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Abstract: Sparse signal processing theory has been applied to synthetic aperture radar (SAR) imaging.
In compressive sensing (CS), the sparsity is usually considered as a known parameter. However,
it is unknown practically. For many functions of CS, we need to know this parameter. Therefore,
the estimation of sparsity is crucial for sparse SAR imaging. The sparsity is determined by the size of
regularization parameter. Several methods have been presented for automatically estimating the
regularization parameter, and have been applied to sparse SAR imaging. However, these methods are
deduced based on an observation matrix, which will entail huge computational and memory costs.
In this paper, to enhance the computational efficiency, an efficient adaptive parameter estimation
method for sparse SAR imaging is proposed. The complex image-based sparse SAR imaging method
only considers the threshold operation of the complex image, which can reduce the computational
costs significantly. By utilizing this feature, the parameter is pre-estimated based on a complex
image. In order to estimate the sparsity accurately, adaptive parameter estimation is then processed
in the raw data domain, combining with the pre-estimated parameter and azimuth-range decouple
operators. The proposed method can reduce the computational complexity from a quadratic square
order to a linear logarithm order, which can be used in the large-scale scene. Simulated and Gaofen-3
SAR data processing results demonstrate the validity of the proposed method.

Keywords: sparse synthetic aperture radar (SAR) imaging; adaptive parameter estimation;
compressive sensing (CS); L1 regularization; azimuth-range decouple; Gaofen-3 data

1. Introduction

Synthetic aperture radar (SAR) is an important imaging technology that has been applied in
environmental protection and marine observation [1,2]. In recent years, the sparse signal processing
method based on CS [3] has been implemented in microwave imaging [4,5]. It can recover the scene by
solving Lq(0 < q ≤ 1) regularization.

In [6], Çetin et al. proposed a sparsity-driven SAR imaging model for achieving autofocusing
and moving targets imaging. Zhang et al. [7] explored the principles and applications in sparse
microwave imaging. Patel et al. [8] analyzed different azimuth sampling methods based on the CS
model. Luo et al. [9] developed a multiple scatterers detection method for SAR tomography with
CS approach. Hossein et al. [10] proposed a polarimetric SAR estimator under the frame of CS.
In [11], Zhu reviewed the CS-based super-resolving algorithm. Zhang et al. [12] proposed a novel
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3D SAR imaging algorithm based on 2D compressive sensing. It not only provides super-resolution
performance, but also reduces the storage of data acquisition and processing. Compared with matched
filtering (MF), microwave imaging based on sparse signal processing can improve the image quality
by suppressing noise and sidelobes as well as azimuth ambiguities with the downsampled data [7,13].

In compressive sensing (CS), the sparsity is usually considered as a given parameter. However,
it is unknown practically. For many functions of CS, we need to know this parameter. Therefore,
the estimation of sparsity is crucial for sparse SAR imaging. In some cases, the sparsity can be estimated
directly based on prior information, which is obtained from the historical data. In other cases, we can
only get the range of the sparsity based on the prior information, rather than an accurate value. In the
process of accurately reconstructing a large number of these scenarios, it is more advantageous to
estimate the sparsity automatically than to select the sparsity manually. In [14], several methods,
such as Stein’s unbiased risk estimator, L-curve, and generalized cross-validation, have been presented
for automatically estimating the regularization parameter. Adaptive parameter estimation for sparse
SAR imaging can be achieved by these methods. However, these methods are deduced based on
an observation matrix. The observation matrix-based sparse SAR imaging achieves decouplingby
vectorizing the raw data matrix, which will entail huge computational and memory costs. Therefore,
it is challenging to adopt these adaptive parameter estimation methods based on an observation matrix
into a large-scale scene reconstruction.

An azimuth-range decouple-based sparse SAR imaging method has been proposed [7,15].
The coupling of the 2D data can be removed by constructing an echo simulation operator to replace
the observation matrix, which can effectively relieve the computational complexity [16]. This method
has been widely used in TOPS SAR [17], Sliding Spotlight SAR [18], displaced phase center antenna
(DPCA) imaging [19], wide-angle SAR (WASAR) [20] and ground moving target indication (GMTI) [21].
We can combine it with automatic parameter estimating methods to achieve an adaptive parameter
estimation of the large-scale sparse SAR imaging. However, considering that finding the optimal
regularization parameter requires iterative processing, the total computational cost of the adaptive
parameter estimation method based on azimuth-range decouple is still large.

A complex image-based sparse SAR imaging method is proposed in [22,23]. Combining this
method with the automatic parameter estimating methods, we get the adaptive parameter estimation
method based on a complex image. The complex image-based sparse SAR imaging method only
considers the threshold operation of the complex image, which can further reduce the computational
and memory costs. In this paper, for the case of the downsampled raw data, we propose an efficient
adaptive parameter estimation method. The complex image-based sparse SAR imaging method is
adopted first to pre-estimate the parameter. Then, the parameter iteration range is updated according
to the pre-estimated parameter. Finally, we introduce the azimuth-range decouple operators into
the parameter estimation and deduct the efficient adaptive parameter estimation method for sparse
SAR imaging.

The rest of this paper is organized as follows. In Section 2, we introduce the sparse SAR signal
models and the automatic regularization parameter estimation method. In Section 3, we give details
of the proposed method. The computational complexity of different methods is also analyzed in
this section. Section 4 presents the simulated and real data results to analyze the performance of the
proposed method. The conclusions are presented in Section 5.

2. Signal Model and Automatic Parameter Estimation Method

2.1. Signal Model

The observation-matrix-based sparse SAR data formation model is represented as follows [7]:

y=Φx+n, (1)
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where y ∈ CN×1 is the SAR echo data vector, N = Na (azimuth) × Nr (range), x ∈ CN×1 is the
backscattered coefficient vector, Φ is the observation matrix, and n ∈ CN×1 is the noise vector.

For the data formation model Equation (1), if the considered scene x is sparse enough and the
observation matrix Φ satisfies the restricted isometry property (RIP) [24], x can be reconstructed by
solving the L1 optimization problem:

x̂ = arg min
x
{‖y−Φx‖22 + λ‖x‖1}, (2)

where λ is the regularization parameter. There are many algorithms to solve (e.g., Equation (2)), such as
the convex optimization algorithm [25], Bayesian learning algorithm [26], nonconvex optimization
algorithm [27,28], and greedy algorithm [29]. After reconstruction, x̂ is transferred to a matrix X̂Φ.

2.1.1. Azimuth-Range Decouple-Based Sparse SAR Imaging

The azimuth-range decouple-based sparse SAR imaging method is proposed in [7,15], the echo
simulation operator G(·) is used to replace the observation matrix Φ, which is the inverse of the
imaging operator I(·), that is, G(·) = I−1(·) ≈ Φ. Then the azimuth-range decouple-based sparse SAR
data formation model is represented as follows:

Y = EaG(X)Er + N. (3)

Ea ∈ CNa×Na is an azimuth downsampling matrix, Er ∈ CNr×Nr is a range downsampling matrix.
Both Ea and Er are the binary matrices to denote the downsampling strategy, which are no longer
identity matrices, thus reducing the number of measurements. Y ∈ CNa×Nr is the SAR raw data matrix,
X ∈ CNa×Nr is the backscattered coefficient matrix, and N ∈ CNa×Nr is the noise matrix.

For this data formation model, the considered scene can be reconstructed by solving the L1

optimization problem:
X̂λ1 = arg min

X
{‖Y−EaG(X)Er‖

2
2 + λ‖X‖1}, (4)

where ‖ · ‖2 is the 2-norm of a matrix.

2.1.2. Complex Image-Based Sparse SAR Imaging

A complex image-based sparse SAR imaging method is proposed in [22]. This method first
establishes the imaging model with the complex image after MF recovery as the input, then represents
the reconstruction of sparse scene as an L1 optimization problem, and finally utilizes the iterative
recovery algorithm to get the focused high-resolution SAR imagery. The signal model is represented
as follows:

XMF = X + N0, (5)

where XMF ∈ CNa×Nr is the MF-reconstructed SAR complex image and N0 ∈ CNa×Nr is the noise matrix.
For this model, the considered scene can also be reconstructed by solving the L1

optimization problem:
X̂λ2 = argmin

X
{‖XMF −X‖22 + λ‖X‖1}. (6)

2.2. Automatic Parameter Estimation Method

Several methods have been presented for automatically estimating the regularization parameter.
We choose the generalized cross-validation (GCV) method [14,30] as the parameter estimation method,
which can estimate λ by minimizing the following cost function without knowing the noise variance:

Vλ =
1
N ‖ΦX̂Φ −Y‖22[
1
N tr(I−Hλ)

]2 , (7)
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where Y ∈ CNa×Nr is the SAR raw data matrix, N is the scene size, and tr(·) is the trace operator of a
matrix. Hλ is given in Equation (8):

Hλ = Φ(2ΦHΦ + λM(X̂λ, β))
−1

2ΦH. (8)

In (8), M(X̂λ, β) is a diagonal matrix whose ith diagonal element is β(
∣∣∣(x̂λ)i

∣∣∣2 + β)
−3/2

, where x̂λ =

vec(X̂Φ) ∈ CN×1 and β is a small positive constant.

3. Efficient Adaptive Parameter Estimation for Sparse SAR Imaging

In this section, the parameter estimation method based on azimuth-range decouple and the
parameter estimation method based on complex image are introduced. Next, we introduce the
proposed method in detail. Finally, the computational complexity of these methods is analyzed.

3.1. The Adaptive Parameter Estimation Method Based on Azimuth-Range Decouple

Combining the azimuth-range decouple operators with GCV, we can get the adaptive parameter
estimation method for sparse SAR imaging. Compared with the adaptive parameter estimation method
based on observation matrix, this method can reduce the computational complexity. Considering that
M(X̂λ, β) is a large diagonal matrix of N ×N, the computational cost of the trace of it is also large,
we replace the trace operator tr(·) with the sum operator. Equation (7) can be rewritten as follows:

Vλ1 =
1
N ‖G(X̂λ1) −Y‖22 1

N

Na∑
i=1

Nr∑
j=1

(1− 2

2+λβ(
∣∣∣∣(X̂λ1)i j

∣∣∣∣2+β)−3/2 )


2 , (9)

which is the cost function of the adaptive parameter estimation method based on azimuth-range
decouple, where G(·) is the echo simulation operator and X̂λ1 is shown in Equation (4).

There are several algorithms to achieve the sparse reconstruction, such as iterative soft thresholding
(IST) [31] and complex approximated message passing (CAMP) [32,33]. In this paper, we choose
CAMP as sparse reconstruction algorithm, which has been applied to constant false-alarm rate (CFAR)
detection in sparse SAR imaging [34].

The optimal regularization parameter is estimated by minimizing Equation (9). However,
considering that finding the optimal regularization parameter requires the iterative processing, the total
computational cost of the adaptive parameter estimation method based on azimuth-range decouple is
still large.

3.2. The Adaptive Parameter Estimation Method Based on Complex Image

Compared with the azimuth-range decouple-based sparse SAR imaging method, the complex
image-based sparse SAR imaging method only considers the threshold operation, which can further
reduce the computational and memory costs. Combining it with GCV, we can get the adaptive
parameter estimation method for sparse SAR imaging based on complex image. Equation (7) can be
rewritten as follows:

Vλ2 =
1
N ‖X̂λ2 −XMF‖

2
2 1

N

Na∑
i=1

Nr∑
j=1

(1− 2

2+λβ(
∣∣∣∣(X̂λ2)i j

∣∣∣∣2+β)−3/2 )


2 , (10)

which is the cost function of the adaptive parameter estimation method based on complex image,
where X̂λ2 is shown in Equation (6).
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3.3. The Proposed Method

The proposed method is mainly for the case of the downsampled data. On the one hand, although
the adaptive parameter estimation method based on azimuth-range decouple can estimate the sparsity
accurately, as mentioned above, the total computational cost of this method is large. On the other
hand, due to the energy dispersion and ambiguities, the estimated sparsity of the parameter estimation
method based on complex image will be greater than the true value, and we cannot simply use the
parameter estimation method based on complex image to replace the parameter estimation method
based on azimuth-range decouple. Therefore, we need to find a method to adaptively estimate the
sparsity accurately while having the lower computational complexity. A good solution is to combine
these two adaptive methods together, utilizing the complex image to pre-estimate the parameter and
reduce the iteration range, then estimating the accurate parameter with raw data.

The proposed method has three steps. First, set the iteration range of sparsity to [Kmin, Kmax]

and adaptively estimate the sparsity based on the complex SAR image which is reconstructed by the
downsampled raw data. The pre-estimated sparsity is set to Kmid, which is greater than the true value
due to ambiguities and energy dispersion caused by downsampling. Second, update the iteration
range from [Kmin, Kmax] to [Kmin, Kmid]. Third, get the adaptive reconstructed image and the optimal
adaptive result of sparsity Kopt on the new range [Kmin, Kmid] based on raw data.

The flowchart is shown in Figure 1.
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Figure 1. The flowchart of the proposed method.

The details of adaptive parameter estimation based on azimuth-range decouple are shown in
Algorithm 1, where [Kmin, Kmid] is the range of the sparsity; ηλ,µ,CAMP(·) is the threshold function
of CAMP.
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Algorithm 1: The adaptive parameter estimation method based on azimuth-range decouple

1: Input: downsampled SAR raw data Y, parameter δ, ε,µ, [Kmin, Kmid]

2: Initialization: i= 0, X̂λ1
(0) = 0, [λmin,λmax]← [Kmin, Kmid]

3: while log10 λmax − log10 λmin > ε and i < Iter
1) λa = 10log10 λmin+(1−α)(log10 λmax−log10 λmin); λb = 10log10 λmin+α(log10 λmax−log10 λmin)

2) X̃λ1,a = Y−G
(
X̂λ1,a

)
+ 1

2δ ·

[
〈
∂ηR

∂xR (X̃λ1,a;µ)〉+ 〈 ∂η
I

∂xI (X̃λ1,a;µ)〉
]
+ I(X̂λ1,a);

X̃λ1,b = Y−G
(
X̂λ1,b

)
+ 1

2δ ·

[
〈
∂ηR

∂xR (X̃λ1,b;µ)〉+ 〈 ∂η
I

∂xI (X̃λ1,b;µ)〉
]
+ I(X̂λ1,b)

3) X̂λ1,a = ηλa,µ,CAMP(X̃λ1,a); X̂λ1,b = ηλb,µ,CAMP(X̃λ1,b)

4) Calculate Vλ1,a and Vλ1,b according to (9)
5) if Vλ1,b > Vλ1,a λmax = λb else λmin = λa

6) i = i + 1
4: end while
5: Output: the reconstructed image X̂λ1,a and the adaptive parameter λa

3.4. Analysis of Computational Complexity

The computational complexity of different adaptive parameter estimation methods is analyzed
in this section. A common characteristic of the adaptive parameter estimation methods mentioned
above is that regularization parameter iterations are required. The difference lies in the different sparse
reconstruction algorithms.

The measure of the computational complexity is the floating point operation (FLOP). Each FLOP
represents a real addition operation or a real multiplication operation. In the observation matrix-based
sparse SAR imaging method and azimuth-range decouple-based sparse SAR imaging method, the main
calculation includes the imaging process, the echo simulation process, and the threshold process.
The computational complexity of the threshold process is (8n + n log2 n) FLOPs, where n = Na ×Nr

is the scene size. In the observation matrix-based sparse SAR imaging method, the imaging process
and echo simulation process are two matrix multiplications. The main computational complexity of
a single-step iteration of the observation-matrix-based sparse SAR imaging method is (16mn + 8n +

n log2 n) FLOPs, where m is the sampling number. This computational complexity is approximately
proportional to the quadratic square of the scene size.

In this paper, the chirp scaling [35] operator is chosen as the imaging operator. Therefore, I(·)
and G(·) can be expressed as follows:

I(Y) = F−1
a

(
FaY�ΘscFr �ΘrcF−1

r �Θac
)

(11)

G(X) = F−1
a

(
FaX�Θ∗acFr �Θ∗rcF

−1
r �Θ∗sc

)
, (12)

where Fa and F−1
a are the azimuth Fourier transform (FFT) operators and azimuth inverse Fourier

transform (IFFT) operators, Fr and F−1
r are the range FFT operators and range IFFT operators, Θsc, Θrc

and Θac are three complex phase matrix. Chirp scaling and inverse chirp scaling both contain two
FFTs, two IFFTs, and three time complex phase multiplications. According to [2], the computational
complexity of FFT and IFFT with length l0 is (5l0 log2 l0). FLOPs, and the computational complexity of
a complex multiplication operation is six FLOPs. Assuming that the data are sampled in the manner of
uniform/nonuniform downsampling, the main computational complexity of a single-step iteration
of the azimuth-range decouple-based sparse SAR imaging method is (46n + 2m + 21n log2 n) FLOPs,
which is approximately proportional to the product of the linear logarithm of the scene size.

The complex image-based sparse SAR imaging method includes only threshold process.
The computational complexity of a single-step iteration of this method is (8n + n log2 n) FLOPs,
which is much lower than the azimuth-range decouple-based sparse SAR imaging method.
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Let I represent the iteration steps of the recovery for sparse reconstruction algorithms. Let J and
J2 denote the number of iteration steps required for regularization parameter convergence when the
iteration ranges of sparsity are [Kmin, Kmax] and [Kmin, Kmid], respectively. Assuming that I = 20, J = 16,
J2 = J/4, the scene size n = 4096× 4096, and the downsampling rate m/n = 80%, the computational
complexity of different adaptive parameter estimation methods is shown in Table 1.

Table 1. The computational complexity of different adaptive parameter estimation methods.

Adaptive Parameter Estimation
Methods

Computational Complexity
(FLOP) Example (GFLOP)

Observation Matrix 2JI (16 mn + 8n + n log2 n) 2.31× 109

Azimuth-Range Decouple 2JI (46 n + 2m + 21n log2 n) 5.92× 103

Complex Image 2JI (8 n + n log2 n) 3.44× 102

The Proposed Method JI (39 n + m + 12.5n log2 n) 1.82× 103

Since the proposed method utilizes the complex image as the prior information to pre-estimate
the parameter, the iteration range of the sparsity is reduced when the adaptive parameter estimation
is processed in the raw data domain. Therefore, the proposed method has the lower computational
complexity compared with the parameter estimation method based on azimuth-range decouple.
For example, if the scene size is 4096× 4096 and the downsampling rate is 80%, the proposed method
can increase the computational efficiency about 3-4-fold.

4. Experiments

In this section, both simulation and real data experiments have been carried out to validate the
effectiveness of the proposed method. The 1D simulation experiments compare the performance and
reconstruction precision of the parameter estimation method based on observation matrix, parameter
estimation method based on complex image and the proposed method. The 2D simulation experiments
compare the adaptive result and computational complexity of different adaptive parameter estimation
methods. Airborne SAR data and Gaofen-3 SAR data experiments are done to validate the ability
of the proposed method to suppress energy dispersion and ambiguities. At last, the computational
complexity of different adaptive parameter estimation methods is compared for different scene size.

4.1. 1D Simulation

To validate the effectiveness of the proposed method, 1D simulation experiments are carried
out. We set five point targets. Figure 2a shows the reconstructed images obtained by MF, parameter
estimation method based on observation matrix, parameter estimation method based on complex image
and the proposed method. In Figure 2a, the signal-to-noise ratio (SNR) is 15 dB and the downsampling
rate is 80%. The adaptive λopt of the adaptive parameter estimation method based on the observation
matrix is 0.10 and the adaptive λopt of the proposed method is 0.09. Due to downsampling, the adaptive
λ of the adaptive parameter estimation method based on a complex image is 0.06, which is smaller than
other two methods. From Figure 2a, we can conclude that the proposed method can effectively suppress
the sidelobes and energy dispersion, and can recover the positions of target accurately compared with
the positions of the ground truth. L1 regularization is known as a biased estimator [36,37], and the bias
would underestimate the intensities of the targets. Therefore, in Figure 2a, the target amplitude of the
proposed method is lower than the ground truth.
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Figure 2. 1D simulation results. (a) The reconstructed images obtained by MF, parameter estimation
method based on observation matrix, parameter estimation method based on complex image and the
proposed method. (b) The RMSE curves of three parameter estimation methods at different SNR and
downsampling rate.

In order to explore the accuracy of different adaptive parameter estimation methods, Figure 2b
shows the relative mean square error (RMSE) curves of three methods at different SNR and
downsampling rate, where the downsampling rate are 50% and 80%, respectively. It can be seen from
Figure 2b that the proposed method has the similar sparse recovery performance as the adaptive
method based on an observation matrix. The reconstruction precision of the adaptive method based
on a complex image is worse than other two methods when the raw data are downsampled.

4.2. 2D Simulation

In order to further analyze the effectiveness of the proposed method, 2D simulation experiments
are carried out. The major simulation parameters are given in Table 2. The imaging results of nine
point targets are shown in Figure 3. In Figure 3, the signal-to-noise ratio (SNR) is 20 dB and the
downsampling rate is 80%. Figure 3a shows the image reconstructed by MF. Figure 3b shows the
image reconstructed by adaptive parameter estimation method based on complex image, with the
adaptive result λ being 0.17. From Figure 3b, we can see that the adaptive result based on complex
image is not accurate when the raw data are downsampled, with the sidelobes still existing. Figure 3c
shows the image reconstructed by the proposed method, with the adaptive result λopt being 0.32. To
better compare the reconstruction results of different methods, Figure 3d shows the azimuth profile of
the 2D simulation experiment. Due to the bias of L1 regularization, in Figure 3d, the target amplitude
of the proposed method is lower than the ground truth.

Table 2. Major parameters.

Parameters Value

Center frequency 5.3 GHz
Pulse duration 2.5 µs

Velocity 70 m/s
Bandwidth 50 MHz

Sampling rate 60 MHz
Pulse repetition frequency (PRF) 130 Hz

Minimum slant range 3500 m
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Figure 3. 2D simulation results. (a) The reconstructed images obtained by MF. (b) The image
reconstructed by parameter estimation method based on complex image. (c) The image reconstructed
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2D simulation experiments with different SNR and downsampling rates are also carried out.
Table 3 shows the adaptive λ and RMSE of the parameter estimation method based on azimuth-range
decouple, the parameter estimation method based on complex image, and the proposed method,
respectively. According to Table 4, the adaptive λ of the adaptive parameter estimation method
based on complex image is smaller than other two methods when the raw data are downsampled,
and varies with the SNR and downsampling rate. We can also conclude that the adaptive parameter
estimation method based on azimuth-range decouple and the proposed method have almost the same
sparse recovery performance. With the decrease in the downsampling rate, the RMSE of different
adaptive parameter estimation methods increases. Therefore, the downsampling rate is crucial for the
reconstruction accuracy of the adaptive parameter estimation methods. In this experiment, when the
downsampling rate is 80% and the SNR is 25 dB, the proposed method has the smallest RMSE, which
is the best result.
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Table 3. The adaptive λ and RMSE for different SNR and downsampling rate.

Downsampling Rate SNR (dB)

Adaptive λ and RMSE of Different Adaptive Parameter Estimation Methods

Azimuth-Range Decouple Complex Image The Proposed Method

λ RMSE λ RMSE λ RMSE

80%

5 0.3178 0.6714 0.0734 0.8329 0.3190 0.6685
10 0.3204 0.5932 0.0895 0.7762 0.3216 0.5833
15 0.3216 0.5265 0.1282 0.6822 0.3221 0.5254
20 0.3235 0.4887 0.1755 0.6345 0.3242 0.4855
25 0.3237 0.4793 0.2130 0.6109 0.3245 0.4720

60%

5 0.2950 0.7944 0.0586 0.9364 0.3031 0.7883
10 0.3082 0.7146 0.0842 0.8507 0.3127 0.7071
15 0.3128 0.6231 0.1153 0.7926 0.3159 0.6205
20 0.3194 0.5654 0.1483 0.7218 0.3206 0.5611
25 0.3203 0.5590 0.1967 0.7023 0.3211 0.5528

Table 4. TBR of target regions based on different methods with downsampled data (80% downsampling).

Methods
Target-to-Background Ratio (dB)

Ship 1 Ship 2 Ship 3 Ship 4 Ship 5

MF 32.09 37.28 35.30 38.53 38.48
Based on azimuth-range decouple 47.61 52.26 49.72 54.08 55.71

Based on complex image 42.24 44.46 41.71 46.74 47.57
The proposed method 47.49 51.89 49.46 53.76 55.31

Next, we will analyze the computational complexity. To illustrate that the proposed method
has lower computational complexity, the computational complexity of different adaptive parameter
estimation methods is compared for different scene size is represented in Figure 4.
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Figure 4 illustrates the computational complexity of three different adaptive parameter estimation
methods for different scene size clearly. If the size of scene is over 1024 × 1024, the computational
complexity of the adaptive parameter estimation method based on azimuth-range decouple increases
dramatically. Although the computational complexity of the adaptive parameter estimation method
based on complex image is the lowest, the adaptive result of this method is not accurate when the raw
data are downsampled, as shown in Table 4. The proposed method utilizes complex image as prior
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information, thus having the lower computational complexity compared with the adaptive parameter
estimation method based on azimuth-range decouple.

4.3. Airborne Data

The airborne SAR data processing results are shown in Figure 5. The raw data are 80% randomly
downsampled, received by the C-band airborne SAR system of Institute of Electronics, Chinese Academy
of Sciences. The accurate sparsity of this scene is 0.02.
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Figure 5. Airborne SAR data imaging results. (a) MF. (b) Parameter estimation method based on
complex image, with Kmid = 0.21. (c) The proposed method, with Kopt = 0.02. (d) The azimuth profile of
the imaging result of MF, with ISLR being −6.59 dB. (e) The azimuth profile of the imaging result of the
adaptive parameter estimation method based on complex image, with ISLR being −9.14 dB. (f) The
azimuth profile of the imaging result of the proposed method, with ISLR being −10.55 dB.

In order to better evaluate the performance of different adaptive methods, the integrated sidelobe
ratio (ISLR) is chosen to quantitatively measure the ability to suppress the energy dispersion [2]:

ISLR = 10 log10

{
Ptotal − Pmain

Pmain

}
, (13)

where Pmain is the main-lobe power, Ptotal is the total power.
Figure 5a shows the image reconstructed by MF, with the obvious energy dispersion, and Figure 5d

is the azimuth profile of the imaging result of MF, with the ISLR being −6.59 dB. Figure 5b shows
the imaging result of the adaptive parameter estimation method based on complex image, with the
adaptive result of sparsity Kmid = 0.21. Figure 5e is the corresponding azimuth profile, with ISLR
being −9.14 dB. From Figure 5b,e, we can see that when the raw data are downsampled, the adaptive
parameter estimation method based on complex image cannot obtain an accurate result, with energy
dispersion still existing. Figure 5c is the imaging result of the proposed method, with the adaptive
result of sparsity Kopt = 0.02, which converges to the accurate sparsity of the scene. Figure 5f is the
azimuth profile of the imaging result of the proposed method, with ISLR being−10.55 dB. The proposed
method can accurately estimate the sparsity and effectively suppress the noise and energy dispersion.
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4.4. Gaofen-3 Data

The proposed method is also applicable to the spaceborne data. The Gaofen-3 satellite is a remote
sensing satellite of China’s high-resolution special project, which was launched in August 2016. It is
the first C-band multipolarized SAR imaging satellite with a resolution of 1 m. Gaofen-3 data are
processed to verify the background clutter and noise suppressing ability and ambiguity suppressing
ability of the proposed method. In this experiment, we perform 80% random downsampling for the
fully sampled data. The Gaofen-3 data processing results are shown in Figure 6.
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with Kmid = 0.46. (d) The proposed method, with Kopt = 0.3522.

Figure 6a gives the MF imaging results of the downsampled raw data, with the obvious energy
dispersion and azimuth ambiguities. Figure 6b shows the imaging result of the adaptive parameter
estimation method based on azimuth-range decouple, with the adaptive result of sparsity Kopt =

0.3514. It can be seen that this method can reconstruct the scene successfully and suppress the noise,
energy dispersion and ambiguities efficiently. Figure 6c shows the imaging result of the adaptive
parameter estimation method based on complex image, with the adaptive result of sparsity Kmid = 0.46.
From Figure 6c, we can see that the adaptive result based on complex image is not accurate, with energy
dispersion still existing. These two experimental results prove that the parameter estimation method
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based on azimuth-range decouple and the parameter estimation method based on complex image
are not equivalent when the raw data are downsampled. However, we can use this pre-estimated
sparsity as prior information to reduce the iteration ranges. Figure 6d is the imaging result of the
proposed method, with the adaptive result of sparsity Kopt = 0.3522, which is basically the same with
the adaptive parameter estimation method based on azimuth-range decouple.

To further evaluate the ability of different adaptive methods to suppress the noise and ambiguity,
target-to-background ratio (TBR) [38] and azimuth ambiguity-to-signal ratio (AASR) [23] are selected
as two evaluation indicators. Their discrete expressions are defined as follows:

TBR(X) = 20 log10


max(p,q)∈T

∣∣∣X(p,q)

∣∣∣
1/NB

∑
(p,q)∈B

∣∣∣X(p,q)

∣∣∣
, (14)

where B is the background area, NB is the pixel number in B, and T is the target region.

AASR = 10 log10


1

Nm

∑
(p,q)∈Ma

∣∣∣X(p,q)

∣∣∣2
1

Na

∑
(p,q)∈A

∣∣∣X(p,q)

∣∣∣2
, (15)

whereA is target region, Na is the pixels number inA,Ma is the ambiguity area, and Nm is the pixel
number inMa.

In this experiment, we chose five ships as performance test regions, as shown in the corresponding
red frames. These five ships are represented as Ship 1–5, from left to right. Their corresponding
azimuth ambiguity areas are shown in the blue frames.

The TBR of these five ships reconstructed by different methods are shown in Table 4. It can be
seen from Table 5 that the proposed method can suppress the noise and energy dispersion effectively
when the raw data are downsampled.

Table 5. AASR of target regions based on different methods with downsampled data (80% downsampling).

Methods
Azimuth Ambiguity-to-Signal Ratio (dB)

Ship 1 Ship 2 Ship 3 Ship 4 Ship 5

MF −11.32 −12.02 −12.13 −11.30 −11.36
Based on azimuth-range decouple −19.62 −20.10 −18.95 −21.66 −22.23

Based on complex image −12.75 −13.92 −13.45 −12.70 −13.10
The proposed method −19.43 −20.23 −18.62 −21.25 −22.24

The AASR of these five ships reconstructed by different methods are shown in Table 5. From Table 5,
we can see that the adaptive parameter estimation method based on complex image cannot suppress
the azimuth ambiguity effectively. As a contrast, the adaptive parameter estimation method based
on azimuth-range decouple and the proposed method both have the ability to decrease the azimuth
ambiguity-to-signal ratio.

It can be seen from Tables 4 and 5 that the adaptive parameter estimation method based on
azimuth-range decouple and the proposed method have almost the same sparse recovery performance.
According to the previous analysis and the simulation experiments, the proposed method has the
lower computational complexity, which can be used in the large-scale scene.

5. Conclusions

In this paper, an efficient adaptive parameter estimation method for sparse SAR imaging based
on complex image and azimuth-range decouple is proposed. The proposed method combines the
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advantages of the azimuth-range decouple-based sparse SAR imaging and the complex image-based
sparse SAR imaging method. In the proposed method, the parameter is pre-estimated based on
the complex image. Adaptive parameter estimation is then processed in the raw data domain
combining with the pre-estimated parameter and azimuth-range decouple operators. Compared
with the adaptive parameter estimation method based on complex image, the proposed method can
estimate the sparsity accurately when the raw data are downsampled. Compared with the adaptive
parameter estimation method based on azimuth-range decouple, the proposed method has the lower
computational complexity, which can be used in the large-scale scene. The simulation, airborne SAR
data and Gaofen-3 SAR data experiment results demonstrate its validity.
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