Measuring Spatial and Temporal PM2.5 Variations in Sacramento, California, Communities Using a Network of Low-Cost Sensors
Abstract
:1. Introduction
2. Methods
2.1. Instrumentation
2.2. Study Design
- (1)
- A pre-study collocation period (11/10/16–11/16/16) where 19 AirBeams were collocated with the BAM, FRM, and meteorology measurements at the Del Paso Manor site.
- (2)
- The study period (2 months, 12/1/2016–02/1/2017), during which 19 AirBeams were deployed at 15 locations in Sacramento. Three AirBeams were collocated at both Del Paso Manor and T Street sites with the BAM and FRM monitor, in order to assess sensor precision and drift during the study period. The remaining 13 AirBeams were deployed individually at site locations as shown in Figure 1.
- (3)
- A post-study collocation period (2/4/2017–3/8/2017) where 19 AirBeams were collocated with the BAM, FRM and meteorology measurements at the Del Paso Manor site in the same configuration as in the pre-study collocation period.
2.2.1. Collocation and AirBeam Correction
2.2.2. Calculations from AirBeam Deployment in Communities
3. Results
3.1. Precision, Correction, and Drift
3.2. Collocation Results during Study
3.3. Accuracy and the Impact of Meteorology
3.4. Inter-Community Variability of PM
3.5. Comparison of Measurements to Wintertime Emissions Inventory
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schlesinger, R.B.; Kunzli, N.; Hidy, G.M.; Gotschi, T.; Jerrett, M. The health relevance of ambient particulate matter characteristics: Coherence of toxicological and epidemiological inferences. Inhal. Toxicol. 2006, 18, 95–125. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Revised Air Quality Standards for Particle Pollution and Updates to the Air Quality Index (AQI). 2012. Available online: https://www.epa.gov/sites/production/files/2016-04/documents/2012_aqi_factsheet.pdf (accessed on 2 October 2019).
- Solomon, P.A.; Crumpler, D.; Flanagan, J.B.; Jayanty, R.K.M.; Rickman, E.E.; McDade, C.E. U.S. national PM2.5 chemical speciation monitoring networks—CSN and IMPROVE: Description of networks. J. Air Waste Manag. Assoc. 2014, 64, 1410–1438. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. List of Designated Reference and Equivalent Methods; Environmental Protection Agency National Exposure Research Laboratory: Research Triangle Park, NC, USA, 15 December 2018.
- Britter, R.E.; Hanna, S.R. Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 2003, 35, 469–496. [Google Scholar] [CrossRef]
- Gao, M.; Cao, J.; Seto, E. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 2015, 199, 56–65. [Google Scholar] [CrossRef]
- Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.J.; McLeod, M.W.; Hodgson, T.F.; Dicks, J.; et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 2013, 70, 186–203. [Google Scholar] [CrossRef] [Green Version]
- Zikova, N.; Masiol, M.; Chalupa, D.; Rich, D.; Ferro, A.; Hopke, P. Estimating hourly concentrations of PM2.5 across a metropolitan area using low-cost particle monitors. Sensors 2017, 17, 1922. [Google Scholar] [CrossRef]
- Superczynski, S.D.; Christopher, S.A. Exploring land use and land cover effects on air quality in central Alabama using GIS and remote sensing. Remote Sens. 2011, 3, 2552–2567. [Google Scholar] [CrossRef]
- Shi, X.; Zhao, C.; Jiang, J.H.; Wang, C.; Yang, X.; Yung, Y.L. Spatial representativeness of PM2.5 concentrations obtained using observations from network stations. J. Geophys. Res. Atmos. 2018, 123, 3145–3158. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75 (Suppl. C), 199–205. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.C.; Lee, J.D.; Edwards, P.M.; Shaw, M.D.; Evans, M.J.; Moller, S.J.; Smith, K.R.; Buckley, J.W.; Ellis, M.; Gillot, S.R.; et al. Evaluating the performance of low cost chemical sensors for air pollution research. Faraday Discuss. 2016, 189, 85–103. [Google Scholar] [CrossRef]
- Williams, R.; Kilaru, V.; Snyder, E.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook; U.S. Environmental Protection Agency: Washington, DC, USA, June 2014.
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijsen, M.J.; Donaire-Gonzalez, D.; Rivas, I.; de Castro, M.; Cirach, M.; Hoek, G.; Seto, E.; Jerrett, M.; Sunyer, J. Variability in and agreement between modeled and personal continuously measured black carbon levels using novel smartphone and sensor technologies. Environ. Sci. Technol. 2015, 49, 2977–2982. [Google Scholar] [CrossRef] [PubMed]
- Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.P.; Lv, Q.; Hannigan, M.; et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmos. Meas. Tech. 2014, 7, 3325–3336. [Google Scholar] [CrossRef] [Green Version]
- Heimann, I.; Bright, V.B.; McLeod, M.W.; Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Jones, R.L. Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors. Atmos. Environ. 2015, 113, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef]
- Hall, E.S.; Kaushik, S.M.; Vanderpool, R.W.; Duvall, R.M.; Beaver, M.R.; Long, R.W.; Solomon, P.A. Integrating sensor monitoring technology into the current air pollution regulatory support paradigm: Practical considerations. Am. J. Environ. Eng. 2014, 4, 147–154. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance assessment of a low-cost PM2.5 sensor for a near four-month period in Oslo, Norway. Atmosphere 2019, 10, 41. [Google Scholar] [CrossRef]
- Mukherjee, A.; Stanton, L.G.; Graham, A.R.; Roberts, P.T. Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama Valley of California. Sensors 2017, 17, 1805. [Google Scholar] [CrossRef]
- South Coast Air Quality Management District. Laboratory Evaluation: AirBeam PM2.5 Sensor. by the SCAQMD Air Quality Sensor Performance Evaluation Center (AQ-SPEC). Diamond Bar, CA, USA. 2015. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/laboratory-evaluations/airbeam---laboratory-evaluation.pdf?sfvrsn=6 (accessed on 2 October 2019).
- South Coast Air Quality Management District. Field Evaluation: AirBeam PM Sensor. by the SCAQMD Air Quality Sensor Performance Evaluation Center (AQ-SPEC), Diamond Bar, CA, USA. 2015. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/airbeam---field-evaluation.pdf?sfvrsn=4 (accessed on 2 October 2019).
- Mohan, M.; Dagar, L.; Gurjar, B.R. Preparation and validation of gridded emission inventory of criteria air pollutants and identification of emission hotspots for megacity Delhi. Environ. Monit. Assess. 2007, 130, 323–339. [Google Scholar] [CrossRef]
- Simon, H.; Allen, D.T.; Wittig, A.E. Fine particulate matter emissions inventories: Comparisons of emissions estimates with observations from recent field programs. J. Air Waste Manag. Assoc. 2008, 58, 320–343. [Google Scholar] [CrossRef]
- Perugu, H.; Wei, H.; Yao, Z. Integrated data-driven modeling to estimate PM2.5 pollution from heavy-duty truck transportation activity over metropolitan area. Transp. Res. Part D Transp. Environ. 2016, 46, 114–127. [Google Scholar] [CrossRef]
- Brown, S.G.; Snyder, J.L.; McCarthy, M.C.; Pavlovic, N.; D’Andrea, S.; Hanson, J.; Sullivan, A.P.; Hafner, H.R. Assessment of ambient air toxics and wood smoke pollution among communities in Sacramento County. 2019; In preperation for submission. [Google Scholar]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.G.; Kingham, S.; Pearce, J.; Sturman, A.P. A review of intraurban variations in particulate air pollution: Implications for epidemiological research. Atmos. Environ. 2005, 39, 6444–6462. [Google Scholar] [CrossRef]
- Tilgner, A.; Schöne, L.; Bräuer, P.; van Pinxteren, D.; Hoffmann, E.; Spindler, G.; Styler, S.A.; Mertes, S.; Birmili, W.; Otto, R.; et al. Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010. Atmos. Chem. Phys. 2014, 14, 9105–9128. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hopke, P.K.; Utell, M.J. Urban-scale spatial-temporal variability of black carbon and winter residential wood combustion particles. Aerosol Air Qual. Res. 2011, 11, 473–481. [Google Scholar] [CrossRef]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. 3-Year Quality Assurance Report for Calendar Years 2011, 2012, and 2013: PM2.5 Ambient Air Monitoring Program; U.S. Environmental Protection Agency: Washington, DC, USA, March 2015.
- Pitchford, M.; Malm, W.; Schichtel, B.; Kumar, N.; Lowenthal, D.; Hand, J. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. J. Air Waste Manag. Assoc. 2007, 57, 1326–1336. [Google Scholar] [CrossRef]
- Castellani, B.; Morini, E.; Filipponi, M.; Nicolini, A.; Palombo, M.; Cotana, F.; Rossi, F. Comparative analysis of monitoring devices for particulate content in exhaust gases. Sustainability 2014, 6, 4287–4307. [Google Scholar] [CrossRef]
- Castellani, F.; Astolfi, D.; Mana, M.; Burlando, M.; Meißner, C.; Piccioni, E. Wind power forecasting techniques in complex terrain: ANN vs. ANN-CFD hybrid approach. J. Phys. Conf. Ser. 2016, 753, 082002. [Google Scholar] [CrossRef]
Pre-Study | Post-Study | Correction Factor | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AirBeam Name | N (hours of valid data) | R2 vs. AirBeam Means | RMSE vs. AirBeam Means (μg/m3) | Slope of regression | Intercept of regression (μg/m3) | N (hours of valid data) | R2 vs. AirBeam Means | RMSE vs. AirBeam Means (μg/m3) | Slope | Intercept (μg/m3) | Slope: Average slope | Intercept: Average Intercept (μg/m3) |
13th Ave | 47 | 0.99 | 0.38 | 0.91 | 0.03 | 470 | 0.99 | 0.69 | 0.96 | −0.19 | 0.94 | −0.08 |
24th Ave | 47 | 0.99 | 0.47 | 0.93 | −0.53 | 469 | 0.99 | 0.70 | 0.96 | −0.49 | 0.94 | −0.51 |
64th St | 152 | 0.99 | 0.92 | 1.01 | 0.93 | 467 | 0.99 | 0.53 | 1.06 | 0.09 | 1.03 | 0.51 |
ARB T St 2 | 146 | 0.99 | 1.61 | 0.81 | −0.15 | 467 | 0.99 | 1.02 | 0.75 | 0.07 | 0.78 | −0.04 |
ARB T St 3 | 150 | 0.99 | 1.11 | 0.95 | 1.19 | 467 | 0.99 | 0.26 | 1.02 | 0.15 | 0.98 | 0.67 |
Alderwood | 150 | 0.99 | 1.23 | 0.88 | 1.51 | 465 | 0.99 | 0.34 | 0.95 | 0.09 | 0.92 | 0.80 |
Coroval | 138 | 0.99 | 0.92 | 1.15 | 0.16 | 378 | 0.99 | 0.58 | 1.26 | −0.70 | 1.20 | −0.27 |
Del Paso 2 | 152 | 0.99 | 1.51 | 0.80 | 2.64 | 465 | 0.99 | 1.09 | 0.87 | 1.37 | 0.83 | 2.00 |
Del Paso 3 | 152 | 0.99 | 0.81 | 1.10 | −0.53 | 468 | 0.99 | 0.59 | 1.19 | −0.78 | 1.15 | −0.66 |
Darwin St | 88 | 0.99 | 0.82 | 0.99 | 0.55 | 466 | 0.99 | 0.36 | 1.04 | −0.22 | 1.01 | 0.16 |
Henrietta Dr | 47 | 0.99 | 0.60 | 1.55 | −1.17 | 291 | 0.99 | 0.59 | 1.73 | −0.51 | 1.64 | −0.84 |
Socorro Way | 88 | 0.99 | 0.88 | 0.96 | 0.74 | 464 | 0.99 | 0.42 | 1.00 | −0.22 | 0.98 | 0.26 |
Tristan Cir | 138 | 0.98 | 2.55 | 0.97 | −2.95 | 466 | 0.98 | 1.52 | 0.94 | −1.00 | 0.95 | −1.98 |
Wyman | 47 | 0.99 | 0.88 | 1.10 | 1.17 | 467 | 0.99 | 1.14 | 1.07 | 1.24 | 1.08 | 1.21 |
79th St | 62 | 0.99 | 0.69 | 0.93 | −0.39 | 466 | 0.99 | 0.65 | 0.84 | −0.71 | 0.89 | −0.55 |
ARB T St | 146 | 0.99 | 0.87 | 1.13 | −1.67 | 392 | 0.99 | 0.43 | 1.06 | −0.34 | 1.10 | −1.01 |
Del Paso | 152 | 0.99 | 1.17 | 1.13 | 0.09 | 150 | 0.99 | 0.43 | 1.06 | 0.44 | 1.13 | 0.09 |
Hermosa St | 47 | 0.99 | 0.74 | 0.85 | −0.30 | 291 | 0.99 | 0.55 | 0.83 | −0.16 | 0.85 | −0.30 |
T St Tier 3 | 152 | 0.98 | 2.45 | 1.08 | −3.20 | 291 | 0.99 | 0.49 | 0.97 | −0.30 | 1.08 | −3.20 |
Variables of Regression | Hourly BAM vs. AirBeam: Adjusted R2 | Daily Average BAM vs. AirBeam: Adjusted R2 | Daily FRM vs. AirBeam: Adjusted R2 | Hourly BAM vs. AirBeam: Adjusted R2 | Daily Average BAM vs. AirBeam: Adjusted R2 |
---|---|---|---|---|---|
Monitoring Site | Del Paso Manor | Del Paso Manor | Del Paso Manor | T Street | T Street |
Initial R2 | 0.601 | 0.573 | 0.716 | 0.684 | 0.746 |
REG + Temp | 0.604 | 0.596 | 0.738 | 0.686 | 0.747 |
REG + Dew | 0.623 | 0.641 | 0.767 | 0.706 | 0.776 |
REG + RH | 0.617 | 0.647 | 0.759 | 0.703 | 0.800 |
REG + WS | 0.609 | 0.567 | 0.716 | 0.686 | 0.758 |
REG + Temp + Dew + RH + WS | 0.648 | 0.651 | 0.762 | 0.715 | 0.804 |
REG + quadratic (Temp, Dew, RH, WS) | 0.732 | 0.830 | 0.883 | 0.867 | 0.932 |
Distances | Community | Darwin | Alder | Del Paso | Wyman | Coroval | Socorro | 24th Ave | Henrietta | Hermosa | Tristan Cir | ARB T St | Tst Tier 3 | 13th Ave | 64th St. | 79th St. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Darwin | Arden | 0.0 | ||||||||||||||
Alder | Del Paso | 4.8 | 0.0 | |||||||||||||
Del Paso | Del Paso | 4.4 | 0.9 | 0.0 | ||||||||||||
Wyman | Del Paso | 5.3 | 1.9 | 1.2 | 0.0 | |||||||||||
Coroval | South Natomas | 8.4 | 13.3 | 12.8 | 13.5 | 0.0 | ||||||||||
Socorro | South Natomas | 6.1 | 10.9 | 10.5 | 11.1 | 2.4 | 0.0 | |||||||||
24th Ave | South Sacramento | 8.1 | 11.6 | 11.7 | 12.8 | 7.5 | 6.9 | 0.0 | ||||||||
Henrietta | South Sacramento | 15.7 | 17.9 | 18.3 | 19.5 | 15.2 | 15.2 | 8.3 | 0.0 | |||||||
Hermosa | South Sacramento | 14.3 | 15.7 | 16.2 | 17.4 | 15.6 | 15.1 | 8.2 | 3.3 | 0.0 | ||||||
Tristan | South Sacramento | 15.0 | 15.8 | 16.4 | 17.6 | 17.0 | 16.3 | 9.5 | 4.7 | 1.7 | 0.0 | |||||
ARB T St | T St | 8.2 | 12.2 | 12.1 | 13.2 | 6.1 | 5.9 | 1.5 | 9.3 | 9.5 | 10.9 | 0.0 | ||||
TstTier 3 | T St | 8.9 | 13.1 | 13.0 | 14.0 | 5.6 | 5.8 | 2.5 | 9.7 | 10.2 | 11.7 | 1.1 | 0.0 | |||
13th Ave | Tahoe Park | 8.2 | 9.8 | 10.2 | 11.5 | 11.1 | 9.9 | 4.3 | 8.0 | 6.2 | 6.9 | 5.7 | 6.8 | 0.0 | ||
64th St. | Tahoe Park | 9.1 | 10.2 | 10.7 | 12.0 | 12.5 | 11.2 | 5.5 | 7.8 | 5.5 | 5.9 | 7.0 | 8.1 | 1.3 | 0.0 | |
79th St. | Tahoe Park | 8.8 | 9.2 | 9.8 | 11.0 | 13.2 | 11.7 | 6.7 | 9.1 | 6.6 | 6.6 | 8.1 | 9.2 | 2.4 | 1.5 | 0.0 |
R2 | Community | Darwin | Alder | Del Paso | Wyman | Coroval | Socorro Way | 24th Ave | Henrietta | Hermosa | Tristan Cir | ARB T St | Tst Tier 3 | 13th Ave | 64th St. | 79th St. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Darwin | Arden | 1 | 0.99 | 0.89 | 0.98 | 0.98 | 0.92 | 0.9 | 0.83 | 0.84 | 0.9 | 0.85 | 0.81 | 0.94 | 0.94 | 0.91 |
Alder | Del Paso | 0.96 | 1 | 0.88 | 0.98 | 0.98 | 0.92 | 0.9 | 0.83 | 0.85 | 0.9 | 0.85 | 0.81 | 0.95 | 0.95 | 0.92 |
Del Paso | Del Paso | 0.73 | 0.72 | 1 | 0.87 | 0.93 | 0.97 | 0.97 | 0.91 | 0.94 | 0.93 | 0.95 | 0.96 | 0.93 | 0.94 | 0.91 |
Wyman | Del Paso | 0.94 | 0.94 | 0.71 | 1 | 0.97 | 0.91 | 0.89 | 0.83 | 0.83 | 0.9 | 0.85 | 0.81 | 0.93 | 0.93 | 0.9 |
Coroval | South Natomas | 0.93 | 0.92 | 0.82 | 0.9 | 1 | 0.97 | 0.94 | 0.89 | 0.88 | 0.92 | 0.88 | 0.86 | 0.96 | 0.96 | 0.92 |
Socorro | South Natomas | 0.81 | 0.81 | 0.92 | 0.79 | 0.89 | 1 | 0.96 | 0.91 | 0.92 | 0.93 | 0.91 | 0.91 | 0.95 | 0.95 | 0.89 |
24th Ave | South Sacramento | 0.79 | 0.8 | 0.89 | 0.77 | 0.86 | 0.89 | 1 | 0.94 | 0.97 | 0.98 | 0.97 | 0.96 | 0.97 | 0.98 | 0.94 |
Henrietta | South Sacramento | 0.74 | 0.74 | 0.84 | 0.73 | 0.81 | 0.84 | 0.89 | 1 | 0.9 | 0.9 | 0.91 | 0.92 | 0.9 | 0.92 | 0.87 |
Hermosa | South Sacramento | 0.71 | 0.73 | 0.83 | 0.71 | 0.78 | 0.81 | 0.91 | 0.81 | 1 | 0.96 | 0.96 | 0.96 | 0.93 | 0.94 | 0.92 |
Tristan | South Sacramento | 0.78 | 0.8 | 0.79 | 0.77 | 0.81 | 0.81 | 0.91 | 0.81 | 0.86 | 1 | 0.96 | 0.95 | 0.97 | 0.97 | 0.95 |
ARB T St | T St | 0.72 | 0.72 | 0.9 | 0.7 | 0.8 | 0.85 | 0.94 | 0.85 | 0.9 | 0.87 | 1 | 0.98 | 0.94 | 0.95 | 0.93 |
TstTier 3 | T St | 0.68 | 0.69 | 0.88 | 0.67 | 0.77 | 0.83 | 0.9 | 0.84 | 0.87 | 0.84 | 0.95 | 1 | 0.91 | 0.92 | 0.92 |
13th Ave | Tahoe Park | 0.87 | 0.88 | 0.82 | 0.84 | 0.9 | 0.87 | 0.9 | 0.83 | 0.83 | 0.89 | 0.84 | 0.79 | 1 | 0.99 | 0.96 |
64th St. | Tahoe Park | 0.87 | 0.88 | 0.82 | 0.85 | 0.9 | 0.86 | 0.92 | 0.84 | 0.86 | 0.9 | 0.86 | 0.83 | 0.95 | 1 | 0.97 |
79th St. | Tahoe Park | 0.82 | 0.84 | 0.76 | 0.79 | 0.84 | 0.77 | 0.86 | 0.75 | 0.83 | 0.87 | 0.82 | 0.8 | 0.91 | 0.94 | 1 |
COD | Community | Darwin | Alder | Del Paso | Wyman | Coroval | Socorro Way | 24th Ave | Henrietta | Hermosa | Tristan Cir | ARB T | Tst Tier 3 | 13th Ave | 64th St. | 79th St. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Darwin | Arden | 0 | 0.07 | 0.07 | 0.08 | 0.16 | 0.09 | 0.11 | 0.11 | 0.2 | 0.14 | 0.18 | 0.2 | 0.11 | 0.08 | 0.12 |
Alder | Del Paso | 0.16 | 0 | 0.06 | 0.09 | 0.19 | 0.12 | 0.15 | 0.15 | 0.21 | 0.15 | 0.21 | 0.22 | 0.13 | 0.09 | 0.13 |
Del Paso | Del Paso | 0.14 | 0.14 | 0 | 0.08 | 0.18 | 0.12 | 0.14 | 0.14 | 0.2 | 0.13 | 0.2 | 0.21 | 0.11 | 0.11 | 0.13 |
Wyman | Del Paso | 0.18 | 0.15 | 0.17 | 0 | 0.18 | 0.14 | 0.14 | 0.14 | 0.2 | 0.14 | 0.2 | 0.2 | 0.13 | 0.12 | 0.13 |
Coroval | South Natomas | 0.23 | 0.28 | 0.25 | 0.3 | 0 | 0.11 | 0.1 | 0.13 | 0.16 | 0.15 | 0.11 | 0.12 | 0.16 | 0.14 | 0.14 |
Socorro | South Natomas | 0.17 | 0.23 | 0.21 | 0.25 | 0.16 | 0 | 0.09 | 0.11 | 0.18 | 0.15 | 0.15 | 0.17 | 0.12 | 0.1 | 0.13 |
24th Ave | South Sacramento | 0.18 | 0.24 | 0.21 | 0.26 | 0.18 | 0.17 | 0 | 0.08 | 0.14 | 0.12 | 0.09 | 0.13 | 0.12 | 0.09 | 0.09 |
Henrietta | South Sacramento | 0.21 | 0.26 | 0.23 | 0.27 | 0.2 | 0.19 | 0.14 | 0 | 0.16 | 0.13 | 0.13 | 0.15 | 0.13 | 0.11 | 0.11 |
Hermosa | South Sacramento | 0.24 | 0.28 | 0.25 | 0.29 | 0.22 | 0.23 | 0.17 | 0.2 | 0 | 0.12 | 0.15 | 0.13 | 0.18 | 0.18 | 0.15 |
Tristan | South Sacramento | 0.23 | 0.27 | 0.22 | 0.27 | 0.24 | 0.24 | 0.17 | 0.2 | 0.2 | 0 | 0.16 | 0.13 | 0.11 | 0.14 | 0.11 |
ARBT | T St | 0.23 | 0.27 | 0.25 | 0.29 | 0.17 | 0.19 | 0.14 | 0.19 | 0.19 | 0.22 | 0 | 0.12 | 0.18 | 0.14 | 0.14 |
TstTier 3 | T St | 0.28 | 0.33 | 0.28 | 0.33 | 0.22 | 0.27 | 0.2 | 0.23 | 0.23 | 0.18 | 0.21 | 0 | 0.17 | 0.19 | 0.13 |
13th Ave | Tahoe Park | 0.21 | 0.23 | 0.22 | 0.26 | 0.25 | 0.22 | 0.2 | 0.23 | 0.25 | 0.23 | 0.25 | 0.28 | 0 | 0.11 | 0.11 |
64th St. | Tahoe Park | 0.15 | 0.18 | 0.19 | 0.22 | 0.23 | 0.17 | 0.16 | 0.19 | 0.22 | 0.22 | 0.2 | 0.29 | 0.19 | 0 | 0.09 |
79th St. | Tahoe Park | 0.18 | 0.21 | 0.19 | 0.22 | 0.23 | 0.21 | 0.17 | 0.21 | 0.2 | 0.17 | 0.21 | 0.21 | 0.16 | 0.14 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, A.; Brown, S.G.; McCarthy, M.C.; Pavlovic, N.R.; Stanton, L.G.; Snyder, J.L.; D’Andrea, S.; Hafner, H.R. Measuring Spatial and Temporal PM2.5 Variations in Sacramento, California, Communities Using a Network of Low-Cost Sensors. Sensors 2019, 19, 4701. https://doi.org/10.3390/s19214701
Mukherjee A, Brown SG, McCarthy MC, Pavlovic NR, Stanton LG, Snyder JL, D’Andrea S, Hafner HR. Measuring Spatial and Temporal PM2.5 Variations in Sacramento, California, Communities Using a Network of Low-Cost Sensors. Sensors. 2019; 19(21):4701. https://doi.org/10.3390/s19214701
Chicago/Turabian StyleMukherjee, Anondo, Steven G. Brown, Michael C. McCarthy, Nathan R. Pavlovic, Levi G. Stanton, Janice Lam Snyder, Stephen D’Andrea, and Hilary R. Hafner. 2019. "Measuring Spatial and Temporal PM2.5 Variations in Sacramento, California, Communities Using a Network of Low-Cost Sensors" Sensors 19, no. 21: 4701. https://doi.org/10.3390/s19214701
APA StyleMukherjee, A., Brown, S. G., McCarthy, M. C., Pavlovic, N. R., Stanton, L. G., Snyder, J. L., D’Andrea, S., & Hafner, H. R. (2019). Measuring Spatial and Temporal PM2.5 Variations in Sacramento, California, Communities Using a Network of Low-Cost Sensors. Sensors, 19(21), 4701. https://doi.org/10.3390/s19214701