A Minimally Invasive Microsensor Specially Designed for Simultaneous Dissolved Oxygen and pH Biofilm Profiling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of a Multi-Analyte Microsensor
2.2. Electrode Preparation
2.3. Electrode Protection
2.4. DO and pH Monitoring
2.5. Biofilm Profiling Using Microsensors
3. Results and Discussion
3.1. IrOx Electrodeposition on Pt Electrodes
3.2. DO and pH Microsensor Response Characterization
3.3. Stability of Long-Term Microsensor Response
3.4. Validation of the Microsensor Operation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Delhoménie, M.-C.; Heitz, M. Biofiltration of air: A review. Crit. Rev. Biotechnol. 2005, 25, 53–72. [Google Scholar] [CrossRef]
- Montebello, A.M.; Fernández, M.; Almenglo, F.; Ramírez, M.; Cantero, D.; Baeza, M.; Gabriel, D. Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chem. Eng. J. 2012, 200–202, 237–246. [Google Scholar] [CrossRef]
- Dorado, A.D.; Baeza, J.A.; Lafuente, J.; Gabriel, D.; Gamisans, X. Biomass accumulation in a biofilter treating toluene at high loads—Part 1: Experimental performance from inoculation to clogging. Chem. Eng. J. 2012, 209, 661–669. [Google Scholar] [CrossRef]
- Santos, A.; Guimerà, X.; Dorado, A.D.; Gamisans, X.; Gabriel, D. Conversion of chemical scrubbers to biotrickling filters for VOCs and H2S treatment at low contact times. Appl. Microbiol. Biotechnol. 2014, 99, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, D.; Cox, H.H.J.; Deshusses, M.A. Conversion of Full-Scale Wet Scrubbers to Biotrickling Filters for H2S Control at Publicly Owned Treatment Works. J. Environ. Eng. 2004, 130, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, G.; Dorado, A.D.; Fortuny, M.; Gabriel, D.; Gamisans, X. Biotrickling filters for biogas sweetening: Oxygen transfer improvement for a reliable operation. Process Saf. Environ. Prot. 2014, 92, 261–268. [Google Scholar] [CrossRef] [Green Version]
- López, L.R.; Bezerra, T.; Mora, M.; Lafuente, J.; Gabriel, D. Influence of trickling liquid velocity and flow pattern in the improvement of oxygen transport in aerobic biotrickling filters for biogas desulfurization. J. Chem. Technol. Biotechnol. 2015, 91, 1031–1039. [Google Scholar] [CrossRef]
- Santegoeds, C.M.; Schramm, A.; De Beer, D. Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation 1998, 9, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Revsbech, N.P. Analysis of microbial communities with electrochemical microsensors and microscale biosensors. Methods Enzymol. 2005, 397, 147–166. [Google Scholar] [PubMed]
- Klimant, I.; Meyer, V.; Kuhl, M. Fiberoptic oxygen microsensors, a new tool in aquatic biology. Limnol. Oceanogr. 1995, 40, 1159–1165. [Google Scholar] [CrossRef]
- Chu, C.S.; Lin, C.A. Optical fiber sensor for dual sensing of temperature and oxygen based on PtTFPP/CF embedded in sol-gel matrix. Sens. Actuators B Chem. 2014, 195, 259–265. [Google Scholar] [CrossRef]
- de la Rosa, C.; Yu, T. Development of an automation system to evaluate the three-dimensional oxygen distribution in wastewater biofilms using microsensors. Sens. Actuators B Chem. 2006, 113, 47–54. [Google Scholar] [CrossRef]
- Wu, C.-C.; Yasukawa, T.; Shiku, H.; Matsue, T. Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sens. Actuators B Chem. 2005, 110, 342–349. [Google Scholar] [CrossRef]
- Lee, W.H.; Lee, J.-H.; Choi, W.-H.; Hosni, A.A.; Papautsky, I.; Bishop, P.L. Needle-type environmental microsensors: Design, construction and uses of microelectrodes and multi-analyte MEMS sensor arrays. Meas. Sci. Technol. 2011, 22, 1–22. [Google Scholar] [CrossRef]
- Moya, A.; Guimerà, X.; del Campo, F.J.; Prats-Alfonso, E.; Dorado, A.D.; Baeza, M.; Villa, R.; Gabriel, D.; Gamisans, X.; Gabriel, G. Biofilm oxygen profiling using individually addressable disk microelectrodes on a microfabricated needle. Microchim. Acta 2015, 182, 985–993. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Liu, G.; Tian, Y.-C.; Chen, Y.-P.; Yu, H.-Q.; Fang, F. An innovative microelectrode fabricated using photolithography for measuring dissolved oxygen distributions in aerobic granules. Environ. Sci. Technol. 2007, 41, 5447–5452. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lim, T.-S.; Seo, Y.; Bishop, P.L.; Papautsky, I. Needle-type dissolved oxygen microelectrode array sensors for in situ measurements. Sens. Actuators B Chem. 2007, 128, 179–185. [Google Scholar] [CrossRef]
- Prats-Alfonso, E.; Abad, L.; Casañ-Pastor, N.; Gonzalo-Ruiz, J.; Baldrich, E. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples. Biosens. Bioelectron. 2013, 39, 163–169. [Google Scholar] [CrossRef]
- Lee, J.-H.; Seo, Y.; Lim, T.-S.; Bishop, P.L.; Papautsky, I. MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environ. Sci. Technol. 2007, 41, 7857–7863. [Google Scholar] [CrossRef]
- Revsbech, N.-P.; Jörgensen, B.B. Microelectrodes: Their use in microbial ecology. Adv. Microb. Ecol. 1986, 9, 293–352. [Google Scholar]
- Guimerà, X.; Moya, A.; Dorado, A.D.; Villa, R.; Gabriel, D.; Gabriel, G.; Gamisans, X. Biofilm dynamics characterization using a novel DO-MEA sensor: Mass transport and biokinetics. Appl. Microbiol. Biotechnol. 2015, 99, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H. Microfabrication of chemical sensors and biosensors for environmental monitoring. Mater. Sci. Eng. C 2000, 12, 55–61. [Google Scholar] [CrossRef]
- Johnson, R.D.; Gavalas, V.G.; Daunert, S.; Bachas, L.G. Microfluidic ion-sensing devices. Anal. Chim. Acta 2008, 613, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Lete, C.; Lupu, S.; Lakard, B.; Hihn, J.Y.; Del Campo, F.J. Multi-analyte determination of dopamine and catechol at single-walled carbon nanotubes—Conducting polymer—Tyrosinase based electrochemical biosensors. J. Electroanal. Chem. 2015, 744, 53–61. [Google Scholar] [CrossRef]
- Palmisano, F.; Rizzi, R.; Centonze, D.; Zambonin, P.G. Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosens. Bioelectron. 2000, 15, 531–539. [Google Scholar] [CrossRef]
- Akin, M.; Prediger, A.; Yuksel, M.; Höpfner, T.; Demirkol, D.O.; Beutel, S.; Timur, S.; Scheper, T. A new set up for multi-analyte sensing: At-line bio-process monitoring. Biosens. Bioelectron. 2011, 26, 4532–4537. [Google Scholar] [CrossRef]
- Moya, A.; Ortega-Ribera, M.; Guimerà, X.; Sowade, E.; Zea, M.; Illa, X.; Ramon, E.; Villa, R.; Gracia-Sancho, J.; Gabriel, G. Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system. Lab Chip 2018, 18, 2023–2035. [Google Scholar] [CrossRef] [Green Version]
- Tarlov, M.J.; Semancik, S.; Kreider, K.G. Mechanistic and response studies of iridium oxide pH sensors. Sens. Actuators B. Chem. 1990, 1, 293–297. [Google Scholar] [CrossRef]
- Wang, M.; Yao, S.; Madou, M. A long-term stable iridium oxide pH electrode. Sens. Actuators B Chem. 2002, 81, 313–315. [Google Scholar] [CrossRef]
- Bezbaruah, A.N.; Zhang, T.C. Fabrication of anodically electrodeposited iridium oxide film pH microelectrodes for microenvironmental studies. Anal. Chem. 2002, 74, 5726–5733. [Google Scholar] [CrossRef]
- Zea, M.; Moya, A.; Fritsch, M.; Ramon, E.; Villa, R.; Gabriel, G. Enhanced Performance Stability of Iridium Oxide-Based pH Sensors Fabricated on Rough Inkjet-Printed Platinum. ACS Appl. Mater. Interfaces 2019, 11, 15160–15169. [Google Scholar] [CrossRef]
- Moya, A.; Illa, X.; Gimenez, I.; Lazo-Fernandez, Y.; Villa, R.; Errachid, A.; Gabriel, G. Miniaturized multiparametric flexible platform for the simultaneous monitoring of ionic: Application in real urine. Sens. Actuators B Chem. 2018, 255, 2861–2870. [Google Scholar] [CrossRef] [Green Version]
- Fischer, L.M.; Tenje, M.; Heiskanen, A.R.; Masuda, N.; Castillo, J.; Bentien, A.; Émneus, J.; Jakobsen, M.H.; Boisen, A. Gold cleaning methods for electrochemical detection applications. Microelectron. Eng. 2009, 86, 1282–1285. [Google Scholar] [CrossRef]
- Cruz, A.M.; Abad, L.; Carretero, N.M.; Moral-Vico, J.; Fraxedas, J.; Lozano, P.; Subías, G.; Padial, V.; Carballo, M.; Collazos-Castro, J.E.; et al. Iridium oxohydroxide, a significant member in the family of iridium oxides. Stoichiometry, characterization, and implications in bioelectrodes. J. Phys. Chem. C 2012, 116, 5155–5168. [Google Scholar] [CrossRef]
- Paliteiro, C. (100)-Type behaviour of polycrystalline gold towards O2 reduction. Electrochim. Acta 1994, 39, 1633–1639. [Google Scholar] [CrossRef]
- Wolff, C.M.; Mottola, H.A. Enzymic substrate determination in closed flow-through systems by sample injection and amperometric monitoring of dissolved oxygen levels. Anal. Chem. 1978, 50, 94–98. [Google Scholar] [CrossRef]
- Fortuny, M.; Baeza, J.A.; Gamisans, X.; Casas, C.; Lafuente, J.; Deshusses, M.A.; Gabriel, D. Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 2008, 71, 10–17. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Fang, F.; Xu, J.; Sheng, G.-P.; Yu, H.-Q.; Liu, G.; Tian, Y.-C. Measurement of Dissolved Oxygen and Its Diffusivity in Aerobic Granules Using a Microelectrode Array. Environ. Sci. Technol. 2009, 43, 1160–1165. [Google Scholar] [CrossRef]
- Ges, I.A.; Ivanov, B.L.; Schaffer, D.K.; Lima, E.A.; Werdich, A.A.; Baudenbacher, F.J. Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens. Bioelectron. 2005, 21, 248–256. [Google Scholar] [CrossRef]
- Marzouk, S.A.M.; Ufer, S.; Buck, R.P.; Johnson, T.A.; Dunlap, L.A.; Cascio, W.E. Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia. Anal. Chem. 1998, 70, 5054–5061. [Google Scholar] [CrossRef]
- del Campo, F.J.; Ordeig, O.; Vigués, N.; Godino, N.; Mas, J.; Muñoz, F.X. Continuous measurement of acute toxicity in water using a solid state microrespirometer. Sens. Actuators B Chem. 2007, 126, 515–521. [Google Scholar] [CrossRef]
- Guimerà, X.; Dorado, A.D.; Bonsfills, A.; Gabriel, G.; Gabriel, D.; Gamisans, X. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements. Water Res. 2016, 102, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.; López, L.R.; Lafuente, J.; Pérez, J.; Kleerebezem, R.; van Loosdrecht, M.C.M.; Gamisans, X.; Gabriel, D. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass. Water Res. 2016, 89, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Wäsche, S.; Horn, H.; Hempel, D.C. Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Res. 2002, 36, 4775–4784. [Google Scholar] [CrossRef]
- Mora, M.; López, L.R.; Gamisans, X.; Gabriel, D. Coupling respirometry and titrimetry for the characterization of the biological activity of a SO-NR consortium. Chem. Eng. J. 2014, 251, 111–115. [Google Scholar] [CrossRef]
LD | LQ | |
---|---|---|
DO monitoring [mg·L−1] | 0.05 ± 0.01 | 0.17 ± 0.02 |
pH monitoring [pH units] | 0.05 | 0.08 |
DO Detection Sensitivity [nA·mg−1·L] | pH Detection Sensitivity [mV·pH−1] | ||
---|---|---|---|
Bare Needle | 2.06 ± 0.08 | −74.2 ± 0.7 | |
Coated Needle | 0 h | 1.73 ± 0.12 | −60.5 ± 0.6 |
150 h | 1.78 ± 0.14 | −67.7 ± 0.6 | |
300 h | 1.62 ± 0.08 | −62.6 ± 0.6 | |
850 h | 1.64 ± 0.16 | −63.5 ± 0.6 | |
1000 h | 1.67 ± 0.17 | −62.9 ± 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimerà, X.; Moya, A.; Dorado, A.D.; Illa, X.; Villa, R.; Gabriel, D.; Gamisans, X.; Gabriel, G. A Minimally Invasive Microsensor Specially Designed for Simultaneous Dissolved Oxygen and pH Biofilm Profiling. Sensors 2019, 19, 4747. https://doi.org/10.3390/s19214747
Guimerà X, Moya A, Dorado AD, Illa X, Villa R, Gabriel D, Gamisans X, Gabriel G. A Minimally Invasive Microsensor Specially Designed for Simultaneous Dissolved Oxygen and pH Biofilm Profiling. Sensors. 2019; 19(21):4747. https://doi.org/10.3390/s19214747
Chicago/Turabian StyleGuimerà, Xavier, Ana Moya, Antonio David Dorado, Xavi Illa, Rosa Villa, David Gabriel, Xavier Gamisans, and Gemma Gabriel. 2019. "A Minimally Invasive Microsensor Specially Designed for Simultaneous Dissolved Oxygen and pH Biofilm Profiling" Sensors 19, no. 21: 4747. https://doi.org/10.3390/s19214747
APA StyleGuimerà, X., Moya, A., Dorado, A. D., Illa, X., Villa, R., Gabriel, D., Gamisans, X., & Gabriel, G. (2019). A Minimally Invasive Microsensor Specially Designed for Simultaneous Dissolved Oxygen and pH Biofilm Profiling. Sensors, 19(21), 4747. https://doi.org/10.3390/s19214747