR Feature Set | The features from both HR in beats-per-minutes and RR interval data were extracted and used as a HR feature set. Features extracted from HR in beats-per-minutes Time domain features: mean, variance, standard deviation, skewness, kurtosis, median, numerical gradient, on and off response, the number of times HR increased normalised for window size, and the number of times HR decreased normalised for window size. Features extracted from RR interval Time domain features: mean, variance, standard deviation, skewness, kurtosis, median, standard deviation of successive differences between adjoining normal cycles (SDSD), Square root of the mean squared difference of successive RR-intervals (rMSSD), Number of pairs of successive RR-intervals that differ by more than 20 ms/length (pNN20), Number of pairs of successive RR-intervals that differ by more than 50 ms/length (pNN50). Frequency features: spectral energy density (aVLF, aLF, aHF), relative power (pVLF, pLF, pHF), and normalised power (nLF, nHF) of very low frequency (0–0.04 Hz), low frequency (0.04–0.15 Hz), and high frequency (0.15–0.40 Hz) components, total spectral energy density (aTotal), and ratio between LF and HF band energy (LF/HF). |
2. Eda Feature Set | Time domain features: mean, variance, standard deviation, skewness, kurtosis, and median |
3. Skin Temp Feature Set | Time domain features: mean, variance, standard deviation, skewness, kurtosis, and median |
Feature(s) | SVM (F1 Score %) | RF (F1 Score %) | NN (F1 Score %) |
---|---|---|---|
Eda | 63.58 | 60.65 | 61.30 |
Temp | 61.63 | 58.37 | 61.63 |
HR | 84.55 | 82.11 | 82.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, A.K.; Tjondronegoro, D.; Chandran, V.; Zhang, J.; Trost, S.G. Prediction of Relative Physical Activity Intensity Using Multimodal Sensing of Physiological Data. Sensors 2019, 19, 4509. https://doi.org/10.3390/s19204509
Chowdhury AK, Tjondronegoro D, Chandran V, Zhang J, Trost SG. Prediction of Relative Physical Activity Intensity Using Multimodal Sensing of Physiological Data. Sensors. 2019; 19(20):4509. https://doi.org/10.3390/s19204509
Chicago/Turabian StyleChowdhury, Alok Kumar, Dian Tjondronegoro, Vinod Chandran, Jinglan Zhang, and Stewart G. Trost. 2019. "Prediction of Relative Physical Activity Intensity Using Multimodal Sensing of Physiological Data" Sensors 19, no. 20: 4509. https://doi.org/10.3390/s19204509
APA StyleChowdhury, A. K., Tjondronegoro, D., Chandran, V., Zhang, J., & Trost, S. G. (2019). Prediction of Relative Physical Activity Intensity Using Multimodal Sensing of Physiological Data. Sensors, 19(20), 4509. https://doi.org/10.3390/s19204509