
sensors

Article

Integrated Robotic and Network Simulation Method

Daniel Ramos 1,* , Luis Almeida 2 and Ubirajara Moreno 3

1 Faculty of Electric Engineering, Federal University of Uberlandia, 38701-002 Patos de Minas,
Minas Gerais, Brazil

2 CISTER, Instituto de Telecomunicações, FEUP-University of Porto, 4200-465 Porto, Portugal; lda@fe.up.pt
3 Automation and Systems Department, Federal University of Santa Catarina, 88040-900 Florianopolis,

Santa Catarina, Brazil; ubirajara.f.moreno@ufsc.br
* Correspondence: danielramos@ufu.br; Tel.: +55-34-9-99300336

Received: 31 August 2019; Accepted: 28 September 2019; Published: 21 October 2019
����������
�������

Abstract: The increasing use of mobile cooperative robots in a variety of applications also implies an
increasing research effort on cooperative strategies solutions, typically involving communications
and control. For such research, simulation is a powerful tool to quickly test algorithms, allowing
to do more exhaustive tests before implementation in a real application. However, the transition
from an initial simulation environment to a real application may imply substantial rework if early
implementation results do not match the ones obtained by simulation, meaning the simulation was not
accurate enough. One way to improve accuracy is to incorporate network and control strategies in the
same simulation and to use a systematic procedure to assess how different techniques perform. In this
paper, we propose a set of procedures called Integrated Robotic and Network Simulation Method
(IRoNS Method), which guide developers in building a simulation study for cooperative robots and
communication networks applications. We exemplify the use of the improved methodology in a
case-study of cooperative control comparison with and without message losses. This case is simulated
with the OMNET++/INET framework, using a group of robots in a rendezvous task with topology
control. The methodology led to more realistic simulations while improving the results presentation
and analysis.

Keywords: networked robotic systems; robot cooperation; communication network simulation;
simulation framework; simulation method

1. Introduction

The increasing use of teams of mobile cooperative robots in a variety of applications including
area coverage, exploration and cooperative transport, is also pushing research on cooperative control
solutions. In general, cooperative robots may be considered as a set of movable sensors that exchanges
information to complete a task. Nevertheless, these solutions are built on top of a communication
network that has several imperfections such as delays and packet losses, ending up having a significant
impact on team behavior [1], especially on decentralized control cases that rely heavily on explicit
communication between robots [2].

These solutions are developed, tested, and validated through simulations, emulations, testbeds,
or real robots [3–5]. Although these four concepts are not mutually exclusive, choosing to use one or
all of them depends on material and financial resources available, study deadlines, project knowledge
and personal experience. A convenient combination is to carry out simulations first, for their flexibility,
and then implement the real system. However, moving from simulation to implementation can be
time and effort consuming, despite new model-based engineering approaches that try to automatize
this transition, but which are still limited in their capabilities. The effort increases significantly when

Sensors 2019, 19, 4585; doi:10.3390/s19204585 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9782-1256
https://orcid.org/0000-0002-9544-3028
http://www.mdpi.com/1424-8220/19/20/4585?type=check_update&version=1
http://dx.doi.org/10.3390/s19204585
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 4585 2 of 19

an unknown design problem is only identified later at testing time, forcing redesigns, new simulations
and more implementation.

One approach to soften simulation to implementation transition is to improve simulation accuracy,
aiming at results that are more realistic. This approach has been followed in different ways, by
integrating different robot physical aspects in 3D simulations as in eRobotics [6], or integrating
different levels of implementation abstraction as in meta-modelling simulation for robotics [7] and in
Cyber-Physical Systems (CPS) [8] or yet, by integrating a communication network simulation with a
desired application as in Networked Control Systems (NCS) [9], Wireless Sensor Network (WSN) [10],
Internet of Robotic Things (IoRT) [11], and in teams of mobile robots [10,12–14].

Simulation of integrated application and network models has been achieved in diverse ways:
co-simulating with two different simulators [12], expanding a network simulator with physical
models [1], or by expanding the physical simulator with network models [9]. Even though the referred
works represent advances in studying the impact of a network on robotic systems, they lack a systematic
method to build and evaluate a complex simulation study.

Several such methods do exist, though, aiming at different science domains such as general model
simulations [15], CPS [8], Digital Twins [16], Network Simulation Only [17], and Network Emulation
Only [3]. In the domain of robotics, methods often describe procedures related to a robotic task, e.g.,
a method for using a simulation framework to study mobile robots operating on uneven terrain [4] and
a method for abstracting expression techniques for diverse types of robots [18]. Other general methods
for robotics focus on different robot aspects, e.g., combining physical domains as in eRobotics [6], or
initial ideas that still need to be improved, as in IoRT [11].

In our domain of interest, namely networked control systems made of teams of cooperating
robots, an initial concept method has been shown by the authors, as a work in progress, to improve
the assessment of the network influence on cooperative strategies [1,19,20]. However, several
improvements could still be made, finally resulting in what we denominated as the Integrated Robotics
and Network Simulation (IRoNS) method, which incorporates known validation and documentation
techniques. Particularly, we make use of an initial method concept presented in [20] that relies on
using OMNeT++/INET for improved network simulation accuracy, and we extend it with a four-step
validation [21] combined with confidence interval statistical analysis [22], a factorial experimental
design with confidence interval analysis [22], and a communicative modelling process [23].

We demonstrate the proposed methodology in one detailed case-study that compares three
rendezvous control strategies under a faulty communication network. The resulting method
still maintains realistic simulations as initially shown in [1,19], but also improves the resulting
documentation, presentation and analyzability of the results.

The paper is organized as follows. The next section summarizes related works. Section 3 describes
the IRoNS method, detailing its critical points. Section 4 describes a simulation study using the method.
Section 5 presents final considerations.

2. Related Work

The use of methods to guide simulation studies is a well-known topic for general system modelling.
Works in this domain, as reviewed in [22], concentrate on providing lifecycle workflows and guides for
best practices during simulation development. The main idea, common to these methods, is to set the
study in several sequential stages consisting of: 1. Planning, problem modelling and documentation;
2. Simulation implementation; 3. Simulation validation; and 4. Experimentation and Analysis. The
last two steps are subjects of Validation, Verification, and Test (VV&T) techniques [24], which are often
used for establishing the credibility of the simulation study [15].

These works are suitable as a general guideline for common simulation studies, although they do
not contemplate applications particularities, lack technical depth and are harder to apply when dealing
with complex simulations. These characteristics motivated the appearance of new research lines to
deal, for example, with agents in Agent-Based Modeling and Simulation (ABMS) [21,22,25]. ABMS

Sensors 2019, 19, 4585 3 of 19

appeared as a reaction to the lack of formal basis in simulation studies, incomplete documentation and
missing results reproducibility [21,25]. However, as the concept of agent can appear in a wide selection
of applications, related works tend to focus on common aspects but only on specific topics inside a
simulation development lifecycle, e.g., choosing a validation technique for agent-based simulation [21],
proposing a formal modelling process [25], or a formal documenting process [23].

Even though the above-mentioned methods, procedures and recommendations give important
and useful insights about building a simulation study, there is another consideration that should be
taken into account when working with an integrated simulation of a cooperative robots team and its
communication network, i.e.,: it is a cross-domain simulation.

The work in eRobotics [6], a branch from eSystem Engineering, deals specifically with this type of
situation. At first, eRobotics targets the development of methods and concepts, refining engineering
processes and using semantic modeling techniques, to provide the necessary models for a robot
3D simulation. With this basis, a Virtual Testbed is built, consisting of a 3D simulation software
environment for the integrated cross-domain development of complex systems based on 3D models.

In another work related to eRobotics methodology [16], the authors combine the concept of Virtual
Testbeds with another approach from industry, namely the notion of Digital Twins, which consists of
real world objects with a corresponding virtual representation capable of communication and acting as
intelligent node in the Internet of Things. The authors use the resulting Experimentable Digital Twins
as a core of the simulation-based development process, enabling detailed simulations at system level
and realizing intelligent systems focused on 3D modeling of physical aspects of a robot.

These works are examples of methods used in robotics with the objective of improving robot
simulation characteristics, but in a different scope with respect to the work proposed in this paper.
Here, for a cooperative robotics simulation, the communication network is the object of interest and
robots detailed physical properties assume lower relevance [13].

Cooperative robotics and network simulation received more attention in recent years as the
development of network simulators advanced, enabling the implementation of complex interactions
inside the network simulator [1] and enabling cross-simulator communication [12]. Researches into
using this type of simulation are sparsely distributed along several lines, with the most recent ones
concentrating on Networked Robotic Systems (NRS) [20] and Internet of Robotic Things (IoRT) [11].

Another approach to deal with cooperative robots and networks is to use hardware and software
tools to enable assembling and studying swarms of general-purpose robotic systems [26]. The main
idea is to deploy the solution in hardware and see how all the algorithms work together. This approach
led to positive results as shown in [27] for swarm response and in [28] for topology dynamics, but it
requires hardware implementation and can be exhausting when several testing cases are required. Our
proposed approach differs from [26] because ours is simulation-based, addressing the case when there
is a need of exhaustive simulations or when the hardware testbed is unavailable. Moreover, the use of
both approaches can contribute to increase validity of the results.

In the case of simulations studies, in the same way as mentioned before for ABMS, they are
currently lacking a formal basis for techniques and documentation procedures. This problem motivated
our initial method concept [20], which already proved useful to assess simulations in [1,19]. The IRoNS
Method that we propose now extends previous related works by incorporating proven validation and
documentation techniques, making the simulation process more robust and useful, and with a better
result presentation.

3. IRoNS Method

The proposed method uses a workflow structure to guide the study simulation development,
dividing the study in three development stages: Problem definition, simulation framework, and
experimentation. The last two stages can be further divided following a ‘plan, execute and assess’
methodology, which leads to a final 10-steps procedure that is briefly described below (Figure 1).

Sensors 2019, 19, 4585 4 of 19

• Problem Formulation (1): The first part of the method is to state and define what kind of problem
is going to be the object of study. In general, this initial part derives from an initial study or a
demand that urges for a complex simulation for validation.

• Choosing Solutions (2): After defining the problem, it is necessary to choose the techniques
that allow solving the problem, i.e., techniques that will be simulated to emulate and assess the
situation referred in the problem study. It is important to note that the IRoNS Method does not
depend on any specific robotic or network techniques.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 18

• Choosing Solutions (2): After defining the problem, it is necessary to choose the techniques that
allow solving the problem, i.e., techniques that will be simulated to emulate and assess the
situation referred in the problem study. It is important to note that the IRoNS Method does not
depend on any specific robotic or network techniques.

Figure 1. The Integrated Robotics and Network Simulation (IRoNS) method to build integrated
robotics and network simulation studies, represented in terms of actions (arrows) and results (boxes).
The underlined actions indicate critical points detailed in this paper.

• System—Specifying (Initial Documentation) (3): Consists in organizing all the information
decided so far, describing the concepts behind the chosen techniques and giving a special
attention to creating an assumptions document, which should be updated during the entire
development cycle.

• Base Simulation—Planning (4): The next step consists in planning the simulation framework
(Base Simulation—BS), which is also referred to as conceptual and communicative modelling.
This modelling includes documentation procedures with different objectives: firstly as a visual
documentation to guide simulation implementation and secondly as textual documentation for
study reproducibility. The idea is to gather all necessary information about the simulation study
and framework before starting the implementation, including the system structure, expected
interactions, simulator selection, desirable simulation characteristics, initial parameters values,
and any other related information. The main documented topics are described in subSection 3.1.

Figure 1. The Integrated Robotics and Network Simulation (IRoNS) method to build integrated robotics
and network simulation studies, represented in terms of actions (arrows) and results (boxes). The
underlined actions indicate critical points detailed in this paper.

• System—Specifying (Initial Documentation) (3): Consists in organizing all the information
decided so far, describing the concepts behind the chosen techniques and giving a special
attention to creating an assumptions document, which should be updated during the entire
development cycle.

• Base Simulation—Planning (4): The next step consists in planning the simulation framework
(Base Simulation—BS), which is also referred to as conceptual and communicative modelling.
This modelling includes documentation procedures with different objectives: firstly as a visual

Sensors 2019, 19, 4585 5 of 19

documentation to guide simulation implementation and secondly as textual documentation for
study reproducibility. The idea is to gather all necessary information about the simulation study
and framework before starting the implementation, including the system structure, expected
interactions, simulator selection, desirable simulation characteristics, initial parameters values,
and any other related information. The main documented topics are described in Section 3.1.

• Base Simulation—Implementing (5): after the documentation, the focus now is implementing
the simulation. In this case, we opted to continue extending a network simulator simulation with
cooperative robotics features, as shown in [20]. The OMNeT++/INET [29] network simulator
was selected for its modularity, graphical interface, community support, and easy code debug.
Moreover, we did not observe significant performance differences between network simulators
that could justify using another simulator.

• Base Simulation—Validating (6): The resulting simulation, as referred a priori, is a candidate
base simulation until it passes through a validation process, which verifies whether it keeps the
main characteristics of a real system or of the original simulation [30]. This part uses Verification,
Validation, and Test (VV&T) techniques, integrated with statistical analysis with confidence
interval, which is further detailed in Section 3.2.

• Case-Study—Experimentation Design (Planning) (7): Once the candidate simulation passes the
validation process, it becomes a Base Simulation that is ready for experimentation. However, it is
necessary to plan case studies to make sure they are aligned with the objectives defined in the
first step of the method, thus requiring an experimentation design. A suggestion of experimental
design is presented in Section 3.3.

• Case-Study—Experimenting (8): This step consists in implementing the planned studies,
executing simulations and gathering experimental results. The main concern, here, is to enforce
experimental rigor to avoid collecting incorrect data or producing incorrect behaviors.

• Case-Study—Data Analysis (9): Once data is collected, it must be analyzed and converted from
raw into useful information, also presenting it in an adequate form. Structuring these results as
defined in the experimentation design allows using statistical analysis with confidence intervals
to assess their significance. Detailed execution of this item for this type of simulation presented in
Section 3.4 is the main contribution of this paper as the use of confidence intervals integrated with
experimental design contribute to better results presentation and validation.

• Conclusion (10): The last step is to check if the obtained results are enough to satisfy the study
objectives, answering the problem study. If results are deemed not good enough, the method
cycle should be iterated.

The main objective of this method is to provide a systematic tool to develop a simulation study
in sequential steps, considering the particularities of this type of simulation, i.e., the cross-domain
complexity. Our main contribution lies in integrating techniques in four critical points, namely for
simulation planning, base simulation validation, case-study experimentation, and result analysis,
which we describe in the following subsections. An example use-case is presented in the next section.

3.1. Base Simulation—Planning

Due to its impact in the entire process, we consider this step a critical point, consisting in preparing
information to simplify simulation implementation and improve simulation reproducibility, a step also
known as conceptual and communicative modelling [22].

This type of modelling is usually simple and easy to use, but its complexity may grow quickly in
the following three situations: (1) If there are several developers working in the same implementation;
(2) when simulation is complex and involves several views; and (3) in the case of poor team knowledge
on the simulation topics. For integrated robotics and communication simulations, all three cases may
be true, requiring more details and explanations in the conceptual model. In practice, this implies

Sensors 2019, 19, 4585 6 of 19

a large and detailed documentation process that, yet, can be too complex to be used as guide in
implementation or too simple to help others understand the simulation topics.

A common recommendation is to maintain conceptual modelling simple and define a
communicative model that is more refined, with more detailed information. Therefore, the
computational model is not the main concern in this part and the generalized idea of how simulation
will work and its functionalities are the key points [31]. An extensive source of information of this
modelling is presented in [32]. We opt to adapt and use the recommendations of a simpler conceptual
modelling described in [25,31], which uses diagrams, figures, conceptual maps and other visual forms
to describe the simulation.

On the other hand, communicative modelling focuses on documentation, in a textual form, being
one of the most important aspects of the simulation, aiming at a better understanding of the simulation
by others. For this modelling, we adopt the ODD protocol [23], modifying some of its terminology
and adding particularities of the type of simulation we are addressing. The ODD protocol uses the
following documentation topics:

• Purpose: Consists of the same initial documentation already made within the IRoNS method,
indicating the simulation main motivation and what to expect from it.

• Entities, state variables, and scales: Consists in defining what is relevant for the study in terms of
algorithms, evaluation parameters, observation parameters, measurement units and, specifically
in this context, robot and cooperation characteristics.

• Process overview and scheduling: Defines how algorithms are organized, what they do and in
which order. In our context, it is especially important to define relationships between the network,
topology control and the robots cooperative control.

• Design concepts: There are eleven design concepts in the ODD protocol [23] describing the
application of an agent simulation. Using these concepts for robot simulation is straightforward if
we consider the robot as a particular physical agent and the set of cooperative robots as a physical
multi-agent simulation. All information regarding the simulation of robots, cooperative control
and cooperation is documented here.

• Initialization: Describes the simulation initial conditions, initial values and the expected effects
on the concrete simulation case.

• Input data: This topic is needed when using input data from external sources or another simulation
software, only.

• Submodels: Description of each submodel used in the simulation. Here we include all the
network and topology control aspects that were not described before. Any details about extra
modules and the simulation environment must also be included here.

3.2. Base Simulation—Validation

After finishing the first simulation implementation, referred as a candidate Base Simulation, the
simulation needs to pass a validation process. As there are diverse types of algorithms, it is not trivial
validating them all at the same time, and it would probably require a testbed [33] or real robots to
reproduce real-world results for validation, which may not be available.

One approach is to consider individual domain validations and assume composability, i.e., the
individual validations will remain valid upon integration. Thus, the resulting simulation should give
some indications of the overall behavior of the system and possible algorithms interactions, even if the
results are not precisely accurate.

There are several techniques already developed for simulation validation [30,33], but we adopt
a combination of a simple four-step ABMS validation technique [21] with a statistical analysis via
confidence intervals (CI) from VV&T research [22].

The four steps in [21] consist of face validation, sensitivity analysis, calibration, and statistical
validation. Face validation consists in a human expert analyzing the overall behavior of the system,

Sensors 2019, 19, 4585 7 of 19

making the necessary modifications to achieve expected results or to eliminate visibly bad results.
Sensitivity analysis aims at assessing the impact that parameter changes have on the simulation
behavior. The third step is the calibration, adjusting parameters to increase model accuracy and
reevaluate its final values.

The final step is the statistical validation, for which we use a confidence interval technique using
the errors between multiple simulation instances [22]. For this purpose, we formalize the technique
as follows: Let R1 and R2 be the statistical results from the same situation simulated on different
simulation frameworks, Simulator 1 and Simulator 2 respectively, Zj = R1j − R2j as the error achieved

in an experiment j. The mean Z(n) and variance ˆVar
[
Z(n)

]
are then computed for a given number n of

experiments (samples).
The confidence interval (CIz) is defined by (1) using Z(n) with ˆVar

[
Z(n)

]
used to determine the

half-length (Lz) of the interval (2) in terms of tn−1,1− α2
critical points of a t-student distribution, obtained

from a t-student table [22] as function of n − 1 samples and an auxiliary constant α, determined by the
desirable confidence Cd (3).

CIZ =
[
Z(n) + LZ , Z(n) − LZ

]
(1)

LZ = tn−1,1− α2

√
ˆVar

[
Z(n)

]
(2)

α = 2 · (1−
Cd
100

) (3)

The resulting interval can be assessed in two ways: statistical and scale significances. If the
confidence interval contains zero, it means that, with a determined confidence, the true mean of the
difference between both implementations (the error) can be zero, thus, it is not statistically significant.
However, when the confidence interval is too wide (low precision) or has low values when comparing
with the overall result, the difference can be insignificant even if the interval does not contain zero.

3.3. Case-Study—Experimentation Design

Once the Base Simulation passes the validation process, we assume that it is a valid simulation
model and it can be used for designing the experimentation, which is a process of planning simulation
cases to analyze the impact of changes in parameters and algorithms on simulation results.

The initial goal is to define evaluation and observation parameters. Observation parameters are
those used to track system states. Evaluation parameters are simulation performance criteria, which
generally depend on the nature of the cooperative task that we are analyzing, and it can also consist of
a combination of several observation parameters.

To do the case-study planning, we use a factorial 2K experimental design, where K is the number of
parameters used. This approach measures the impact on the results when changing one parameter
value or algorithm and can be combined with statistical analysis by confidence intervals when assessing
the results. The 2K factorial design has an increasingly demanding cost as the number of parameters
and experiments increases, but it is very straightforward when these numbers can be bounded to a
small size [22].

In this formulation, we must choose two levels (values) for a parameter or use two test algorithms,
adopting ‘−’ and ‘+’ for their representation. In this case, by convention, ‘−’ is used for the parameter
standard value or standard algorithm, i.e., the ones used in Base Simulation, and ‘+’ to indicate the test
value or test algorithm that we are comparing with.

These results can be organized in an experimentation table, as indicated in Table 1 for an example
with two factors (K = 2, indexed by f = 1 . . . K). In this case, there are four possible factor combinations,
indexed by k = 1 . . . 2K, and their respective results Rk

j. Moreover, we should explore j = 1 . . . n different
simulation situations (samples), under the same operational parameters, leading to n experimental
tables and, in this case, n× 2K simulations. For the cooperative robotic tasks addressed in this work, as

Sensors 2019, 19, 4585 8 of 19

an example, this can be achieved using different values for robots’ initial positions and by varying
their initial communication topology.

Table 1. Factorial experimental design with two factors (K = 2).

Factor Combination (k) Factor 1 (f = 1) Factor 2 (f = 2) Result (Rk
j)

1 − − R1j

2 + − R2j

3 − + R3j

4 + + R4j

The number of samples has a key role when building the statistical analysis by confidence interval,
thus it is recommended to simulate at least 15 different samples to obtain satisfactory results using
t-student distribution and 30 samples when a normal distribution behavior is desired [22]. A higher
number of samples may improve results, as it may reduce the confidence interval length, however it
can be time consuming and not always possible.

3.4. Data Analysis

After having the case-study planned and simulated, the last critical point is to assess the results.
This assessment consists in determining how much each change, in a parameter value or in a technique,
affected the task results, which is referred as ‘factor impact’. It is also possible to make this analysis
to determine how much these changes interact with each other, which in this case is referred to as
‘cross-factor impact’.

In other words, to determine the influence of each factor on the simulation results, we compute
each factor impact and the cross-factor impact. The factor impact ef measures how much impact a
change from state ‘−’ to ‘+’, in a specific factor combination k, has on results. The cross-factor impact
efafb indicates how much two or more factors results are dependent of each other values.

Each impact value is obtained by using data from the experimentation table (Table 1). The symbols
‘−’ and ‘+’ are taken as corresponding scalar numbers ‘−1′ and ‘+1′ that multiply the respective result
Rk

j for each factor. To determine the factor impact, i.e., the average impact from changing values, we
sum algebraically the results and divide by 2K−1 [22]. The cross-factor impact follows the same logic,
just crossing the factors, as the name says. For the two factors example in Table 1, the resulting impact
values are given by (4) for a sample j.

e1
j =
−R1

j + R2
j −R3

j + R4
j

22−1
e2

j =
−R1

j −R2
j + R3

j + R4
j

22−1
e12

j =
R1

j −R2
j −R3

j + R4
j

22−1
(4)

These impact values can be used in the same statistical formulation mentioned in the validation
process (1) to (3), thus obtaining the mean e f (n) and variance ˆVar

[
e f (n)

]
for j = 1 . . . n experimental

samples, and building the confidence interval CIe f for each factor f impact, built from a half-length of
LeK .

The resulting confidence intervals interpretation for each factor is similar as made in the validation.
If the interval includes zero, the change in the related factor value did not impact on simulation results.
However, if the interval does not contain zero, we can state that the change in this parameter had a
significant impact on the results. Besides these aspects, we can also observe the cross-factor impact,
which indicates if there is any significant interaction between simultaneous factor changes.

4. A Case-Study Illustrating the Use of the IRoNS Method

To show how the new method could improve results analysis with a set of algorithms of different
types, we present an example case-study of cooperative strategy comparison in which we follow the

Sensors 2019, 19, 4585 9 of 19

IRoNS Method. The main idea is to show how these algorithms can interact and how we can analyze
them before using a hardware setup.

4.1. Problem Formulation

The method workflow starts from a stated problem, which, in this context, involves cooperative
robots and communication network topics. We define the comparison of control strategies as the target,
including an assessment of their performance under network faults.

This problem needs to be further specified, as stated in the method first step. It is possible to
choose any combination of algorithms and parameters. In this case, for simplicity sake, we chose to
work with a limited group of 10 terrestrial and homogeneous mobile robots, executing a decentralized
rendezvous task. These conditions were determined by convenience and do not represent a limitation
of the framework. For example, considering more and heterogeneous robots can be accommodated at
the cost of increasing the simulation complexity and thus the time needed for its execution.

In cooperative robotics, the rendezvous is a cooperative task where robots must agree on
a meeting point and reach it without breaking communication links. This is a trivial problem in
centralized cooperation, however it may become challenging as a consensus problem with decentralized
cooperation, in which robots can only receive information through their direct communication
neighborhood [34].

From the communication network side, a decentralized solution is desired, too, given its flexibility
with respect to topology and resilience to network faults, which is particularly relevant for wireless
communication with a simple communication topology management. The network model is based
on OMNET++/INET IEEE802.11 (Wi-Fi). Other protocols can be used if available in the network
simulation framework. For example, OMNET++/INET also supports Zigbee [35] and LORA [36].

4.2. Choosing Solutions

After the problem formulation, the next step of the method is to choose techniques that can solve
the problem or can produce desired study circumstances. For this example, we will consider three
control strategies for the rendezvous problem, the network protocol involved, and the topology control
used, which are detailed bellow. The selection of these techniques considered the fact that, to the best
of the authors’ knowledge, they were never simulated together nor compared in the scope of a simple
robotics cooperative task. The objective here is to detect behaviors and interactions that do not show in
a simple simulation that does not consider the network idiosyncrasies.

4.2.1. Average Rendezvous

This is one of the simplest decentralized rendezvous techniques in the literature [37], in which the
reference point for each robot is determined as the average value of its neighbor’s positions. At each
time step k, each robot uses the received information to drive toward the updated average point (5),
where Xiref is the position vector reference for robot i, Xj is the positions vector received from neighbor
robot j, aij is adjacency matrix element that indicates whether there is a communication link between
robots i and j, and j is an index of robot i’s ni neighbors.

Xire f (k + 1) =

∑ni
j=1 X j(k) · ai j

ni
(5)

4.2.2. Circumcenter Rendezvous

This technique consists in defining, at each instant k and in each robot i, the smallest enclosing
circle that includes all robot direct neighbors and uses its center as the robot reference meeting point [38]
(Figure 2).

Sensors 2019, 19, 4585 10 of 19

Sensors 2019, 19, x FOR PEER REVIEW 9 of 18

In cooperative robotics, the rendezvous is a cooperative task where robots must agree on a meeting
point and reach it without breaking communication links. This is a trivial problem in centralized
cooperation, however it may become challenging as a consensus problem with decentralized
cooperation, in which robots can only receive information through their direct communication
neighborhood [34].

From the communication network side, a decentralized solution is desired, too, given its flexibility
with respect to topology and resilience to network faults, which is particularly relevant for wireless
communication with a simple communication topology management. The network model is based on
OMNET++/INET IEEE802.11 (Wi-Fi). Other protocols can be used if available in the network simulation
framework. For example, OMNET++/INET also supports Zigbee [35] and LORA [36].

4.2. Choosing Solutions

After the problem formulation, the next step of the method is to choose techniques that can solve
the problem or can produce desired study circumstances. For this example, we will consider three
control strategies for the rendezvous problem, the network protocol involved, and the topology
control used, which are detailed bellow. The selection of these techniques considered the fact that, to
the best of the authors’ knowledge, they were never simulated together nor compared in the scope
of a simple robotics cooperative task. The objective here is to detect behaviors and interactions that
do not show in a simple simulation that does not consider the network idiosyncrasies.

4.2.1. Average Rendezvous

This is one of the simplest decentralized rendezvous techniques in the literature [37], in which
the reference point for each robot is determined as the average value of its neighbor’s positions. At
each time step k, each robot uses the received information to drive toward the updated average point
(5), where Xiref is the position vector reference for robot i, Xj is the positions vector received from
neighbor robot j, aij is adjacency matrix element that indicates whether there is a communication link
between robots i and j, and j is an index of robot i’s ni neighbors.

ܺೝ(݇ + 1) = ∑ ܺ(݇) ⋅ ܽୀଵ ݊ (5)

4.2.2. Circumcenter Rendezvous

This technique consists in defining, at each instant k and in each robot i, the smallest enclosing
circle that includes all robot direct neighbors and uses its center as the robot reference meeting point
[38] (Figure 2).

Figure 2. Example of circumcenter rendezvous showing the smallest involving circle around robot 8
direct neighbors and its center as reference for that robot in that time instant.

4.2.3. MPC Rendezvous

The MPC (model prediction control) rendezvous [34] is an algorithm that uses a consensus
formulation with receding horizon stated as a quadratic optimization problem. The optimization

Figure 2. Example of circumcenter rendezvous showing the smallest involving circle around robot 8
direct neighbors and its center as reference for that robot in that time instant.

4.2.3. MPC Rendezvous

The MPC (model prediction control) rendezvous [34] is an algorithm that uses a consensus
formulation with receding horizon stated as a quadratic optimization problem. The optimization
problem in robot i can be stated as finding the minimum of an objective function Ji constrained by
saturation velocities (6) [34].

The objective function is composed of a consensus function fi for robot i and its neighbors, a 2D
velocity vector Vi and auxiliary matrix Hi. This auxiliary matrix includes the adjacent matrix elements
and a ponderation factor that penalizes changes in control.

minimize
(
Ji =

1
2

[
Vx

i Vy
i

][Hi 0
0 Hi

][
Vx

i
Vy

i

]
+

[
f x
i f y

i

][Vx
i

Vy
i

])
s.t. vx

maxb ≤ vx
i ≤ vx

max f
vy

maxb ≤ vy
i ≤ vy

max f

(6)

This technique is considerably more complex than the rest and it was selected to show that even
demanding algorithms that rely on optimization could be utilized in this type of complex simulation.

4.2.4. Mobile Ad-Hoc Network

A MANET is a wireless mobile local area network that does not rely on a central point to coordinate
message exchanges in the network, the nodes forward packets to and from each other on their own.
We chose the IEEE 802.11b standard for this simulation, given its robustness, which is part of the IEEE
802.11 series of WLAN standards. Devices using IEEE 802.11b experience interference from other
devices operating in the 2.4 GHz band, be it other IEEE 802.11 devices not engaged in the team or
Bluetooth devices, microwave ovens, and cordless telephones. These devices can be thought of as alien
uncontrollable network traffic generators, creating occasional collisions with the team transmissions
and consequent message delays and losses.

This wireless network model was selected as a worst-case scenario and with the purpose of
inserting complexity in the network part of the simulation. The network may be considered ideal or
with any other type of technology or protocol.

We also use an overlay protocol on top of IEEE 802.11b that organizes communications in periodic
rounds, i.e., communication cycles, within which the robots in the team transmit one at a time, evenly
spaced, such as proposed in [2]. As in this type of simulation we have total control of the network, we
opted for this protocol to demonstrate that additional adaptations and behaviors can be considered,
adding further complexity to the simulation. We used a communication cycle of 100 ms, which we
deem adequate for the dynamics of the robots.

4.2.5. Topology Control

When dealing with wireless communication with limited range and with nodes that are constantly
moving, the physical communication topology is naturally variable. However, it is possible to

Sensors 2019, 19, 4585 11 of 19

establish a logical communication topology, which goes beyond the physical topology, as it may ignore
communication links or create virtual links through message routing protocols. This communication
link management is called topology control.

The communication topology has a significant impact on cooperative behavior [28], not only in
network properties, but also on the dynamics of decentralized control algorithms. Each robot uses
information from its n neighbors and, as we increase the number of neighbors, it has more information
to deal with. We may then reach a point in which the algorithm receives too many messages, generating
too much information that does not contribute to the task, but increases overhead and may negatively
influence the network performance. On other side, limiting the number of neighbors, e.g., using a fixed
topology, reduces traffic in the network, which can be helpful in low bandwidth protocols. However,
decreasing it too much will negatively affect the cooperative task.

In this example, we use topology control to provide a fixed logical topology during the entire
simulation. This means that new communication links will not be created despite the robots approaching
each other in the course of the rendezvous task. We have already shown that topology changes strongly
impact the results when we compared fixed and dynamic topologies [19]. Thus, here we simply show
that different numbers of fixed links already have significant impact on the task performance.

4.3. System Specification

Concerning documentation, beyond the documentation of the problem itself, each technique
should be detailed with pseudo codes, possible interactions, important parameters and any other
valuable information.

In what concerns the assumptions, since this study has the objective of verifying the impact of
a specific set of techniques on the results, it is necessary to avoid any other influences and variables
in the simulation. This leads to the following set of assumptions: robots are finite points in space,
physical collisions are not considered, the environment is an open space without objects, the robot
motion is determined by first order dynamics without uncertainty and each robot knows its own
position with precision.

4.4. Base Simulation—Planning

The next step in the method is the simulation planning through conceptual and communicative
modelling. However, for the sake of conciseness of this paper, we will not detail this step here. In fact,
the conceptual model took 5 pages of figures and diagrams and the communicative modelling took 10
pages of detailed information.

The depth of the modelling may vary and will typically depend on the number of people involved
in the design process and simulation study. It is important to ensure the entire design team has the same
goals and simulation algorithms knowledge, thus the larger the team, the more detailed information
is need. Nevertheless, even for small teams a reasonably detailed documentation is important for
simulation reproducibility.

4.5. Base Simulation—Implementation and Validation

The base simulation was implemented in OMNeT++/INET [29] using 4.6 and 2.5 versions,
respectively. We also use an auxiliary library for quadratic optimization, called Quadprog++ 1.2.1 to
run the rendezvous algorithm presented in Section 4.2.3.

We applied the validation process to the control strategies referred above, which were originally
simulated in Matlab. For this validation, we chose two evaluation criteria: the error in the rendezvous
convergence time (Tf) and the error in the convergence distance (Df). We used the same simulation
conditions on Matlab and OMNeT++ and we built confidence intervals of the error between the results
achieved with both simulators.

We followed the referred 4-step verification process, with 99% confidence intervals (CI) for
the three control strategies, both assessment criteria and 15 samples, as indicated at Table 2. All

Sensors 2019, 19, 4585 12 of 19

CIs have relatively small length, indicating a good precision, and include zero, meaning that the
error true mean may be zero. Thus the differences between both simulation frameworks are not
significant, as we referred before, which is in agreement with our observations in [20] and validates
our OMNeT++ framework.

Table 2. Base simulation validation with confidence intervals.

Fixed Topology

MPC—CI 99%—Tf [−0.016; 0.041]

MPC—CI 99%—Df [−0.013; 0.0298]

Average—CI 99%—Tf [−0.01; 0.021]

Average—CI 99%—Df [−0.013; 0.022]

Circumcenter—CI 99%—Tf [−0.021; 0.016]

Circumcenter—CI 99%—Df [−0.023; 0.018]

4.6. Study Case—Experimentation Design

The experimentation objective is to compare the performance among the referred three rendezvous
algorithms in terms of how long it takes for each one to conclude the task, with and without message
losses. Fifteen initial conditions were sorted and applied in the same way to each algorithm, resulting
in 15 samples of convergence time.

We used the following notation for the rendezvous algorithms: A—Average (Section 4.2.1),
C—Circumcenter (Section 4.2.2) and MPC—Model Prediction Control (4.2.3). For the network
parameter, we used: I—ideal network without losses and C—network with message collisions/losses.

Initially, for the sake of simplification, we compare algorithms in pairs, defining three comparison
experiments: A × MPC, A × C and MPC × C. Formulating the experimentation we consider that
the first algorithm of each pair assumes the ‘−’ factor role and the second the ‘+’ role. Thus, in the
A ×MPC case, for example, we want to analyze the performance gain/loss when changing from the
Average to MPC technique.

4.7. Study Case—Experimentation and Data Analysis

After making any needed adjustments in the Base Simulation, we defined 15 different initial
conditions (samples) and obtained results each factor combination. For each sample, factor combination
results are transformed in factor and cross-factor impact.

The last step is to compute the mean and variance of the 15 samples of each impact factor and
cross-factor to finally build their confidence intervals (CI). The CIs were built with confidence of 99%
using (1), with α = 0.01 and t14,0.995 = 2.977, leading to the three CIs shown in Figure 3.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 18

4.6. Study Case—Experimentation Design

The experimentation objective is to compare the performance among the referred three
rendezvous algorithms in terms of how long it takes for each one to conclude the task, with and
without message losses. Fifteen initial conditions were sorted and applied in the same way to each
algorithm, resulting in 15 samples of convergence time.

We used the following notation for the rendezvous algorithms: A—Average (subSection 4.2.1),
C—Circumcenter (subSection 4.2.2) and MPC—Model Prediction Control (4.2.3). For the network
parameter, we used: I—ideal network without losses and C—network with message collisions/losses.

Initially, for the sake of simplification, we compare algorithms in pairs, defining three
comparison experiments: A × MPC, A × C and MPC × C. Formulating the experimentation we
consider that the first algorithm of each pair assumes the ‘−’ factor role and the second the ‘+’ role.
Thus, in the A × MPC case, for example, we want to analyze the performance gain/loss when changing
from the Average to MPC technique.

4.7. Study Case—Experimentation and Data Analysis

After making any needed adjustments in the Base Simulation, we defined 15 different initial
conditions (samples) and obtained results each factor combination. For each sample, factor
combination results are transformed in factor and cross-factor impact.

The last step is to compute the mean and variance of the 15 samples of each impact factor and
cross-factor to finally build their confidence intervals (CI). The CIs were built with confidence of 99%
using (1), with α = 0.01 and t14,0.995 = 2.977, leading to the three CIs shown in Figure 3.

Figure 3. Differences in convergence time between the rendezvous techniques with 99% confidence
intervals.

Figure 3 shows what happens to the rendezvous completion time when changing from the first
technique X to a second technique Y (‘X × Y’), without any message losses and using a fixed topology
control. In the first and last case, A × MPC and MPC × C respectively, confidence intervals do not
include zero, indicating a significant performance difference. In particular, the convergence time
increases when using MPC over an average rendezvous and decreases when using the circumcenter
algorithm instead of the MPC. The confidence interval of the A × C experiment includes zero,
meaning that these techniques do not have a statistically significant difference, which is consistent
with the other two comparisons (A × MPC and MPC × C).

On the other hand, even the difference in convergence time between A or C and MPC is small,
just around 1s, which may be considered negligible when compared with the absolute convergence
times that varied between 20 and 50 s. With this information, we can conclude that changing between
these rendezvous techniques does not impact significantly the convergence time under these network
parameters, which is consistent with the Matlab simulation, too.

In the second part of the experiments we considered the robots deployed in an environment
with network interference affecting the quality of robots communication through message losses. To
create this effect in the simulation framework, we added a fixed node in the simulation environment
that generates bursts of messages with a periodicity of 300 ms and duration of 100 ms, causing
collisions with the robots messages.

Figure 3. Differences in convergence time between the rendezvous techniques with 99%
confidence intervals.

Sensors 2019, 19, 4585 13 of 19

Figure 3 shows what happens to the rendezvous completion time when changing from the first
technique X to a second technique Y (‘X × Y’), without any message losses and using a fixed topology
control. In the first and last case, A ×MPC and MPC × C respectively, confidence intervals do not
include zero, indicating a significant performance difference. In particular, the convergence time
increases when using MPC over an average rendezvous and decreases when using the circumcenter
algorithm instead of the MPC. The confidence interval of the A × C experiment includes zero, meaning
that these techniques do not have a statistically significant difference, which is consistent with the other
two comparisons (A ×MPC and MPC × C).

On the other hand, even the difference in convergence time between A or C and MPC is small,
just around 1s, which may be considered negligible when compared with the absolute convergence
times that varied between 20 and 50 s. With this information, we can conclude that changing between
these rendezvous techniques does not impact significantly the convergence time under these network
parameters, which is consistent with the Matlab simulation, too.

In the second part of the experiments we considered the robots deployed in an environment with
network interference affecting the quality of robots communication through message losses. To create
this effect in the simulation framework, we added a fixed node in the simulation environment that
generates bursts of messages with a periodicity of 300 ms and duration of 100 ms, causing collisions
with the robots messages.

We used the same 15 initial conditions of the previous experiment to build another comparison
study between the first experiment, labelled ‘Ideal’ case, and the results achieved under message
collisions, labelled ‘Collision’ case. Moreover, we considered that each robot can hold a message for
200 ms (one communication cycle memory), thus tolerating one message loss. However, if two or
more consecutive messages are lost, the communication link is disabled until the robot receives a new
message from that neighbor (source).

The resulting CIs between control strategies in a network with message losses are shown in
Figure 4 and the comparison for each technique between the cases of without and with losses is shown
in Figure 5.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 18

We used the same 15 initial conditions of the previous experiment to build another comparison
study between the first experiment, labelled ‘Ideal’ case, and the results achieved under message
collisions, labelled ‘Collision’ case. Moreover, we considered that each robot can hold a message for
200 ms (one communication cycle memory), thus tolerating one message loss. However, if two or
more consecutive messages are lost, the communication link is disabled until the robot receives a new
message from that neighbor (source).

The resulting CIs between control strategies in a network with message losses are shown in
Figure 4 and the comparison for each technique between the cases of without and with losses is
shown in Figure 5.

Figure 4. Differences in convergence time between the rendezvous techniques with 99% confidence
intervals and message losses, with one communication cycle memory.

Figure 5. Differences in convergence time for each rendezvous technique with and without message
losses, with one communication cycle memory, and with 99% confidence intervals.

These results show an interesting behavior change when comparing the rendezvous techniques
with (Figure 4) and without (Figure 3) message losses. Now MPC takes significantly less time to
converge than A or C, as the resulting CIs from A × MPC and MPC × C indicate. Again, the difference
between A and C is not statistically significant, which is also consistent with the other two
comparisons.

When comparing each technique without and with message losses (Ideal – I × Collision – C)
(Figure 5), we see an increase of the convergence time for the three rendezvous techniques, being
much stronger for A and C, indicating that these techniques are more sensitive to message losses.
This explains the change in behavior observed when comparing the three techniques with and
without message losses (Figure 3 versus Figure 4). It is important to note that these results could not
be obtained with a simple robot control simulation in Matlab.

Given the observed impact of message losses, we carry out another comparison to answer the
following question: What is the impact of, upon losses, keeping using the information of the last

Figure 4. Differences in convergence time between the rendezvous techniques with 99% confidence
intervals and message losses, with one communication cycle memory.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 18

We used the same 15 initial conditions of the previous experiment to build another comparison
study between the first experiment, labelled ‘Ideal’ case, and the results achieved under message
collisions, labelled ‘Collision’ case. Moreover, we considered that each robot can hold a message for
200 ms (one communication cycle memory), thus tolerating one message loss. However, if two or
more consecutive messages are lost, the communication link is disabled until the robot receives a new
message from that neighbor (source).

The resulting CIs between control strategies in a network with message losses are shown in
Figure 4 and the comparison for each technique between the cases of without and with losses is
shown in Figure 5.

Figure 4. Differences in convergence time between the rendezvous techniques with 99% confidence
intervals and message losses, with one communication cycle memory.

Figure 5. Differences in convergence time for each rendezvous technique with and without message
losses, with one communication cycle memory, and with 99% confidence intervals.

These results show an interesting behavior change when comparing the rendezvous techniques
with (Figure 4) and without (Figure 3) message losses. Now MPC takes significantly less time to
converge than A or C, as the resulting CIs from A × MPC and MPC × C indicate. Again, the difference
between A and C is not statistically significant, which is also consistent with the other two
comparisons.

When comparing each technique without and with message losses (Ideal – I × Collision – C)
(Figure 5), we see an increase of the convergence time for the three rendezvous techniques, being
much stronger for A and C, indicating that these techniques are more sensitive to message losses.
This explains the change in behavior observed when comparing the three techniques with and
without message losses (Figure 3 versus Figure 4). It is important to note that these results could not
be obtained with a simple robot control simulation in Matlab.

Given the observed impact of message losses, we carry out another comparison to answer the
following question: What is the impact of, upon losses, keeping using the information of the last

Figure 5. Differences in convergence time for each rendezvous technique with and without message
losses, with one communication cycle memory, and with 99% confidence intervals.

Sensors 2019, 19, 4585 14 of 19

These results show an interesting behavior change when comparing the rendezvous techniques
with (Figure 4) and without (Figure 3) message losses. Now MPC takes significantly less time to
converge than A or C, as the resulting CIs from A ×MPC and MPC × C indicate. Again, the difference
between A and C is not statistically significant, which is also consistent with the other two comparisons.

When comparing each technique without and with message losses (Ideal – I × Collision – C)
(Figure 5), we see an increase of the convergence time for the three rendezvous techniques, being
much stronger for A and C, indicating that these techniques are more sensitive to message losses. This
explains the change in behavior observed when comparing the three techniques with and without
message losses (Figure 3 versus Figure 4). It is important to note that these results could not be obtained
with a simple robot control simulation in Matlab.

Given the observed impact of message losses, we carry out another comparison to answer the
following question: What is the impact of, upon losses, keeping using the information of the last received
message for a longer time (more communication cycles), thus tolerating more consecutive losses?

Another set of simulations were carried out using similar parameters as before, except for an
extended memory capacity, or in other words, when messages are lost, the last message information is
used for up to two communication cycles, i.e., messages were kept for up to 300 ms. The results are
shown in Figures 6 and 7.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 18

received message for a longer time (more communication cycles), thus tolerating more consecutive
losses?

Another set of simulations were carried out using similar parameters as before, except for an
extended memory capacity, or in other words, when messages are lost, the last message information
is used for up to two communication cycles, i.e., messages were kept for up to 300 ms. The results are
shown in Figures 6 and 7.

Figure 6. Differences in convergence time between the rendezvous techniques with 99% confidence
intervals and message losses, with two communication cycles memory.

Figure 7. Differences in convergence time for each rendezvous technique with and without message
losses, with two communication cycles memory, and with 99% confidence intervals.

When comparing results of a longer information lifetime, from one cycle memory in Figure 4 to
two cycles memory in Figure 6, we observe that an increased lifetime reduces the differences in
convergence times to values closer to the case without message losses (Figure 3), meaning that the
different techniques exhibit closer behaviors. Moreover, the relative behavior among the three
rendezvous techniques with increased information lifetime is still the same in the two cases with
message losses, i.e., MPC takes less time to converge. However, there is now a more significant
difference between A and C, in favor of the Circumcenter (C) technique, and consequently a less
significant difference between MPC and C (note that the CI now includes zero).

This reduction in the impact of message losses is observed in Figure 7 too, when we compare
again each technique without and with message losses but now with longer information lifetime.
Both average and circumcenter rendezvous techniques show a moderate increase in convergence
time, slightly more pronounced for A, while the impact on the MPC technique is not statistically
significant (CI includes zero).

Figure 6. Differences in convergence time between the rendezvous techniques with 99% confidence
intervals and message losses, with two communication cycles memory.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 18

received message for a longer time (more communication cycles), thus tolerating more consecutive
losses?

Another set of simulations were carried out using similar parameters as before, except for an
extended memory capacity, or in other words, when messages are lost, the last message information
is used for up to two communication cycles, i.e., messages were kept for up to 300 ms. The results are
shown in Figures 6 and 7.

Figure 6. Differences in convergence time between the rendezvous techniques with 99% confidence
intervals and message losses, with two communication cycles memory.

Figure 7. Differences in convergence time for each rendezvous technique with and without message
losses, with two communication cycles memory, and with 99% confidence intervals.

When comparing results of a longer information lifetime, from one cycle memory in Figure 4 to
two cycles memory in Figure 6, we observe that an increased lifetime reduces the differences in
convergence times to values closer to the case without message losses (Figure 3), meaning that the
different techniques exhibit closer behaviors. Moreover, the relative behavior among the three
rendezvous techniques with increased information lifetime is still the same in the two cases with
message losses, i.e., MPC takes less time to converge. However, there is now a more significant
difference between A and C, in favor of the Circumcenter (C) technique, and consequently a less
significant difference between MPC and C (note that the CI now includes zero).

This reduction in the impact of message losses is observed in Figure 7 too, when we compare
again each technique without and with message losses but now with longer information lifetime.
Both average and circumcenter rendezvous techniques show a moderate increase in convergence
time, slightly more pronounced for A, while the impact on the MPC technique is not statistically
significant (CI includes zero).

Figure 7. Differences in convergence time for each rendezvous technique with and without message
losses, with two communication cycles memory, and with 99% confidence intervals.

When comparing results of a longer information lifetime, from one cycle memory in Figure 4
to two cycles memory in Figure 6, we observe that an increased lifetime reduces the differences
in convergence times to values closer to the case without message losses (Figure 3), meaning that
the different techniques exhibit closer behaviors. Moreover, the relative behavior among the three
rendezvous techniques with increased information lifetime is still the same in the two cases with

Sensors 2019, 19, 4585 15 of 19

message losses, i.e., MPC takes less time to converge. However, there is now a more significant
difference between A and C, in favor of the Circumcenter (C) technique, and consequently a less
significant difference between MPC and C (note that the CI now includes zero).

This reduction in the impact of message losses is observed in Figure 7 too, when we compare
again each technique without and with message losses but now with longer information lifetime. Both
average and circumcenter rendezvous techniques show a moderate increase in convergence time,
slightly more pronounced for A, while the impact on the MPC technique is not statistically significant
(CI includes zero).

To further show how the method can be modular and how these parameters can affect the results,
we made a simulation case in which we increase the number of robots and use the change in the
topology (Linear × Grid, as indicated in Figure 8) as factor e1 and the change in control algorithm
(Average × Circumcenter) as factor e2.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 18

To further show how the method can be modular and how these parameters can affect the
results, we made a simulation case in which we increase the number of robots and use the change in
the topology (Linear × Grid, as indicated in Figure 8) as factor e1 and the change in control algorithm
(Average × Circumcenter) as factor e2.

Figure 8. Fixed communication topologies for 20 robots.

The results are presented in Figure 9, where we can clearly observe that the increasing number
of robots also increases the convergence time.

Figure 9. Results of varying the number of robots with two different control algorithms (Average ×
Circumcenter) and two fixed communication topologies (Linear × Grid).

There is a notable difference between the linear and grid topologies results. The first one heavily
impacts the results as we include more robots, although in the second case, the variable number of
robots is mitigated as we maintain 2 to 4 communication links between them. Moreover, we can also
infer that both algorithms have similar performance under the grid topology, but under linear
topology the circumcenter algorithm has a better result.

Using confidence intervals as proposed in this work (Figure 10), we can obtain the same
information from Figure 8, where the first factor indicates that there is a significant reduction in the
convergence time when changing from linear topology to grid topology. As the difference between

Figure 8. Fixed communication topologies for 20 robots.

The results are presented in Figure 9, where we can clearly observe that the increasing number of
robots also increases the convergence time.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 18

To further show how the method can be modular and how these parameters can affect the
results, we made a simulation case in which we increase the number of robots and use the change in
the topology (Linear × Grid, as indicated in Figure 8) as factor e1 and the change in control algorithm
(Average × Circumcenter) as factor e2.

Figure 8. Fixed communication topologies for 20 robots.

The results are presented in Figure 9, where we can clearly observe that the increasing number
of robots also increases the convergence time.

Figure 9. Results of varying the number of robots with two different control algorithms (Average ×
Circumcenter) and two fixed communication topologies (Linear × Grid).

There is a notable difference between the linear and grid topologies results. The first one heavily
impacts the results as we include more robots, although in the second case, the variable number of
robots is mitigated as we maintain 2 to 4 communication links between them. Moreover, we can also
infer that both algorithms have similar performance under the grid topology, but under linear
topology the circumcenter algorithm has a better result.

Using confidence intervals as proposed in this work (Figure 10), we can obtain the same
information from Figure 8, where the first factor indicates that there is a significant reduction in the
convergence time when changing from linear topology to grid topology. As the difference between

Figure 9. Results of varying the number of robots with two different control algorithms (Average ×
Circumcenter) and two fixed communication topologies (Linear × Grid).

Sensors 2019, 19, 4585 16 of 19

There is a notable difference between the linear and grid topologies results. The first one heavily
impacts the results as we include more robots, although in the second case, the variable number of
robots is mitigated as we maintain 2 to 4 communication links between them. Moreover, we can also
infer that both algorithms have similar performance under the grid topology, but under linear topology
the circumcenter algorithm has a better result.

Using confidence intervals as proposed in this work (Figure 10), we can obtain the same information
from Figure 8, where the first factor indicates that there is a significant reduction in the convergence
time when changing from linear topology to grid topology. As the difference between both cases is
constantly increasing as we increase the number of robots, the CI is larger than in the previous cases.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 18

both cases is constantly increasing as we increase the number of robots, the CI is larger than in the
previous cases.

Concerning the second factor, we can observe a difference between circumcenter and average
rendezvous, which is significant for the linear topology but minimal for the grid topology. This
information is also obtained from analyzing the cross-factor CI “e12”, which shows that results
interpretation needs to consider each factor value. In other words, the convergence time in this study
varies with the chosen topology but also with the control algorithm. We can also understand that if
we want more information about one of these factors, we need to select a fixed value of the second
one for the simulation study.

Figure 10. Differences in convergence time when varying the number of robots with two different
control algorithms e1 (average x circumcenter) and two fixed communication topologies e2 (linear x
grid), and its cross-factor relationship, with 99% confidence intervals.

5. Discussion and Conclusions

In this work, we discussed the process of building an integrated simulation case for networked
cooperative robots. We proposed a novel method, the IRoNS Method, featured with documentation
procedures and statistical analysis.

To illustrate the use of the IRoNS Method, we presented a case-study consisting on a comparison
of diverse control strategies for a rendezvous task, under the influence of message losses. We showed
how this method supports an objective comparison among the techniques under analysis in different
operational scenarios, highlighting their behaviors and testing alternatives to improve them. In this
case-study, we observed a change in the results of the techniques when comparing a fault-free with
a faulty network scenario and assessed the effectiveness of a possible method to mitigate such faults.

Based on this example study, we can state that the three considered rendezvous techniques have
similar performance in convergence time as long as message exchange is reliable. However, the MPC
technique showed to be less sensitive to message losses, performing better under such network
conditions. Moreover, we observed that the impact of message losses can also be mitigated by
increasing information lifetime, i.e., maintaining previous information whenever messages are lost.

Obtaining this kind of information in a simulation phase was only possible with the integrated
simulation framework offered by the IRoNS Method that provided a quick comparison and
assessment using the confidence intervals statistical technique. Having this information in a
simulation phase, developers can decide if any of these behaviors is acceptable or preferable before
starting a real robots team implementation. Needed modifications can be done at simulation time,
thus reducing transitions between simulation to real implementations and consequently, reducing
the project total time.

Moreover, the IRoNS method has proved helpful in simulation planning, organization,
implementation, and analysis, improving the accuracy of comparisons and helping the transition to
the implementation on real robots. Its use is not bound to any specific operational or simulation

Figure 10. Differences in convergence time when varying the number of robots with two different
control algorithms e1 (average × circumcenter) and two fixed communication topologies e2 (linear ×
grid), and its cross-factor relationship, with 99% confidence intervals.

Concerning the second factor, we can observe a difference between circumcenter and average
rendezvous, which is significant for the linear topology but minimal for the grid topology. This
information is also obtained from analyzing the cross-factor CI “e12”, which shows that results
interpretation needs to consider each factor value. In other words, the convergence time in this study
varies with the chosen topology but also with the control algorithm. We can also understand that if we
want more information about one of these factors, we need to select a fixed value of the second one for
the simulation study.

5. Discussion and Conclusions

In this work, we discussed the process of building an integrated simulation case for networked
cooperative robots. We proposed a novel method, the IRoNS Method, featured with documentation
procedures and statistical analysis.

To illustrate the use of the IRoNS Method, we presented a case-study consisting on a comparison
of diverse control strategies for a rendezvous task, under the influence of message losses. We showed
how this method supports an objective comparison among the techniques under analysis in different
operational scenarios, highlighting their behaviors and testing alternatives to improve them. In this
case-study, we observed a change in the results of the techniques when comparing a fault-free with a
faulty network scenario and assessed the effectiveness of a possible method to mitigate such faults.

Based on this example study, we can state that the three considered rendezvous techniques
have similar performance in convergence time as long as message exchange is reliable. However,
the MPC technique showed to be less sensitive to message losses, performing better under such
network conditions. Moreover, we observed that the impact of message losses can also be mitigated by
increasing information lifetime, i.e., maintaining previous information whenever messages are lost.

Sensors 2019, 19, 4585 17 of 19

Obtaining this kind of information in a simulation phase was only possible with the integrated
simulation framework offered by the IRoNS Method that provided a quick comparison and assessment
using the confidence intervals statistical technique. Having this information in a simulation phase,
developers can decide if any of these behaviors is acceptable or preferable before starting a real robots
team implementation. Needed modifications can be done at simulation time, thus reducing transitions
between simulation to real implementations and consequently, reducing the project total time.

Moreover, the IRoNS method has proved helpful in simulation planning, organization,
implementation, and analysis, improving the accuracy of comparisons and helping the transition to the
implementation on real robots. Its use is not bound to any specific operational or simulation framework.
The results analysis can be uniformly made for any simulation parameter change, requiring only to
establish a task performance metric.

We are currently applying this method to carry out comparisons among more complex cooperative
tasks, such as advanced topology controls, using multiple operational scenarios and control strategies.

Author Contributions: Conceptualization, D.R. and U.M.; methodology, software, validation, formal analysis,
D.R.; writing—original draft preparation, D.R.; writing—review and editing, L.A. and U.M.; supervision, L.A.
and U.M.

Funding: This research was partially funded by FCT/MEC through national funds and when applicable co-funded
by FEDER – PT2020 partnership agreement under the project UID/EEA/50008/2019 in Portugal, and by the
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code CAPES-FCT
353/13 in Brazil.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ramos, D.; Oliveira, L.; Almeida, L.; Moreno, U. Network interference on cooperative mobile robots
consensus. In Proceedings of the ROBOT’2015—Second Iberian Robotics Conference, Lisbon, Portugal,
19–21 November 2015; Volume 1, pp. 651–664. [CrossRef]

2. Oliveira, L.; Almeida, L.; Santos, F. A Loose Synchronisation Protocol for Managing RF Ranging in Mobile
Ad-Hoc Networks. In RoboCup 2011: Robot Soccer World Cup XV; Springer: Berlin/Heidelberg, Germany,
2011; Volume 7416.

3. Beuron, R. Introduction to Network Emulation; Pan Stanford Publishing: Singapore, 2013;
ISBN 978-981-4364-09-6.

4. Gattupalli, A.; Eathakota, V.P.; Singh, A.K.; Madhava Krishna, K. A simulation framework for evolution on
uneven terrains for synchronous drive robot. Adv. Robot. 2013, 27, 641–654. [CrossRef]

5. Pickem, D.; Lee, M.; Egerstedt, M. The GRITSBot in its Natural Habitat—A Multi-Robot Testbed.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA,
26–30 May 2015. [CrossRef]

6. Kadry, S.; Hami, A. E-Systems for the 21st Century: Concept Developments and Applications; Apple Academic
Press: New York, NY, USA, 2015; Volume 2, Chapter 10.

7. Ghorbani, A.; Bots, P.; Dignum, V.; Dijkema, G. MAIA: A Framework for Developing Agent-Based Social
Simulations. J. Artif. Soc. Soc. Simul. 2013, 16, 9. [CrossRef]

8. Jensen, J.C.; Chang, D.H.; Lee, E.A. A model-based design methodology for cyber-physical systems.
In Proceedings of the 7th International Wireless Communications and Mobile Computing Conference,
Istanbul, Turkey, 5–8 July 2011; Volume 6, pp. 1666–1671.

9. Li, W.; Zhang, X.; Li, H. Co-simulation platforms for co-design of networked control systems: An overview.
Control Eng. Pract. 2014, 23, 44–56. [CrossRef]

10. Zhang, Z.; Lu, Z.; Chen, Q.; Yan, X.; Zheng, L.R. COSMO: CO-Simulation with MATLAB and OMNeT++

for indoor wireless networks. In Proceedings of the 2010 IEEE Global Telecommunications Conference
GLOBECOM 2010, Miami, FL, USA, 6–10 December 2010.

11. Ray, P.P. Internet of Robotic Things: Concept, Technologies, and Challenges. IEEE Access 2017. [CrossRef]
12. Kudelski, L.M.; Gambardella, L.M.; Di Caro, G.A. RoboNetSim: An integrated framework for multi-robot

and network simulation. Robot. Auton. Syst. 2013, 61, 483–496. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-27146-0
http://dx.doi.org/10.1080/01691864.2013.763848
http://dx.doi.org/10.1109/ICRA.2015.7139767
http://dx.doi.org/10.18564/jasss.2166
http://dx.doi.org/10.1016/j.conengprac.2013.10.010
http://dx.doi.org/10.1109/ACCESS.2017.2647747
http://dx.doi.org/10.1016/j.robot.2013.01.003

Sensors 2019, 19, 4585 18 of 19

13. Wei, C.; Hindriks, K.V.; Jonker, C.M. The role of communication in coordination protocols for cooperative
robot teams. In Proceedings of the 6th International Conference on Agents and Artificial Intelligence, Angers,
France, 6–8 March 2014; pp. 28–39.

14. Okada, T.; Nakata, J.; Beuran, R.; Tan, Y.; Shinoda, Y. Large-scale Simulation Method of Mobile Robots.
In Proceedings of the Second International Symposium on Universal Communication, Osaka, Japan, 15–16
December 2008. [CrossRef]

15. Law, A.M. How to build valid and credible simulation models. In Proceedings of the 2008 Winter Simulation
Conference, Miami, FL, USA, 7–8 December 2008.

16. Schluse, M.; Rossmann, J. From Simulation to Experimentable Digital Twins. In Proceedings of the
IEEE International Symposium on Systems Engineering (ISSE), Edinburgh, UK, 3–5 October 2016;
ISBN 978-1-5090-0793-6.

17. Kristiansen, S.; Plagemann, T.; Goebel, V. A methodology to model execution of communication software for
accurate network simulation. ACM Trans. Model. Comput. Simul. 2015, 26, 3. [CrossRef]

18. Van de Perre, G.; Van Damme, M.; Lefeber, D.; Vanderborght, B. Development of a generic method to generate
upper-body emotional expressions for different social robots. Adv. Robot. 2015, 29, 597–609. [CrossRef]

19. Ramos, D.; Moreno, U.F.; Oliveira, L.; Almeida, L. Impact of alien networks on consensus in a team of
cooperative mobile robots. In Proceedings of the V Brazilian Symposium on Computing Systems Engineering,
Foz do Iguacu, Brazil, 3–6 November 2015; pp. 84–89. [CrossRef]

20. Ramos, D.; Moreno, U.F.; Almeida, L. Method for Design and Performance Evaluation of Ad Hoc Networked
Mobile Robotic Systems using OMNET++. IFAC-Papers Online 2016, 49. [CrossRef]

21. Klugl, F. A validation methodology for agent-based simulations. In Proceedings of the 2008 ACM Symposium
on Applied Computing (SAC), Fortaleza, Brazil, 16–20 March 2008. [CrossRef]

22. Law, A.M. Simulation Modelling and Analysis, 5th ed.; McGraw-Hill: New York, NY, USA, 2015; p. 804.
23. Grimm, V.; Berger, U.; DeAngelis, D.L.; Polhill, J.G.; Giske, J.; Railsback, S.F. The ODD protocol: A review

and first update. Ecol. Model. 2010, 221, 2760–2768. [CrossRef]
24. Sargent, R.G. Use of the interval statistical procedure for simulation model validation. In Proceedings of the

2015 Winter Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015. [CrossRef]
25. Siegfried, R. Modeling and Simulation of Complex Systems; Springer Vieweg: Heidelberg, Germany, 2014;

Chapter (2, 3, 5, 8, 9); ISBN 978-3-658-07528-6.
26. Chamanbaz, M.; Mateo, D.; Zoss, B.M.; Tokić, G.; Wilhelm, E.; Bouffanais, R.; Yue, D.K. Swarm-enabling

technology for multi-robot systems. Front. Robot. AI 2017, 4, 12. [CrossRef]
27. Mateo, D.; Kuan, Y.K.; Bouffanais, R. Effect of correlations in swarms on collective response. Sci. Rep. 2017,

7, 10388. [CrossRef] [PubMed]
28. Mateo, D.; Horsevad, N.; Hassani, V.; Chamanbaz, M.; Bouffanais, R. Optimal network topology for

responsive collective behavior. Sci. Adv. 2019, 5, eaau0999. [CrossRef] [PubMed]
29. OMNeT++ and INET Framework. Available online: https://omnetpp.org/ (accessed on 1 July 2019).
30. Sargent, R.G. Verification and validation of simulation models. J. Simul. 2013, 7, 12–24. [CrossRef]
31. Sokolowski, J.A.; Banks, C.M. Modeling and Simulation Fundamentals: Theorical Underpinnings and Practical

Domains; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978-0-470-48674-0.
32. Robinson, S. Simulation: The Practice of Model Development and Use, 2nd ed.; Palgrave Macmillan: London,

UK, 2014; ISBN 9781137328021.
33. Raunak, M.; Olsen, M. Quantifying validation of discrete event simulation models. In Proceedings of the

2014 Winter Simulation Conference, Savannah, Georgia, 7–10 December 2014.
34. Ordoñez, B.; Moreno, U.F.; Cerqueira, J.; Almeida, L. Generation of trajectories using predictive control for

tracking consensus with sensing and connectivity constraint. In Studies in Computational Intelligence; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 19–37.

35. Kirsche, M.; Schnurbusch, M. A New IEEE 802.15.4 Simulation Model for OMNeT++/INET. 2015. Available
online: https://arxiv.org/pdf/1409.1177.pdf (accessed on 15 June 2019).

36. Slabicki, M.; Premsankar, G. Framework for LoRa (FLORA). 2019. Available online: https://flora.aalto.fi/

(accessed on 15 June 2019).

http://dx.doi.org/10.1109/ISUC.2008.42
http://dx.doi.org/10.1145/2746233
http://dx.doi.org/10.1080/01691864.2015.1031697
http://dx.doi.org/10.1109/SBESC.2015.23
http://dx.doi.org/10.1016/j.ifacol.2016.11.144
http://dx.doi.org/10.1145/1363686.1363696
http://dx.doi.org/10.1016/j.ecolmodel.2010.08.019
http://dx.doi.org/10.1109/WSC.2015.7408153
http://dx.doi.org/10.3389/frobt.2017.00012
http://dx.doi.org/10.1038/s41598-017-09830-w
http://www.ncbi.nlm.nih.gov/pubmed/28871122
http://dx.doi.org/10.1126/sciadv.aau0999
http://www.ncbi.nlm.nih.gov/pubmed/30949570
https://omnetpp.org/
http://dx.doi.org/10.1057/jos.2012.20
https://arxiv.org/pdf/1409.1177.pdf
https://flora.aalto.fi/

Sensors 2019, 19, 4585 19 of 19

37. Olfati-Saber, R.; Murray, R.M. Consensus Protocols for Networks of Dynamic Agents. In Proceedings of the
American Control Conference, Denver, CO, USA, 4–6 June 2003.

38. Yamashita, M.; Ando, H.; Oasa, Y.; Suzuki, I. Distributed memoryless point convergence algorithm for mobile
robots with limited visibility. IEEE Trans. Robot. Autom. 1999, 15, 818–828.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	IRoNS Method
	Base Simulation—Planning
	Base Simulation—Validation
	Case-Study—Experimentation Design
	Data Analysis

	A Case-Study Illustrating the Use of the IRoNS Method
	Problem Formulation
	Choosing Solutions
	Average Rendezvous
	Circumcenter Rendezvous
	MPC Rendezvous
	Mobile Ad-Hoc Network
	Topology Control

	System Specification
	Base Simulation—Planning
	Base Simulation—Implementation and Validation
	Study Case—Experimentation Design
	Study Case—Experimentation and Data Analysis

	Discussion and Conclusions
	References

