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Abstract: With recent advances in scanning probe microscopy (SPM), it is now routine to determine
the atomic structure of surfaces and molecules while quantifying the local tip-sample interaction
potentials. Such quantitative experiments using noncontact frequency modulation atomic force
microscopy is based on the accurate measurement of the resonance frequency shift due to the
tip-sample interaction. Here, we experimentally show that the resonance frequency of oscillating
probes used for SPM experiments change systematically as a function of oscillation amplitude under
typical operating conditions. This change in resonance frequency is not due to tip-sample interactions,
but rather due to the cantilever strain or geometric effects and thus the resonance frequency is a
function of the oscillation amplitude. Our numerical calculations demonstrate that the amplitude
dependence of the resonance frequency is an additional yet overlooked systematic error source that
can result in nonnegligible errors in measured interaction potentials and forces. Our experimental
results and complementary numerical calculations reveal that the frequency shift due to this amplitude
dependence needs to be corrected even for experiments with active oscillation amplitude control
to be able to quantify the tip-sample interaction potentials and forces with milli-electron volt and
pico-Newton resolutions.

Keywords: resonance frequency; amplitude dependence of resonance frequency; scanning probe
microscopy; atomic force microscopy; frequency modulation atomic force microscopy; noncontact
atomic force microscopy

1. Introduction

Resonant structures are widely used as accurate measurement devices in fields of science ranging
from biological chemical detection to gravitational waves or quantum mechanical systems [1–5].
Additionally, oscillating structures play a transducer role in atomic force microscopy (AFM) and related
techniques [6,7]. Dynamic AFM is an analytical surface characterization tool where a sharp probe
tip is mounted to the end of an oscillating probe which serves as a frequency sensing element to
measure surface properties [6–8]. Among different dynamic AFM methodologies [6,7,9], the frequency
modulation AFM (FM-AFM) technique is the dominant high-resolution material characterization
method under ultra-high vacuum conditions [7,8,10]. The FM-AFM technique tracks the change in the
resonance frequency of the cantilever, ∆f, under the influence of the attractive (or repulsive) surface
forces while keeping the oscillation amplitude ‘constant’ [8]. Even though the physical foundations
of variations of the device resonance frequency was a long-lasting problem that was postulated
in mid-1970s [11,12], only recently it has been systematically demonstrated that the geometric and
stress-induced deviations can modify the resonance frequency of micro-cantilever beams [13–16].
Here, we explore the amplitude dependence of the resonance frequency for the most commonly
used oscillating probes in dynamic SPM measurements, as follows: Tuning forks, cantilever beams,
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and tuning forks in the qPlus configuration (which have one free prong to which the tip is attached to
the end while the fork’s other prong is fixed to a holder [17], see Figure S1 and part I of the Supplemental
Materials for further details.

Our experimental results reveal that the resonance frequency of oscillating probes changes by
a nonnegligible amount within practical operating conditions. The resonance frequency of tuning
forks and tuning forks in the qPlus configuration decreases with increasing oscillation amplitude.
The decrease in the resonance frequency implies that the amplitude dependence of the resonance
frequency of tuning forks and tuning forks in the qPlus configuration is dominated by in-plane
stress near the clamped end of the beam, i.e., surface stress effect [13–16]. In contrast, the resonance
frequency of cantilever beams increases with the oscillation amplitude due to geometric effects, i.e.,
geometry change due to elastic deformation with the application of a load [14,15]. With recent
advances in scanning probe microscopy methods, atomically-engineered chemically identified tips
can be obtained by attaching a molecule or an inert atom to the end of a scanned probe [18,19].
Chemically identified tips enable measurement of the local tip sample interaction deep into the
repulsive regime [18–20]. Quantitative potential energy and force measurements with milli-electron
volt and pico-Newton resolutions have recently been reported (for some cases higher potential energy
accuracies are proposed). The currently reported experimental work can be summarized as the quantitative
measurement of internal structures of molecules and chemical bonds in a molecule [21], the quantitative
assessment of intermolecular interactions [22], the quantification of stiffness and the interaction with
lateral force microscopy of molecules with sub milli-electron volt resolution for potential energy and
zepto-Newton resolution for the torsional stiffness [23], and van der Waals interactions of isolated
atoms with sub-milli-electron volt potential energy resolutions [24]. In parallel to these selected
examples, investigating the validity and the accuracy of methods to extract the potential energy (and/or
force) spectroscopy from experimental data and associated mathematical methods and approximations
are ongoing research efforts [25,26]. Many experiments involve measuring the resonance frequency
as a function of tip-sample separation in order to quantify the interaction potential as a function of
distance, often with lateral atomic resolution [18,19,21–24,27–29]. These frequency measurements
allow the experimental determination of surface chemical or electronic properties, with sub-nanometer
spatial resolution.

We conducted numerical calculations to explore consequences of the amplitude dependence of
the resonance frequency for high-resolution AFM measurements. In determining interaction forces
and potentials from frequency shift data, it is assumed that the resonance frequency is independent of
oscillation amplitude. In the following, we investigate the validity of this assumption and demonstrate
that the systematic errors introduced by this assumption are comparable (or, in some cases even larger)
than the precision of interaction potentials reconstructions reported in the literature. Our experiments
and numerical calculations address the amplitude dependence of the resonance frequency as an
important yet overlooked systematic error source which can impede the accurate measurement of
the tip-sample interaction potential and force with milli-electron volt and pico-Newton resolutions.
Therefore, the systematic error due to the amplitude dependence of the resonance frequency should be
corrected for meaningful and accurate data acquisition.

2. Results

We experimentally investigated the variation of the resonance frequency of tuning forks,
tuning forks in the qPlus configuration, and cantilevers as a function of oscillation amplitude (see
Supplemental Materials part II for details of experimental methods). We conducted experiments with
three different types of quartz tuning forks. The tuning forks have the same resonance frequency
(~215 Hz), while their effective spring constant changes due to their geometric dimensions (see Table S1
for details). Figure 1 shows, the resonance frequency of different types of encapsulated tuning forks
were measured with thermal noise spectra and frequency sweep experiments (see Figures S2–S4
for additional experimental results). Oscillation amplitudes of tuning forks are calibrated with the
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principle of energy dissipation, details of which can be found elsewhere [30]. As highlighted in
Figure 1, the resonance frequency of excited tuning forks decreases with respect to the thermal
excitation measurements. The viscous effects of the surrounding medium can be excluded as the
tuning forks are encapsulated (i.e., in vacuum) [17]. In addition, piezoelectric nonlinearities can
be excluded as current-induced piezoelectric nonlinearities increase the resonance frequency of
z-cut piezoelectric devices rather than decreasing the resonance frequency, as we observed in our
experiments [31,32]. Both thermal noise density and frequency sweep experiments are conducted
successively in a temperature controlled and quiet room in a thermally isolated chamber. With the other
effects eliminated, the drop of the resonance frequency implies that the effect of in-plane surface stress
is the governing factor for the amplitude dependence of the resonance frequency [13–16]. The first
mode of tuning forks is along the vertical direction with respect to the sample surface, which induces
an in-plane stress (i.e., the stress is in the same plane as the mechanical oscillation) near the clamp.
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further details of experimental techniques). The experimental data presented in this figure was 
conducted with three different types of quartz tuning forks. While the tuning forks have the same 
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In-plane stress results in a drop of the resonance frequency and the relative frequency shift due 
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Figure 1. The measurement of the resonance frequency of encapsulated tuning forks with thermal noise
density (first row, a–c) and frequency sweep experiments (second row, a–c). A Lorentzian curve is fitted
to the thermal noise density and the resonance frequency is calculated from the fit. Thermal noise spectra
presented in this figure were recorded at room temperature and averaged 100 times. The oscillation
amplitude of tuning forks is calibrated with the principle of energy dissipation [30]. The frequency
resolution of the thermal noise spectra is 4 milli-Hz while the frequency resolution of the resonance
sweep experiments for encapsulated tuning forks are 0.4 milli-Hz (see Supplemental Materials part II
for further details of experimental techniques). The experimental data presented in this figure was
conducted with three different types of quartz tuning forks. While the tuning forks have the same
resonance frequency (~215 Hz), effective spring constants differs due to the difference in their geometric
dimensions (see Table S1 for details).

In-plane stress results in a drop of the resonance frequency and the relative frequency shift due to
surface stress, as demonstrated experimentally and theoretically in References [13–16], as follows:

∆w
w0

= −0.042
v(1− v)σT

s
ke f f

(1)

In Equation (1), ∆w is the relative frequency shift, w0 is the resonant frequency in the absence
of the surface stress, v is the Poisson’s ratio, σT

s is the total surface stress, and ke f f is the stiffness of
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the cantilever beam in the absence of the surface stress. According to Equation (1), a frequency shift
due to the surface stress is a function of the material of the oscillating beam (due to Poisson’s ratio),
σT

s , and inversely proportional to ke f f . Additionally, Equation (1) implies that the product of ∆w with
ke f f remains constant for the same range of total surface stress. As expected, based on this model,
the product of the relative frequency shift and the effective spring constant of the three different size
quartz tuning forks characterized here is 3460 ± 160 (kg/s3) (keff = 2k, where k is the stiffness of a single
prong, also see Supplemental Materials part IV). This supports our interpretation that the surface
stress effect (Equation (1)) describes the amplitude dependence of the resonance frequency (also see
Supplemental Materials part III and part IV for further discussion).

Quartz tuning forks that have one free prong, to which the tip is attached to the end while the
fork’s other prong is fixed to a holder (‘qPlus’ configuration), have gained popularity in recent years
for high-resolution imaging (see Supplemental Materials part I for details) [17]. Figure 2 shows the
decrease in resonance frequency with increasing oscillation amplitude of a qPlus sensor. We conducted
successive frequency sweep experiments in which we increased and decreased the frequency to
investigate the potential contribution of Duffing nonlinearity to the change in resonance frequency [33].
The identical same resonance curves were found independent of the oscillation amplitudes tested,
establishing our system as a harmonic oscillator. The results in Figure 2 (also Figures S2–S4 for
additional experimental data) show that the resonance frequency is a function of amplitude even in the
small oscillation amplitude range (Ångströms to nanometers). The variation of the resonance frequency
is more emphasized for tuning forks in the qPlus configuration compared to encapsulated tuning forks
(see Figures S2 and S3). The increased effect of the oscillation amplitude on the resonance frequency
can be linked to the sensor assembly, which can alter the stress concentration near the clamp [13].
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Figure 2. The measurement of the resonance frequency of a tuning fork (type-II, see Supplemental
Materials part II for details of the tuning fork used for this specific experiment) in the qPlus configuration.
Frequency sweep experiments (a) were conducted to determine the resonance frequency. The oscillation
amplitude of the qPlus is calibrated with the principle of energy dissipation, which has a picometer
range accuracy [30]. The frequency resolution of resonance sweep experiments is 10 milli-Hz for
tuning forks in the qPlus configuration (see Supplemental Materials part II for further details of
experimental techniques). (b) We fit a curve to experimental data (black, dashed line, R2 = 0.99
for the fit), ∆ f = −0.03548 × A0.584, where ∆ f is the resonance frequency shift in Hz and A is the
oscillation amplitude in Ångströms. To eliminate the possibility that this observation was due to
Duffing nonlinearity and other sources of nonlinearities (e.g., temperature change due to energy
dissipation during oscillation), we conducted successive experiments under different excitation
conditions. We increased the resonance frequency during the sweep experiments and the oscillation
amplitude for successive sweeps (blue circles). In addition, we decreased the frequency during resonance
sweep experiments (red circles) for different oscillation amplitude in a consecutive experiment (green
circles). To eliminate the effect of viscous damping and temperature variations, experiments presented in
this figure were conducted at liquid nitrogen temperature (~77 K) in vacuum conditions (2× 10−7 mbar).
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For completeness, we also performed measurements of the amplitude dependence of the resonance
frequency with conventional micro-fabricated silicon cantilevers, which are widely used for scanning
probe microscopy experiments [6,7]. We compared thermal noise spectrum and frequency sweep
experiments for two different types of cantilevers (cantilever-I OPUS 4XC-NN-A, cantilever-II OPUS
4XC-NN-B) in vacuum. As Table 1 (also Figure S5 for additional experimental data) summarizes,
the resonance frequency of cantilevers increases with increasing oscillation amplitude in contrast to
encapsulated tuning forks and tuning forks in the qPlus configuration, where the resonance frequency
decreases with increasing amplitude. Our experiments with cantilever beams are in line with former
experimental and theoretical work which predicts that the resonance frequency of cantilever beams
increases due to geometric effects [14,15].

Table 1. The measurement of the resonance frequency of two different types of micro-cantilevers
with thermal noise density and frequency sweep experiments. For both cantilevers, the resonance
frequency increases with the oscillation amplitude. Experimental data are the average of 5 independent
measurements of 50 spectra averaged together. The resonance frequency is determined by fitting a
Lorentzian function to the thermal noise spectrum. The oscillation amplitude at the resonance frequency
is 8.2 nm for cantilever-I and 7.5 nm for cantilever-II. The experimental setup was kept in a quiet room
during the experiments to eliminate the effect of acoustic noise [34].

f0 with Thermal Noise (Hz) f0 with Frequency Sweep (Hz)

Cantilever-I 18156.8 ± 0.4 18163.4 ± 0.2
Cantilever-II 84325.9 ± 1.5 84329.0 ± 1.5

3. Discussion

In the following, we investigate what the consequences are in the field of non-contact AFM
(NC-AFM) for the amplitude dependent resonant frequency. In NC-AFM, measurements of the
resonance frequency as a function of tip-sample separation are often used to reconstruct the sample’s
potential energy landscape. This is known potential energy (and/or force) spectroscopy and used to
understand reaction pathways, diffusion, as well as to validate ab-initio modeling. To demonstrate the
effect of the amplitude dependent frequency, we conducted numerical calculations to determine the
consequences on the potential energy and force spectroscopy experiments. Even though the amplitude
is intended to be ‘kept constant’ via a feedback mechanism during the frequency modulation-based
force spectroscopy experiments, a non-zero amplitude error is always present [8]. To understand
the effect of the amplitude error, we fitted an empirical curve to the experimental data presented in
Figure 2b (see figure caption and Supplemental Materials for details). We used Equation (2) to calculate
the resonance frequency shift due to the amplitude error around the amplitude setpoint, as follows:

∆ ferror = ∆ f f it(Aset) − ∆ f f it(Aset + Aerror) (2)

where ∆ ferror is the frequency shift due to amplitude dependence of resonance frequency, Aset is the
amplitude setpoint, and Aerror is the amplitude error using the fitted curve (∆ f f it) to the experimental
data in Figure 2b. In experiments, a non-zero amplitude error is present due to the limited bandwidth
and the accuracy of measurement electronics. We assume an Aerror of 10 picometers to be a constant as
a function of tip-sample distance. Note that in reality, however, Aerror can increase more significantly
in the proximity of the surface and can have a larger error corrugation across the scan area due to
non-linear tip-sample interaction and due to the effect of dissipative forces [9,35]. For this reason,
the assumption of a constant Aerror underestimates the amplitude error with respect to experimental
conditions where the effect of dissipative tip-sample interactions can further enhance the amplitude
variations with decreasing tip-sample distance [35].

To demonstrate the consequences of the amplitude dependent resonance frequency and the
pathway to correct this effect, we calculated the resonance frequency shift due to a tip-sample
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interaction potential as a function of Aset and then reconstructed the tip-sample interaction potential
using well-established mathematical procedures with and without considering the effect of Aerror on
the frequency shift (see Supplemental Materials part V for details of numerical calculations) [36].

As Figure 3 summarizes, we investigated the error in the reconstructed potential energy and force as
a function of amplitude error (Aerror), amplitude setpoint (Aset), and tip-sample distance. As Figure 3a,b
reveals, unless the amplitude error is minimized or corrected, the amplitude dependence of the
resonance frequency, ∆ ferror, does not allow measurements with milli-electron volt and pico-Newton
accuracy. We note that the systematic error due to the amplitude dependence of the resonance
frequency is a significant, yet overlooked, source of experimental error given the fact that the tip-sample
interaction potential of high-resolution spectroscopy experiments is on the order of a few tens of
milli-electron volts and force in the order of pico-Newtons [21–24]. The error induced by the amplitude
dependence of the resonance frequency has two major trends depending on the oscillation amplitude.
As highlighted by Figure 3, the error of the reconstructed tip-sample interaction potential and force
peaks when Aset is comparable to Aerror. In addition to this trivial trend, the effect of amplitude error
increases when Aset is on the order of nanometers. This is due to the stronger dependence of the
resonance frequency on amplitude for oscillation amplitudes larger than a few nanometers. As Figure 2
and Figures S2–S4 demonstrate, the amplitude-dependent change in resonance frequency, ∆ ferror,
becomes more important with increasing oscillation amplitude.
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Figure 3. The effect of amplitude dependence of the resonance frequency on recovered tip-sample
interaction potential (a) and force (b) of tip-sample distance and amplitude error. (a) The error of
recovered tip-sample interaction potential increases with decreasing tip-sample separation. To keep the
error less than one milli-electron volt and one pico-Newton (white contour in (a,b)), the amplitude
error should be less than one picometer. If the amplitude error is not constraint to sub-picometer
range, the frequency shift due to the amplitude dependence of the resonance frequency should be
corrected. By this way, the intrinsic contribution of frequency shift due to tip-sample interaction can be
calculated and error in the reconstructed tip-sample interaction potential and force can be eliminated.
The reference point for the distance, i.e., distance = 0, is defined as the potential energy minimum of
the model tip-sample interaction (see Supplemental Materials for details).

Our results highlight that the amplitude dependence of the resonance frequency is a systematic
error source due to the intrinsic properties of the oscillating probe used, independent of the nature



Sensors 2019, 19, 4510 7 of 10

of tip-sample interaction potential (see Supplemental Materials part V for details). For this reason,
the error induced due to the amplitude dependence of the resonance frequency will persist even
for a mathematically well-posed interaction [25,26]. As a consequence, most experimental force
spectroscopy data derived from frequency shift measurements presented in the literature are expected
to have systematic errors that can be corrected for. As Equation (3) summarizes, by measuring the
oscillation amplitude (Aosc) dependence of the resonance frequency for the sensor in use, e.g., Figure 2b,
and the oscillation amplitude error, the contribution of amplitude error on quantitative spectroscopy
experiments can be eliminated (see Supplemental Materials part VI for the detailed algorithm).

∆ ftip−sample = ∆ fmeasured − ∆ ferror (3)

Our numerical calculations show that unless the resonance frequency shift due to amplitude
dependent resonance frequency error is corrected, the oscillation amplitude error has to be kept
less than one picometer to achieve milli-electron volt and piconewton resolution. Controlling the
oscillation amplitude with sub-picometer error corrugation across the scan area is not straightforward
at all due to hardware related experimental limitations [7,9]. We want to emphasize that the error
induced by the amplitude dependence of the resonance frequency is an intrinsically related to the
oscillating probe characteristics (see Equation (1)) and is independent of the tip-sample interaction (see
Supplemental Materials part V for details). Therefore, the effect of the amplitude dependence of the
resonance frequency should be corrected with our proposed algorithm (see Supplemental Materials
part VI) for the quantitative measurement of any tip-sample interaction potentials and forces with
milli-electron volt and pico-Newton resolutions, respectively.

As discussed at the beginning of results and discussion section, current-induced piezoelectric
nonlinearities of z-cut piezoelectric devices, temperature fluctuations, and acoustic noise may lead to a
variation of the resonance frequency [31,32]. Current piezoelectric nonlinearities of z-cut piezoelectric
devices increase the resonance frequency with increasing oscillation amplitude rather than the decrease,
as we observed in our experiments for tuning forks. Additionally, we conducted our experiments in
a temperature-controlled room in an acoustically isolated chamber. Even though other mechanisms
are eliminated, we want to emphasize that any amplitude dependence of the resonance frequency
needs to be corrected to avoid systematic errors in the reconstructed force or potential values.
In addition, possible implications of the amplitude dependent resonance frequency are not limited
to force spectroscopy experiments, for instance, multimodal atomic force microscopy, in which the
relative amplitudes of different harmonics can potentially change due to the amplitude dependence
of resonance frequency. With the change of the modal shape, the amplitude dependence of the
resonance frequency of higher harmonics can be different. This may further complicate the data
interpretation and the correction. Furthermore, the optical drive or the thermal drive of oscillating
probes may enhance non-linearities. This can promote additional non-linearity mechanisms due to
temperature fluctuations. Moreover, Kelvin probe force microscopy and pump-probe atomic force
microscopy measurements require a precise measurement of the resonance frequency. For this reason,
the amplitude dependence of the resonance frequency can challenge the accuracy of quantitative
Kelvin probe force microscopy and pump-probe AFM measurements and time-resolved non-contact
atomic force microscopy experiments [37,38]. We also want to mention that the existence of vacuum
conditions is not a prerequisite for the amplitude dependence of the resonance frequency (see
Table 1, also Figures S3–S5), which may alter experiments and data interpretation of infra-red AFM
measurements under ambient conditions. Such experiments rely on the demodulation of the cantilever
resonance in close proximity to an optically excited sample. With the change of the oscillation amplitude,
the resonance frequency of different harmonics can be modified due to amplitude dependence of the
resonance frequency. This may lead to resonance side bands or complications of the data analysis if a
quantitative description is aimed for the light absorption of the illuminated tip-sample system.
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4. Conclusions

We experimentally demonstrated that the resonance frequency of the most commonly used
oscillating probes for dynamic atomic force microscopy experiments changes significantly as a function
of oscillation amplitude. Amplitude errors need to be maintained below one picometer to keep
resultant systematic energy and force errors below milli-electron volt and pico-Newton, respectively.
Our results demonstrate that the amplitude dependence of the resonance frequency is a nonnegligible
yet overlooked systematic error source for the quantitative measurement of tip-sample interaction
potentials and forces if milli-electron volt and pico-Newton accuracy are claimed. Finally, we want to
note that the amplitude dependence of the resonance frequency has possible consequences for other
scanning probe microscopy methodologies.
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