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I. Tuning Forks in the qPlus Configuration 

Tuning forks are used commonly used as force sensing elements in different scanning probe 
microscopy techniques such as non-contact atomic force microscopy or scanning near-field optical 
microscopy [1,2]. Tuning fork-based sensors are popular due to the ability of the piezoelectric quartz 
to ‘self-sense’ deflections through the detection of induced surface charges [1,3]. In addition, it is 
possible to operate tuning forks with small oscillation amplitudes (Ångströms to nanometers) while 
avoiding mechanical instabilities with the high spring constant of tuning forks. Additionally, the 
flexibility in choice of the tip material allows to tailor the tip-sample interaction. Quartz tuning forks 
that have one free prong, to which the tip is attached to the end while the fork’s other prong is fixed 
to a holder (‘qPlus’ configuration, see Figure S1), have gained popularity for high-resolution imaging 
in recent years [1]. The scanned probe tip is attached to the end of the oscillating prong and interacts 
with the surface. By decoupling the prongs of the tuning fork, data interpretation is simplified under 
the influence of tip-sample interactions [4]. 

 
Figure S1: Schematic representation of tuning forks in the qPlus configuration. For tuning forks in the 
qPlus configuration, one of the prongs of the tuning fork is fixed while the other prong oscillates freely 
(also known as qPlus configuration). The mechanical oscillation, Aosc, induces a charge on the surface 
of the piezoelectric material. The induced charge is collected via electrodes and amplified. As the 
induced charge is correlated with the mechanical oscillation amplitude [4], the requirement of an 
optical detection mechanism is eliminated. 

II. Experimental Methods and Additional Experimental Results 

We conducted thermal noise spectra experiments and frequency sweep experiments to measure 
the resonance frequency of probes. The thermal noise spectra were obtained by fast Fourier transform 
of the detection signal. The thermal spectra tuning forks were obtained at room temperature by 
employing a low-noise preamplifier (Stanford Research Systems, Model SR560) operated at the 
differential input mode followed by fast Fourier transform of the detection signal. The driven 
frequency spectra were measured by a lock-in amplifier with a sinusoidal drive signal with constant 
amplitude while its frequency was swept. The frequency resolution of the thermal noise spectra is 4 
milli-Hz. The frequency resolution of the driven frequency spectra is 0.4 milli-Hz for encapsulated 
tuning forks, 10 milli-Hz for tuning forks in the qPlus configuration, and 0.1 Hz for cantilevers. The 
resonance frequency was determined by fitting a Lorentzian curve to the experimental frequency 
spectra around the peak. The oscillation amplitude of tuning forks and tuning forks in the qPlus 
configuration are measured with the principle of energy dissipation with picometer range accuracy, 
details of which can be found elsewhere [4]. All experiments were conducted at room temperature 
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(unless otherwise stated) in a quiet room to avoid the contribution of acoustic noise [5]. In addition, 
to eliminate the effect of temperature variations, experiments were conducted at constant 
temperature in a thermally isolated chamber under ambient pressure. 

 
Figure S2: The measurement of the resonance frequency of an encapsulated tuning fork as a function 
of oscillation amplitude. (a) Frequency sweep experiments were conducted to determine the 
resonance frequency. The oscillation amplitude of the tuning fork (type-III, see Table S1 in part III of 
the supplemental materials for details of the tuning fork used for this specific experiment) is calibrated 
with the principle of energy dissipation [4]. (b) The resonance frequency decreases with increasing 
oscillation amplitude. 

 
Figure S3: The measurement of the resonance frequency of a tuning fork in qPlus configuration. (a) 
Frequency sweep experiments were conducted to determine the resonance frequency. The oscillation 
amplitude of the qPlus sensor (based on tuning fork type-III, see Table S1 in part III of the supplemental 
materials for details of the tuning fork used for this specific experiment) is calibrated with the principle 
of energy dissipation [4]. (b) The resonance frequency changes up to 2 Hz when the oscillation 
amplitude is changed from 8 Å to 120 Å. The enhanced amplitude dependence is expected to be 
associated with the increased stress concentration at the clamped end of the prong due to the assembly 
process.  
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Figure S4. The measurement of the resonance frequency of a tuning fork in qPlus configuration. (a) 
Frequency sweep experiments are conducted to determine the resonance frequency. The oscillation 
amplitude of the qPlus sensor (based on tuning fork type-II, see Table S1 in part III of the 
supplemental materials for details of the tuning fork used for this specific experiment) is calibrated 
with the principle of energy dissipation [4]. (b) The resonance frequency changes up to 1.2 Hz when 
the oscillation amplitude is tuned up ~20 Å. The enhanced amplitude dependence is expected to be 
associated with the increased stress concentration at the clamped end of the prong due to the assembly 
process [6,7]. 

 
Figure S5: The measurement of the resonance frequency of a microfabricated silicon cantilever-I 
(OPUS 4XC-NN-A) as a function of oscillation amplitude. (a) Frequency sweep experiments were 
conducted to determine the resonance frequency. The frequency sweep experiments presented in this 
figure are averaged five times. A Lorentzian curve is fitted around the resonance amplitude to 
determine the resonance frequency. (b) The resonance frequency of the cantilever increases with the 
oscillation amplitude, which implies that geometric effects dominate [8]. Experiments were conducted 
under ambient conditions in a temperature-controlled room. To eliminate the effect of acoustic noise, 
experiments were performed in a quiet room under ambient pressure [5]. 

III. In-Plane Stress Near the Tuning-Fork Base 

We briefly summarize the finite element method (FEM) approach to calculate the modal shape 
of the oscillation and the stress distribution of oscillating tuning fork-based sensors while further 
details for FEM calculations can be found elsewhere [3,9–12]. All calculations were performed using 
the COMSOL Multiphysics 4.4 structural mechanics software package (COMSOL Multiphysics, 
GmbH, Berlin, Germany).  

The physical system is modeled when FEM calculations are conducted. Modeling the tuning 
fork for FEM calculations requires measuring the dimensions. We employed a calibrated optical 
microscope to obtain the dimensions of the tuning forks (Table S1). It is important to reflect the tuning 
fork’s geometry accurately in regions where stress concentrations are expected, e.g., the region 
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between the prongs and where prongs are connected to the base of the tuning fork [3,12]. We did not 
include the gold coating, which has an average thickness of 200 Å, nor the notches at the tuning fork 
base to decrease the cost of computation and modeling. Neglecting these features in our FEM model 
has been justified as they are mainly important for electrical properties of tuning fork while having 
no substantial influence on the mechanical properties [3,11,13]. 

Table S1. Dimensions of tuning forks were measured with a calibrated light microscope. 

 Width Length of the Prong Thickness 

Tuning Fork-I  234 μm 2471 μm 90 μm 

Tuning Fork-II  234 μm 2426 μm 131 μm 

Tuning Fork-III 600 μm 3600 μm 250 μm 

In addition to measuring geometric dimensions, assigning relevant material properties, such as 
Young’s modulus, Poisson’s ratio, mass density, and damping coefficient, is required. We used the 
material properties for quartz from the materials library of the FEM software with the mass density 
of a common epoxy glue (Epoxy Technology’s EPO-TEK H72) as derived from the information 
provided in the manufacturer’s data sheet and the damping coefficient of quartz and epoxy taken 
from References [14,15] (Table S2). Finally, we assumed that Macor does not contribute to the 
damping to speed up the calculations; doing so is justified due to the much smaller damping 
coefficient of Macor compared to quartz and, in particular, the epoxy, damping due to that Macor 
has virtually no influence on the simulation results [3,12]. 

Table S2. Material Properties Used for Finite Element Method (FEM) Calculations. 

. 
Young’s Modulus 

(Gpa) 
Poisson’s 

Ratio 
Mass Density 

(kg m−3) 
Damping Coefficient 

Quartz 82  0.17 2648 2 × 10−4 

Epoxy 7 0.35 1600 5 × 10−3 

Macor 300 0.222 3900 - 

As Figure S6a summarizes, to determine the modal shape and the surface stress distribution due 
to the mechanical oscillation, boundary conditions are defined at the base of the Macor holder. Figure 
S6b shows that we increased the mesh density at the material interfaces and at regions where stress 
concentrations were expected. Eigenfrequency analysis of the assembly system reveals that the 
resonance frequency of the tuning fork assembly is 32,171 Hz and the tuning fork oscillates along the 
vertical direction. As Figure S6c discloses, that in-plane stress distribution was evident along the 
oscillation direction (with brighter colors presenting higher stress). It is clearly seen that stress is 
highest near the fixed end of the cantilevered free prong along the oscillation direction (in-plane) and 
can, in potential, induce variations of the resonance frequency [6–8,16]. 

 
Figure S6: The assembled sensor setup and the modelling procedure to determine the modal shape 
and the surface stress distribution of tuning fork-based sensors. (a) Three-dimensional presentation 
of the sensor assembly including the tuning fork, Macor holder, and epoxy glue used to fix the tuning 
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fork to the base holder. (b) Enhanced mesh density is evident at the material boundaries and at the 
areas of stress concentrations. (c) The modal shape of the oscillation was calculated with 
eigenfrequency analysis. The first operational mode of the sensor assembly has a resonance frequency 
of 32,171 Hz and the oscillation is along z-direction. With brighter colors representing higher stress 
along the oscillation direction (in-plane), it is evident that the stress is the highest near the fixed end 
of the cantilevered free prong. 

IV. Product of the Spring Constant with the Relative Resonance Frequency Shift  

To investigate the convergence of the surface stress when the oscillation amplitude was 
increased from thermal limit to nanometer range, we calculated the stiffness of the tuning forks we 
used in our experiments. Experimental and theoretical approaches are available to calibrate the 
spring constant (k) of the probes used for scanning probe microscopy (SPM) experiments (see 
Reference [17–20] for detailed reviews). We used the FEM-based technique to calculate the spring 
constant of tuning forks (see section III of the SM for details). As Figure S7a summarizes, while keeping 
one of the prongs and the base of the tuning fork rigid, we applied force along z-direction to the end 
of the free prong. We swept the force from 1 μN to 100 μN with 1 μN steps and measured the 
displacement, Δz. The next step was fitting a first-order polynomial to find the spring constant of the 
tuning fork by using Hooke’s law.  

 

 
Figure S7: Calibration of spring constant with finite element methods. (a) One of the prongs and the 
base of the tuning fork were fixed, while force was applied to the end of the free prong along the z-
direction. The exerted force deforms the prong and the displacement at the end of the prong, Δz, was 
measured. (b) The slope of the force versus displacement curve is equal to the spring constant of the 
tuning fork, k. 

Summarized in Figure S7b, we found consistent spring constant values with earlier experimental 
and computational results for similar tuning forks [1,9–11,21]. As outlined by different groups, 
calibration of spring constant with FEM techniques deviated up to 5% with respect to dynamic 
experimental results [3,9,12,22]. 

As Figure 1 in the main text shows, tuning forks were excited with very similar oscillation 
amplitudes, i.e., all in the nanometer range. For this reason, the total surface stress is assumed to be 
in the same range. The multiplication of the relative resonance frequency shift (Figure 1 in the main 
text) with the equivalent spring constant of tuning forks (keff = 2k, where k is the stiffness of a single 
prong), calculated with the finite element method, gives a constant product of 3,460 ± 160 (kg/s3). 
Such a convergence implies that the in-plane surface stress is the governing physical phenomena that 
leads the amplitude dependent resonance frequency. In addition, we want to underline that even if 
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the amplitude dependence of the resonance frequency has a physical origin other than the surface 
stress effect (for tuning forks) or geometric effect (for cantilevers), consequences on the spectroscopy 
experiments will always exist (please see the main text for a detailed discussion).  

V. Computational Methods Employed in the Numerical Analysis of Resonance Shifts 

Following a commonly used approach for dynamic atomic force microscopy simulations, we 
solved the equation of motion of a damped harmonic oscillator with external excitation and non-
linear tip-sample interaction force [23–27], as follows: 𝑚𝑧ሷ(𝑡) + ଶగబொ 𝑧ሶ(𝑡) + 𝑐௭[𝑧(𝑡) − 𝑑] = 𝑎ୢ𝑐௭ cos(2𝜋𝑓 𝑡) + 𝐹୲ୱ[𝑧(𝑡), 𝑧ሶ(𝑡)], (S1) 

where 𝑧(𝑡) is the position of the tip as a function of time t (with z = d denoting the distance of the tip 
relative to the sample when the cantilever is undeflected); m, f0, Q, and cz are the effective mass, the 
first eigenfrequency, the quality factor, and the spring constant of the oscillator, respectively. In 
Equation (S1), the terms on the left reflect the standard terms for a damped harmonic oscillator, while 
the first term on the right represents the external excitation of the oscillator with excitation amplitude 
ad and excitation frequency fd. The second term on the right side finally symbolizes the non-linear tip 
sample interaction force Fts, which may depend both on the tip’s time-dependent position z as well 
as its instantaneous velocity 𝑧ሶ. Neglecting a possible velocity dependence, we chose Fts in agreement 
with previous literature [25–27] as a combination of a van der Waals-type sphere-over-flat interaction 
[28] for the attractive regime (z ≥ z0) and a contact force (z < z0) that follows Maugis’ approximation 
to the Derjaguin–Muller–Toporov model (DMT-M) [29–31], which is often referred to as the Hertz-
plus-offset model [32], as follows:

 

 

 (S2) 

where 𝐴ୌ = 0.2 aJ is the Hamaker constant, R = 10 nm the radius of the tip’s apex, z0 = 0.3 nm the 
distance at which the contact is established, and E* = ((1−νt2)/Et+ (1−νs2)/Es)−1 the combined elastic 
modulus of the tip and sample (with Et = 130 GPa as the Young’s modulus of the tip, Es = 1 GPa as the 
Young’s modulus of the sample, and νt = νs = 0.3 as the Poisson ratios of tip and sample, respectively). 
To describe the oscillator, we chose cz = 2,000 N/m, fd = f0 = 22,000 Hz, and Q = 10,000; these values 
reflect typical parameters for a tuning fork glued on a holder in qPlus configuration, which represents 
the current most common oscillator choice for high-resolution vacuum-based atomic force 
microscopy.  

Equation (S1) was then solved by employing a previously derived analytical solution for the tip-
sample motion, which is, however, defined for conservative tip-sample interactions only [26]. Finally, 
Equation (S3) details the numerical integration method we used for reconstructing the tip-sample 
interaction potential, Uts, from data obtained with FM-type force spectroscopy introduced by Sader 
and Jarvis, which represents the most widely used reconstruction protocol for this case [33]. It results 
in the following equation: 

𝑈୲ୱ(𝐷) =  2𝑐௭ න 𝑓 − 𝑓୰ୣୱ𝑓 (𝑧 − 𝐷) + ඨ 𝐴16𝜋 √𝑧 − 𝐷 + 𝐴ଷ ଶ⁄ඥ2(𝑧 − 𝐷) 𝑑𝑧ஶ
  (S3) 

Note that Uts is given as a function of nearest tip-sample distance D, which distinguishes itself 
from the distance d the tip has to the surface when the cantilever is undeflected by D = d – A, where 
fres(D) represents the cantilever’s distance-dependent resonance frequency (i.e., Δf = f0 – fres). With the 
knowledge of Uts(D), the tip-sample force, Fts, as a function of D can easily be recovered for both cases 
by calculating its negative gradient, (Fts(D) = −∂Uts/∂D).  

Fts(z) =
−
AHR
6z2

for z ≥ z0

4
3
E* R z0 − z( )3/2

−
AHR
6z0

2
for z  < z0
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In passing, we want to mention that the error induced by the amplitude dependence of the 
resonance frequency is independent of the (model) tip-sample interaction used in our numerical 
analysis. According to Equation (3) of the main text, the measured frequency shift is presented by the 
following: ∆𝑓௦௨ௗ =  ∆𝑓௧ି௦ + ∆𝑓 (S4) 

In equation (S4), ∆𝑓௦௨ௗ  is the total resonance frequency shift which is equal to the 
summation of ∆𝑓௧ି௦ , the frequency shift due to the tip-sample interaction, and ∆𝑓 , the 
frequency shift induced by the amplitude dependence of the resonance frequency. The value ∆𝑓௧ି௦ is calculated using the model tip-sample interaction force and ∆𝑓 is calculated using 
the experimental dependence of the resonance frequency on amplitude for different amplitude errors 
assumed (see the main text for details and/or section VI of the supplemental materials for details). The error 
in the reconstructed tip-sample interaction potential is calculated by the following: 𝑈ୣ୰୰୭୰(𝐷) = 𝑈୫ୣୟୱ୳୰ୣୢ(𝐷) − 𝑈୲ୱ(𝐷). (S5) 

By inserting Equation (S4) into the Equation (S3) and rearranging Equation (S5), the error in the 
tip-sample interaction potential can be expressed by the following: 

𝑈ୣ୰୰୭୰(𝐷) = 𝑐௭ න ∆𝑓௧ି௦ + ∆𝑓𝑓 (𝑧 − 𝐷) + ඨ 𝐴16𝜋 √𝑧 − 𝐷 + 𝐴ଷ ଶ⁄ඥ2(𝑧 − 𝐷) 𝑑𝑧ஶ


− 𝑐௭ න ∆𝑓௧ି௦𝑓 (𝑧 − 𝐷) + ඨ 𝐴16𝜋 √𝑧 − 𝐷 + 𝐴ଷ ଶ⁄ඥ2(𝑧 − 𝐷) 𝑑𝑧ஶ
  

(S6) 

With the rearrangement of Equation (S6), we have the following expression: 

𝑈ୣ୰୰୭୰(𝐷) = 𝑐௭ න ∆𝑓𝑓 (𝑧 − 𝐷) + ඨ 𝐴16𝜋 √𝑧 − 𝐷 + 𝐴ଷ ଶ⁄ඥ2(𝑧 − 𝐷) 𝑑𝑧ஶ
  (S7) 

As Equation (S7) reveals, the error in the reconstructed tip-sample interaction potential (or force, 
Ferror(D) = −∂Uerror/∂D), is independent of the tip-sample interaction model used in our calculations. 
The error due to the amplitude dependence of the resonance frequency is due to intrinsic properties 
of the oscillating probe used for the experiments. In the following, we employed a model tip-sample 
interaction law to better explain the algorithm to correct the resonance frequency shift data in order 
to eliminate the effect of the amplitude dependence of the resonance frequency (see part VI of the 
supplemental materials for details). 

VI. Algorithm to Correct the Resonance Frequency Shift Data to Eliminate the Effect of Amplitude 
Dependence of Resonance Frequency  

Figure S8 summarizes the algorithm to correct the measured resonance frequency shift to 
eliminate the effect of the amplitude dependence of the resonance frequency. This effect should be 
particularly corrected when there is a sudden change in the tip-sample interaction. However, for 
experiments that are conduced slow enough, the error in the oscillation amplitude will oscillate 
around the set point and the effect of the resonance dependence of the oscillation amplitude cancels 
out. The correction procedure for the amplitude dependence of the resonance frequency should be 
applied to each sensor when they are introduced to the microscope. After the introduction of the 
sensor to the microscope, the first step is to calibrate the oscillation amplitude to find the conversion 
factor between the electrical readout and the mechanical oscillation amplitude. In our experiments, 
we used the principle of energy dissipation to calibrate the oscillation amplitude of tuning forks and 
qPlus sensors [4], while details of alternative oscillation amplitude calibration techniques can be 
found elsewhere [9]. We calibrated the oscillation amplitude of the cantilevers using the thermal 
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excitation technique, which was performed in a quiet room to eliminate the effect of acoustic noise 
[5]. With the calibration of the oscillation amplitude, frequency sweep experiments at different 
resonance amplitudes are conducted (see section II of the supplemental materials for experimental details 
of frequency sweep experiments). The next phase is to fit the resonance frequency shift as a function of 
the oscillation amplitude, ∆𝑓(𝐴), where ∆𝑓 is the variation of the resonance frequency and A is the 
oscillation amplitude (see Figure 2 of the main text for an example). With the measurement of the 
oscillation amplitude dependence of the resonance frequency, the correction of the amplitude 
dependence of the resonance frequency can be applied to measured frequency shifts. Towards this 
end, the oscillation amplitude should be recorded during the experiments and the oscillation 
amplitude error (𝐴) should be used to deconvolve the resonance frequency shift due to amplitude 
variation. As a final step, the frequency shift due to amplitude error (∆𝑓) is subtracted from the 
measured frequency shift ( ∆𝑓௦௨ௗ ) and the frequency shift due to tip-sample interaction 
(∆𝑓௧ି௦) is obtained. Although we detailed the algorithm to correct the resonance frequency shift 
data to eliminate the effect of the amplitude dependence of the resonance frequency for force 
spectroscopy experiments, a similar procedure can be applied to experiments where the accuracy 
resonance frequency shift information is important, e.g., Kelvin probe force microscopy, pump-probe 
atomic force microscopy, and infra-red atomic force microscopy (see the main text for a discussion). 

 
Figure S8: Summary of the algorithm to correct the resonance frequency shift data to eliminate the 
effect of the amplitude dependence of the resonance frequency. This algorithm provides a general 
pathway to correct the effect of the amplitude dependence of the resonance frequency. If the 
experiment is conducted slow enough to control the oscillation amplitude around the amplitude set 
point, the effect of amplitude dependent resonance frequency shift may cancel out without the need 
of the correction. However, if there is a sudden change in the tip-sample interaction due to imaging 
speed or the nature of the experiment, this proposed algorithm can be implemented to enhance the 
accuracy of the experiment. 
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