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Abstract: This paper presents a novel attitude control design, which combines L1 adaptive control
and backstepping control together, for Autonomous Underwater Vehicles (AUVs) in a highly dynamic
and uncertain environment. The Euler angle representation is adopted in this paper to represent the
attitude propagation. Kinematics and dynamics of the attitude are in the strict feedback form, which
leads the backstepping control strategy serving as the baseline controller. Moreover, by bringing fast
and robust adaptation into the backstepping control architecture, our controller is capable of dealing
with time-varying uncertainties from modeling and external disturbances in dynamics. This attitude
controller is proposed for coupled pitch-yaw channels. For inevitable roll excursions, a Lyapunov
function-based optimum linearization method is presented to analyze the stability of the roll angle
in the operation region. Theoretical analysis and simulation results are given to demonstrate the
feasibility of the developed control strategy.

Keywords: autonomous underwater vehicles; adaptive control; backstepping control; attitude control;
stability analysis

1. Introduction

With increasing demands for undersea exploration and exploitation, researches in related fields
have been given a boost, especially the study of autonomous underwater vehicles (AUVs), which is an
undersea system containing its own power and controlling itself while accomplishing a pre-defined
task [1]. A fully autonomous underwater robotics network for various missions with high performance
is in great demand [2]. Thus, the design and control strategies of AUVs have received considerable
attention by researchers.

The attitude control problem is one of the fundamental problems to facilitate the advancement of
autonomous underwater networks. However, the attitude dynamics of AUVs have highly-coupled
nonlinearity with uncertainties from modeling errors and time-varying external disturbances.
Various methods have been proposed for the attitude control. Some work uses feedback controllers
separately for each channel neglecting the coupling among angles, while some handle the problem
directly by nonlinear control approaches, such as sliding-mode-based control [3–6], H∞ tools [7,8]
and others.

In this paper, based on good study of the nonlinear AUV model presented in [9], which is driven
by four water pumps, a precise attitude controller with the combination of backstepping control and
L1 adaptive control is proposed for the yaw and pitch channels. The backstepping approach provides
a recursive method for stabilizing the origin of a system in strict-feedback form [10]. The kinematics
and dynamics of the attitude problem for mobile system with 6-DOF are in strict feedback form,
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which is a good application of backstepping control strategy [11]. In order to handle large time-varying
uncertainties in dynamics, which are from modeling, complicated hydrodynamics, and external
disturbances, we bring the L1 adaptive control theory into the backstepping control architecture.
The key feature of L1 adaptive control is guaranteed robustness in the presence of fast adaptation [12].
It is a modification of model reference adaptive control (MRAC) and was initially motivated by
aerospace applications. With the combination of high gain and low-pass filter, it guarantees fast
adaptation and satisfactory transient response. Theoretical results, analysis details and extensions
can be found in [12–18]. Thus, we chose the L1 backstepping adaptive control architecture to achieve
robust attitude control of AUVs.

Moreover, due to physical design, the AUV could only provide sufficient moments on the pitch
and yaw channels. The transient response analysis for pitch and yaw control is well studied with
inspiration form the works in [11,19]. Unwanted roll excursions are inevitable and dynamically
coupled into yaw and pitch motion [8]. The roll motion can be ambiguous without active roll
stabilization, especially for smaller AUVs which have a relatively small stabilization moment due
to limited vertical distance from the center of gravity to the center of buoyancy. Thus, we introduce
a Lyapunov function-based optimum method to analyze the stability of roll angle in the operation
region. Simulation results are presented to study and improve the design.

The rest of paper is organized as follows: Section 2 briefly introduces the advanced AUV design
presented in [9]. Section 3 presents the nonlinear model and the attitude control. Section 4 introduces
attitude controller design based on L1 backstepping control only considering uncertainties in dynamics.
In Section 5, we provide the proof of guaranteed transient response analysis for the coupled pitch-yaw
channels. The stability of the roll angle is also discussed here. The simulation results are presented in
Section 6. Section 7 gives the conclusion and future work.

2. AUV Mechanical Design

The attitude controller design is based on a full-scale underwater platform depicted in Figure 1,
which utilizes a thrust propulsion system powered by four low-cost submersible pumps forming four
water-jet thrusters with reducing end nozzles [9]. This provides an optimal thrust to flow rate ratio.
By differentiating the power combinations of four motors, the force and moments needed for the
propulsion and maneuvering are generated. Figure 1 shows the working mode of AUV, in which the
force vector points to the back and two degree of freedoms (DOFs) of the moment to manipulate the
pitch and yaw angles. The manufacturing cost is low compared to the deep-water design which would
require more control surfaces.

Figure 1. Mechanical design and propulsion system.
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This AUV is aligned to be neutrally buoyant, which means the gravitational force and buoyant
force are equal to each other. It is also aligned to be naturally stable, which means two of the three
Euler angles, φ and θ, are close to zero when it is at rest. The body coordinate frame O is attached to
the center of mass of the AUV. The x axis points to the head and y axis goes to the right of the AUV.
More modeling details are presented in Appendix A.

3. Problem Formulation and Control Objective

3.1. Kinematics and Dynamics of Attitude

The Euler angle representation is used here to present the attitude of the AUV. Table 1 gives some
of the definitions and notation in this paper.

Table 1. Definitions and Notation.

Symbol Definition Symbol Definition

φ Roll angle σs Uncertainty in pitch and yaw channel
θ Pitch angle σ̂ Estimation of σs
ψ Yaw angle ηb Moment command from baseline controller
wx Roll rate ηa Moment command from adaptive controller
wy Pitch rate Ωs

[
θ ψ

]T

wz Yaw rate Ωd
[

θd ψd
]T

s∗ sin(∗) ws
[

xy wz
]T

c∗ cos(∗) J Moment of inertia of the AUV
t∗ tan(∗) K J−1

A standard notation for attitude propagation equations and attitude dynamics is adopted here,[
Ω̇
Jẇ

]
=

[
Ψ(Ω)w

ηb − w× Jw

]
. (1)

The first line of Equation (1) describes the kinematics of attitude angles, where Ω =
[

φ θ ψ
]T

and w =
[

wx wy wz

]T
are state vectors of attitude angles and angle rates expressed in the body

frame. φ, θ and ψ denote roll, pitch and yaw angle, while wx, wy and wz are angle rates with respect to
x, y and z axes of body frame, and

Ψ(Ω) =

 1 sφtθ cφtθ
0 cφ −sφ

0 sφ/cθ cφ/cθ

 . (2)

The second line of Equation (1) describes the dynamics of attitude angles, where the diagonal
matrix J ∈ R3 is moment of inertia of the AUV, and ηb ∈ R3 is the overall moment applied on the AUV
expressed in body frame, which consists of buoyancy–gravity stabilization moment τG, control input η

and fluid dynamic moment τD, shown as follows,

ηb = τG + η + τD . (3)

As mentioned before, this could offer two DOFs of moment to manipulate the pitch and yaw
angle. Thus, the control signal is η = [0 ηy ηz]T .

Equation (1) summarizes the overall attitude model of the AUV. The modeling details could be
found in [9].
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This paper only considers the uncertainties in dynamics. Thus, compared to Equation (1),
the attitude dynamics can be represented as follows,

ẇ = H̄(w) + H̄δ(w) + (K + Kδ)η
b + Kσout, (4)

where H̄(w) = −J−1(w× Jw) and K = J−1. The uncertainties, H̄δ(w) and Kδ, are due to the imprecise
knowledge of J. σout represents disturbance from environment. This dynamic equation could be

ẇ = H̄(w) + K
(

K−1H̄δ(w) + K−1Kδηb + ηb + σout

)
. (5)

Expanding the second ηb in (5), let H(w) = H̄(w) + τG + τD, and defining σ = K−1Kδηb +

K−1H̄δ(w) + σout to represent the overall uncertainties, we obtain

ẇ = H(w) + K(η + σ). (6)

3.2. The Trimmed Model for Pitch and Yaw Dynamics

In this section, the original model in Section 3.1 is trimmed for controller design and
performance analysis.

Define

Is =

[
0 1 0
0 0 1

]
; (7)

the kinematics Euler angle equations of the pitch and yaw channels are

[
θ̇

ψ̇

]
=

[
cφ −sφ

sφ/cθ cφ/cθ

] [
wy

wz

]
,[

ẇy

ẇz

]
= Isẇ = IsH(w) + IsK(η + σ). (8)

Define ηs =

[
τy

τz

]
as the control signal. To further simply Equation (8), we introduce the

following definitions.

ws = Isw =

[
wy

wz

]
, Ωs = IsΩ =

[
θ

ψ

]
, σs = Isσ,

Ks = IsKIT
s , Js = Is J IT

s ,

Ψs(Ω) = IsΨ(Ω)IT
s =

[
cφ −sφ

sφ/cθ cφ/cθ

]
,

Hs(w) = IsH(w) =

[
−J−1

22 wxwz(J11 − J33)

−J−1
33 wxwy(J22 − J11)

]
,

where J11, J22 and J33 are the diagonal elements of J.
Thus, Equation (8) is

Ω̇s = Ψs(Ω)ws

ẇs = Hs(w) + Ks(ηs + σs). (9)
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All the uncertainties have been added together into σs ∈ R, which is subject to the
following assumptions:

Assumption 1. There exist constants L > 0 and L0 > 0 such that the following inequalities hold uniformly in
t ≥ 0, ∀w1, w2 ∈ R3 and ∀ws1 , ws2 ∈ R2:

‖σ(t, w1)− σ(t, w2)‖∞ ≤ L||w1 − w2||∞ + L0 (10)

Assumption 2. There exist constants L1 > 0, L2 > 0 and L3 > 0 such that the following inequalities hold
uniformly in t ≥ 0:

‖σ̇(t)‖∞ ≤ L1‖ẇ(t)‖∞ + L2‖w(t)‖∞ + L3 (11)

Assumption 3. The desired command Ωd, Ω̇d and Ω̈d ∈ R2 are bounded. Ω and ω exist in Ω̄ and w̄, which
are compact subsets of R3, where Ψ(Ω) and H(w) are continuous and bounded, and so are Ωs and ωs.

3.3. Control Objective

The control objective is to design an adaptive attitude controller, which could let attitude angles
to track the desired commands Ωd. In this paper, the goal is to let the pitch and yaw angles, Ωs,
always track the desired values, Ωd. Meanwhile, the roll angle is self-stable. The self-stability of the
roll angle will be proved in the analysis part.

4. Controller Design

4.1. State Predictor

The state predictor is defined as follows,

˙̂ws
∆
= Hs(w) + Ks(ηs + σ̂s) + Ame, (12)

where e ∆
=ŵs − ws is the prediction error, and Am is a Hurwitz matrix, which defines the desired

convergence of e. Using σ̃s = σ̂s − σs, the prediction error is,

ė = Ame + K(σ̂s − σs) . (13)

The Laplace transform of it is,

e(s) = (sI − Am)
−1Kσ̃s . (14)

4.2. Adaptive Law

Setting the sampling time of the adaptation law by Ts, and the prediction error by e, a piecewise
constant adaptation law is given by

σ̂(iTs) = Jsφ(Ts)u(iTs), ∀t ∈ [iTs, (i + 1)Ts], (15)

where φ(Ts) = Am(I − exp(AmTs))−1 and u(iTs) = exp(AmTs)e(iTs) for all i = 1, 2, 3, ....

4.3. L1 Backstepping Euler Angle Controller

Define ηs = [ηy ηz]T , and use ηb ∈ R2 and ηa ∈ R2 to represent control laws coming from the
backstepping loop and L1 adaptive loop respectively. Thus,
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ηs = ηb + ηa, (16)

where

ηb = Js[Am2(ws − wd)− Hs(w)−ΨT
s (Ω)(Ωs −Ωd)] (17)

ηa = −C(s)(σ̂s − ηẇd) (18)

ηẇd = Jswd (19)

wsd = Ψ−1(Am1(Ωs −Ωd) + Ω̇d) (20)

Am1, Am2 are diagonal Hurwitz matrices. K1 is a positive gain and D1(s) is a strictly proper
transfer function, the value of which ensure C(s) = K1D1

1+K1D1
has unit DC gain.

For the entire system in (1), the overall control law would be

η =

[
0
ηs

]
. (21)

5. Analysis

The performance analysis of this paper has two parts, namely, self-stability analysis in the roll
angle channel and response performance analysis in the pitch-yaw angle channels. The roll angle
channel relies on the self stabilization mechanism of itself with assumptions of bounded states in the
pitch-yaw channels. Then, the pitch-yaw angle channels stability based on the bounded states in the
roll channel is analyzed. The overall stability of the system will be discussed at the end.

5.1. Roll Angle Channel Self-Stability Analysis

Expanding Equation (6), the dynamics of the roll angle is described by the following equations,

φ̇ = wx +
[

sθtθ cφtθ
] [ wy

wz

]
(22)

ẇx = −J−1
11 GWd sin φ− 1

2
Cxsign(wx)w2

x − J−1
11 wywz(J33 − J22) + σ1, (23)

where σ1 =
[

1 0 0
]

σ, representing the overall uncertainty in the roll channel. The first two
terms in ẇx come from τG and τD, where d is the distance from the center of gravity and the center of
buoyancy, and Cx is the damping coefficient.

Define

d1 =
[

sθtθ cφtθ
] [ wy

wz

]
(24)

d2 = J−1
11 wywz(J33 − J22) + σ1, (25)

Equations (22) and (23) can be written as follows,

φ̇ = wx + d1 (26)

ẇx = −J−1
11 GWd sin φ− 1

2
Cxsign(wx)w2

x + d2 . (27)

Consider the linearization model,
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ẋ = Ax + droll , (28)

where x =

[
φ

wx

]
is the state vector, and A =

[
0 1

−g1g2 − 1
2 Cxg3

]
is a Hurwitz matrix. g1 =

J−1
11 GWd is a positive constant. g2 and g3 are positive linearization coefficients. droll ∈ R2 is the

uncertainty that

droll = d + dm, (29)

where d =
[

d1 d2

]T
is the uncertainty from the other two channels, and dm =

[
0 d3

]T

represents the difference between the linearization model and the original model of x. d1, d2 are
defined in (24) and (25), while d3 is defined as follows.

d3 = g1(g2φ− sin φ) +
1
2

Cx(g3wx − sign(wx)w2
x) .

Since A is a Hurwitz matrix, there exist matrices P and Q, which are positive definite. Consider the
Lyapunov function candidate:

Vroll(x(t)) = xT(t)Px(t) . (30)

The derivative of Vroll is

V̇roll(x(t)) = −xT(t)Qx(t) + 2xT(t)Pdroll(t)

≤ −xT(t)Qx(t) + 2xT(t)Pdm(t) + 2λmax(P) ‖x(t)‖ ‖d‖ . (31)

d1 and d2 are continuous and bounded in the compact sets Ω̄ and ω̄, such that

‖d‖ ≤ ‖d1‖+ ‖d2‖
= bd1 + bd2 . (32)

Thus, (31) could be written as

V̇(t)roll≤− xT(t)Qx(t) + 2xT(t)Pdm(t) + 2λmax(P) ‖x(t)‖ (bd1 + bd2), (33)

which shows the boundary of V̇roll is effected by the value of the linearization mismatch error d3 in dm.
With the optimum linearization, proper coefficients, g2 and g3, could give the minimum d3.

Lemma 1. For the Vroll(x(t)) and V̇roll(x(t)) defined in (30) and (31) if there exist bd1, bd2, bx such that

i
∥∥d1t1

∥∥ ≤ bd1
∥∥d2t1

∥∥ ≤ bd2 . (34)

ii V̇roll(x) ≤ 0, ∀x ∈ {x| Vroll(x) = b2
xλmin(P)} . (35)

Then the roll channel is bounded and

‖xt1‖L∞ ≤ bx . (36)

where t1 > 0 is a dummy variable.

Proof of Lemma 1. Recalling the Lyapunov function in (30), first we prove that
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∥∥∥Vrollt1

∥∥∥ ≤ bx
2λmin(P) (37)

by contradiction method as follows. Assume the opposite of Equation (37) is true, then there exists
some time t ∈ [0, t1] that

Vroll(t) > bx
2λmin(P) . (38)

Since Vroll(0) < bxλmin(P), and V(t) is continuous, there exists a time t′ ∈ [0, t1], such that

Vroll(t′) = bx
2λmin(P), (39)

while

Vroll(t′−) < bx
2λmin(P) . (40)

Equations (39) and (40) imply that V̇(t′) > 0, which is clearly in contradiction with Condition ii
in (35). Thus, Equation (37) is true, holding for all t ∈ [0, t1],

Vroll(t) ≤ bx
2λmin(P) .

Since λmin(P) ‖x‖2 ≤ xT(t)Px(t) = V(t), then ∀ t ∈ [0, t1]

‖x‖2 ≤ b2
xλmin(P)
λmin(P)

,

≤ b2
x , (41)

which leads to (36).

Remark 1. For a given pair of g2 and g3, with an appropriate choice of P and Q, the Lyapunov function and
the derivative of it are specified, which are shown in Figure 2. The blank region in the center indicts where
V̇(x) > 0, while the colorful region shows where V̇(x) < 0. The contours represent V(x) = Vc, where Vc ∈ R.
Figure 2 shows a bunch of Lyapunov contours with different values of Vc. Any contours within the colorful
region satisfy Condition ii in Lemma 1.

Optimum Linearization. In what follows, we introduce an optimum procedure to find g2 and
g3, such that V̇ > 0 is a closed region, which means contours V(x) = Vc exist, and find the minimum
value of Vc, denoted as Vcmin .

1. For a given pair of (g2, g3), with the specified P and Q, we have the objective function L(x) =
−V̇(x). The optimization problem under such set up would be

minimize L(x) = −V̇(x)

subject to V(x) = V̄i, (42)

where V̄i ∈ R. This optimization problem would search along each contour V(x) = V̄i to find the
maximum value of V̇ in this contour.

2. Base on step 1, set L(x) == 0 to find the V̄0, which means in this contour V(x) = V̄0 the maximum
value of V̇ is 0.

3. Repeat steps 1 and 2 in the compact sets of g2 and g3; get a set of V̄0(g2, g3).
4. Define the boundary function of states, g(x) = Bx(V̄0), where ‖x‖ = g(x).
5. Find the min(Bx(V0)) in the set of V̄0(g2, g3), which give the states’ minimum bounds. Then,

the optimal linearization coefficients, g2 and g3, are picked up.
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Figure 2. V(x) and V̇(x) in the roll channel.

5.2. Pitch-Yaw Angle Channel Stability Analysis

Let:

w̃s
∆
= ws − wd (43)

Ω̃s
∆
= Ωs −Ωd (44)

σ̃s
∆
= σ̂s − σs (45)

γ0(Ts, ρw)
∆
=
√

n
∥∥∥(I − exp(AmTs))Am

−1Ks

∥∥∥ (Lρw + L0) (46)

γ1(Ts, ρw, ρη)
∆
=

√
λmax[(Js Am)

>(Js Am)]γ0(Ts, ρw) + 2bdσTs
√

n (47)

γ2(Ts, ρw, ρη)
∆
=
√

n||(sI − Am)
−1Ks||L1 γ1(Ts, ρw, ρη) (48)

bdσ(ρw)
∆
= L1(‖Hs(w)‖L1

+ ‖Ks‖L1
(ρη + Lρw + L0))

+L2ρw + L3 (49)

ρ f
∆
= ‖(C(s)− 1)Js‖L1

∥∥wsd

∥∥+ ‖1− C(s)‖L1
(Lρw + L0)

+ ‖C(s)‖L1
γ1(Ts, ρw, ρη) (50)

Lemma 2. Considering the system described in (9) with the state predictor (12), adaptive law (15) and control
law (16), if the truncated norm

∥∥∥wst1

∥∥∥
L∞
≤ ρw, ‖ηt1‖L∞

≤ ρη , ‖xt1‖L∞ ≤ bx for any time t1 ≥ 0, we have

∥∥∥σ̃st1

∥∥∥
∞
≤ γ1(Ts, ρw, ρη), ‖et1‖∞ ≤ γ2(Ts, ρw, ρη) . (51)

Proof of Lemma 2. The solution of system (13) in the time interval [(i− 1)Ts, t + (i− 1)Ts], t ∈ [0, Ts] is

e((i− 1)Ts + t) = exp(Amt)e
(
(i− 1)Ts

)
+
∫ (i−1)Ts+t

(i−1)Ts
exp(Am

(
(i− 1)Ts + t− τ

)
)Ksσ̂s((i− 1)Ts)dτ

−
∫ (i−1)Ts+t

(i−1)Ts
exp(A((i− 1)Ts + t− τ))Ksσs(τ)dτ . (52)
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When t = Ts, it follows from Equation (52) that

e(iTs) = exp(AmTs)e
(
(i− 1)Ts

)
+
∫ iTs

(i−1)Ts
exp(Am

(
(i− 1)Ts + Ts − τ

)
)Ksσ̂s

(
(i− 1)Ts

)
dτ

−
∫ iTs

(i−1)Ts
exp(Am

(
(i− 1)Ts + Ts − τ

)
)Ksσs(τ)dτ. (53)

According to the choice of adaptive law in (15), we have

exp(AmTs)e
(
(i− 1)Ts

)
+
∫ iTs

(i−1)Ts
exp(Am(iTs − τ))Ksσ̂s((i− 1)Ts)dτ = 0 . (54)

It follows from Equation (53) that

e(iTs) = −
∫ iTs

(i−1)Ts
exp(A(iTs − τ))Ksσs(τ)dτ . (55)

The norm of it is

‖e(iTS)‖ =

∥∥∥∥∫ iTs

(i−1)Ts
exp(Am(iTs − τ))Ksσs(τ)dτ

∥∥∥∥
≤

∫ iTs

(i−1)Ts
‖exp(Am(iTs − τ))Ks‖ ‖σs(τ)‖ dτ

≤
∫ iTs

(i−1)Ts
‖exp(Am(iTs − τ))Ks‖ dτ

√
n‖σs(τ)‖∞

=
∥∥∥exp(AmiTs)exp(−Amτ)|iTs

(i−1)Ts
A−1

m Ks

∥∥∥√n‖σs(iTs)‖L∞

=
∥∥∥(I − exp(AmTs))A−1

m Ks

∥∥∥√n‖σs(iTs)‖L∞
. (56)

Since σs = Isσ, σs is a subset of σ. Using Assumption 1 in (56), we could have

‖e(iTs)‖ ≤
∥∥∥(I − exp(AmTs))A−1

m Ks

∥∥∥(L ‖ws(iTs)‖L∞
+ L0)

√
n . (57)

In the condition of this Lemma ||wst1
||L∞ ≤ ρw, for all i while iTs < t1, Equation (57) could be

‖e(iTs)‖∞ ≤
∥∥∥(I − exp(AmTs))A−1

m Ks

∥∥∥(Lρx + L0)
√

n . (58)

Using the definition of γ0(Ts, ρx) in (46), finally we could get

‖e(iTs)‖∞ ≤ γ0(Ts, ρx) . (59)

For all iTs < t1, according to Assumption 2, the derivative of uncertainties could be written in

‖σ̇st1
‖L∞ ≤ L1‖ẇst1

‖L∞ + L2‖wst1
‖L∞ + L3

≤ L1‖(Hs(w) + Ks(ηs + σs))t1‖L∞ + L2‖wst1
‖L∞ + L3

≤ L1(‖Hs(w)‖L1 + ‖Ks‖L1(ρη + Lρw + L0)) + L2ρw + L3 .

Using the definition of bdσ in (49), then

‖σ̇st1
‖L∞ ≤ bdσ . (60)
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It follows from (54) that

e(iTs) = (I − exp(AmTs))e(iTs)−
∫ (i+1)Ts

iTs
exp(Am((i + 1)Ts − τ))Ksσ̂s(iTs)dτ

= −
∫ (i+1)Ts

iTs
exp(Am((i + 1)Ts − τ))AmKse(iTs)dτ

−
∫ (i+1)Ts

iTs
exp(A((i + 1)Ts − τ))Ksσ̂s(iTs)dτ

= −
∫ (i+1)Ts

iTs
exp(Am((i + 1)Ts − τ))Ks(σ̂s(iTs) + Ame(iT))dτ . (61)

Hence, (55) and (61) imply that

∫ iTs

(i−1)Ts
exp(Am(iTs − τ))Ksσs(τ)dτ =

∫ (i+1)Ts

iTs
exp(Am((i + 1)Ts − τ))Ks(σ̂s(iTs)

+Ame(iTs))dτ , (62)

and there exists tp ∈ [(i− 1)Ts, iTs] such that

Ksσ̂s(iTs) + Ame(iTs) = Ksσs(tp) . (63)

For any t < t1, there exists tp ∈ [(i− 1)Ts, iTs] such that |t− tp| ≤ 2Ts which satisfies (63),

‖σ̂s(t)− σs(t)‖ ≤ ‖σ̂s(t)− σs(tp)‖+ ‖σs(t)− σs(tp)‖
≤ ‖σ̂s(iTs)− σs(tp)‖+ ‖σs(t)− σs(tp)‖

≤ Js Am‖e(iTs)‖+
∫ t

tp
‖Bσ̇s(τ)‖dτ . (64)

The bound of σ̇s(t) is derived in Equation (60). Then we have

‖σ̂s(t)− σs(t)‖ ≤
√

λmax((Js Am)>(Js Am))γ0(Ts, ρx) + 2bdσTs
√

n . (65)

It follows from the definition of σ̃s(t) and γ1(Ts, ρw, ρη) in (45), (47) that

||σ̃st1
|| ≤ γ1(Ts, ρx, ρη) . (66)

Using the dynamics in Equation (13), we have

e(s) = (sI − Am)
−1Ks(σ̂s(s)− σs(s)) . (67)

Hence,

||et1 ||L∞ ≤ ||(sI − Am)
−1Ks||L1 ||(σ̂s − σs)t||L∞ ,

≤ ||(sI − Am)
−1Ks||L1 γ1(Ts, ρw, ρη) . (68)

Using the norm property ||et1 || ≤
√

n||et1 ||L∞ , we have

||et1 || ≤
√

n||(sI − Am)
−1Ks||L1 γ1(Ts, ρw, ρη) (69)



Sensors 2019, 19, 4848 12 of 24

where n is the dimension of ws(t). The value of n is equal to 2 in this situation. It follows from the
definition of γ2(Ts, ρw, ρη) in (48),

||et1 || ≤ γ2(Ts, ρw, ρη) (70)

which completes the proof.

Lemma 3. For any given bounded ρw, ρη

lim
T→0

γ0(Ts, ρw)→ 0 (71)

lim
T→0

γ1(Ts, ρw, ρη)→ 0 (72)

lim
T→0

γ2(Ts, ρw, ρη)→ 0 . (73)

Proof of Lemma 3. Recall the definition of γ0(Ts, ρw) in (46), the insides of the integration are functions
with bounded values. As Ts → 0 we can get γ0(Ts, ρw)→ 0.

Similarly the limits of γ1(Ts, ρw, ρη) and γ2(Ts, ρw, ρη) going to zero could be proved. The proof
is completed.

Lemma 4. Considering the system described in (9) with the state predictor (12), adaptive law (15) and control
law (16), if the truncated norm

∥∥∥wst1

∥∥∥
L∞
≤ ρw,

∥∥∥ηst1

∥∥∥
L∞
≤ ρη , ‖xt1‖L∞ ≤ bx,

∥∥∥Ωst1

∥∥∥ ≤ ρΩ for any time

t1 ≥ 0, we have ∥∥∥Ω̃st1

∥∥∥ ≤ √C,
∥∥∥w̃st1

∥∥∥ ≤ √C (74)

where C ∆
= max

{
ρ2

f

λmin(AT
m2 Am2)

,
ρ2

f√
λmin(AT

m1 Am1)
√

λmin(AT
m2 Am2)

}
.

Proof of Lemma 4. Considering this Lyapunov function candidate,

V =
1
2
(Ω̃T

s Ω̃s + w̃T
s w̃s) , (75)

first, we prove that

V(t) ≤ C . (76)

Based on the control laws in (16) and the definition in (20) (43) and (44), the derivative of (75) is:

V̇ = ˙̃Ω
T
s Ω̃s + ˙̃wT

s w̃s

= (Ψsws − Ω̇d)
TΩ̃s + (Hs(w) + Ks(η + σs)− ẇd)

Tw̃s

= (Ψswd − Ω̇d)
TΩ̃s + (Ψsw̃s)

TΩ̃s + (Hs(w) + Ks(ηs + σs)− ẇd)
Tw̃

= Ω̃T
s Am1Ω̃s + Ω̃T

s (Ψsw̃s) + (Hs(w) + Ks(ηs + σs)− ẇd)
Tw̃s

= Ω̃T
s Am1Ω̃s + (ΨT

s Ω̃s + Hs(w) + Ks(ηs + σs)− ẇd)
Tw̃s

= Ω̃T
s Am1Ω̃s + w̃T

s Am2w̃s + [(C(s)− 1)Jsẇd + (1− C(s))σs − C(s)σ̃s]
Tw̃s

= Ω̃T
s Am1Ω̃s + w̃T

s Am2w̃s + f (t, ws)w̃s (77)

where Am1 and Am2 are Hurwitz matrices, which ensure that the total of the first two quadratic terms
would be negative.
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For f (t, ws(t)) = [(C(s)− 1)Jsẇd + (1− C(s))σs − C(s)σ̃s]T , according to Assumption 1 and
Lemma 1,

‖ f (t, ws(t))‖∞ ≤ ‖(C(s)− 1)Jss‖L1‖wd‖+ ‖1− C(s)‖‖σ(t)s‖+ ‖C(s)‖‖σ̃s‖
≤ ‖(C(s)− 1)Jss‖L1‖wd‖+ ‖1− C(s)‖L1(Lρw + L0)

+‖C(s)‖L1 γ1(Ts, ρw, ρη) (78)

By the definition in (50), thus

‖ f (t, ws(t))‖ ≤ ρ f . (79)

Next, we prove Equation (76) by contradiction method. Assuming the opposite of Equation (76)
is true. Then if at any time t1 > 0, one has V(t1) > C. According to (75), we could have

∥∥Ω̃s
∥∥ >
√

C
or ‖w̃s‖ >

√
C.

Based on this, two-case discussions under this are presented as follows,

Case 1. For ‖w̃s‖ >
√

C,thus in (77), we could get

V̇ = Ω̃T
s Am1Ω̃s + w̃T

s Am2w̃s + Ks f (t, ws)w̃s

≤ Ω̃T
s Am1Ω̃s + w̃T

s Am2w̃s + ρ f w̃s

≤ Ω̃T
s Am1Ω̃s − ‖λmin(Am2)‖L2

‖w̃s‖2
L2

+ ρ f w̃s (80)

which could easily find V̇(t1) < 0.

Case 2. For
∥∥Ω̃s

∥∥ >
√

C
If w̃s ≤

√
C, from (77),

V̇ = Ω̃T
s Am1Ω̃s + w̃T

s Am2w̃s + Ks f (t, ws)w̃

≤ Ω̃T
s Am1Ω̃s + w̃T

s Am2w̃s + ρ f w̃s

≤ (−‖λmin(Am1)‖L2

∥∥Ω̃s
∥∥2
L2

+ ρ f w̃s) + w̃T
s Am2w̃s, (81)

based on the conditions settings for this case, we could get V̇(t) < 0.
If w̃s >

√
C, according to Case 1, we could easily verify V̇ < 0.

Hence, if V(t1) > C, then from the above Cases 1 and 2 we have

V̇(t1) < 0 . (82)

For t = 0, it means that if V(0) > C, V(t) will keep decreasing until V(t) ≤ C. If V(0) ≤ C, then
V(t) ≤ C.

Thus, for all t1 ≥ 0, V(t) < C. Since
∥∥∥w̃st1

∥∥∥2
= w̃T

s w̃s ≤ V(t),
∥∥∥Ω̃st1

∥∥∥2
= Ω̃T

s Ω̃s ≤ V(t), we have

∥∥∥Ω̃st1

∥∥∥ ≤ √C,
∥∥∥w̃st1

∥∥∥ ≤ √C, ∀ t1 ≥ 0 . (83)

Lemma 5. For the system in (2), (6) with the L1 backstepping adaptive controller in (16), if the truncated L∞

norm
∥∥∥Ωst1

∥∥∥
L∞
≤ ρΩ,

∥∥∥wst1

∥∥∥
L∞
≤ ρw, ‖xt1‖L∞ ≤ bx and

∥∥∥ηst1

∥∥∥
L∞
≤ ρη for any time t1 ≥ 0, then
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∥∥∥ηst1

∥∥∥
L∞

≤
√

C‖Js Am2‖+ ‖JsHs(w)‖L1
+
√

C
∥∥∥JsΨT

s (Ω)
∥∥∥
L1

+‖C(s)‖L1
(Lρw + L0) + ‖C(s)Jss‖L1

‖wd‖
+‖C(s)‖L1

γ1(Ts, ρw, ρη) (84)

and ∥∥∥wst1

∥∥∥
L∞

≤ ‖wd‖+
√

C (85)∥∥∥Ωst1

∥∥∥
L∞

≤ ‖Ωd‖+
√

C . (86)

Proof of Lemma 5. According to (16),

ηs(s) = ηb(s) + ηa(s)

= Js(Am2w̃− Hs(w)−ΨT
s (Ω)Ω̃s) + C(s)(σs − Jsswd + σ̃s), (87)

taking the norm of this equation, we could have∥∥∥ηst1

∥∥∥
L∞

≤ ‖Js Am2‖‖w̃s‖L∞
+ ‖Js Hs(w)‖L1

+
∥∥∥JsΨT

s (Ω)
∥∥∥
L1

∥∥Ω̃s
∥∥
L∞

+‖C(s)‖L1
‖σs‖+ ‖C(s)Jss‖L1

‖wd‖+ ‖C(s)‖L1
‖σ̃s‖∞ . (88)

Use Assumption 1, Lemmas 1 and 4, we could get

‖ηt1‖L∞
≤
√

C‖Js Am2‖+ ‖Js Hs(w)‖L1
+
√

C
∥∥∥JsΨT

s (Ω)
∥∥∥
L1

+‖C(s)‖L1
(Lρw + L0) + ‖C(s)Jss‖L1

‖wd‖
+‖C(s)‖L1

γ1(Ts, ρw, ρη) . (89)

Based on the definition of w̃s in (43)

ws = wd + w̃s . (90)

Thus, we could get

‖ws‖L∞
≤ ‖wd‖+ ‖w̃s‖L∞

≤ ‖wd‖+
√

C . (91)

Same for Ωs,

‖Ωs‖L∞
≤ ‖Ωd‖+

√
C . (92)

Lemma 6. There exist ρw > 0, ρΩ > 0, ρη > 0 and Ts > 0 such that

√
C‖Js Am2‖+ ‖JsHs(w)‖L1

+
√

C
∥∥∥JsΨT

s (Ω)
∥∥∥
L1

+ ‖C(s)‖L1
(Lρw + L0)

+‖C(s)Jss‖L1
‖wd‖+ ‖C(s)‖L1

γ1(Ts, ρw, ρη) < ρη (93)
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and

‖wd‖+
√

C < ρw (94)

‖Ωd‖+
√

C < ρΩ . (95)

Proof of Lemma 6. Let us choose ρη such that

ρη =
√

C‖Js Am2‖+ ‖JsHs(w)‖L1
+
√

C
∥∥∥JsΨT

s (Ω)
∥∥∥
L1

+‖C(s)‖L1
(Lρw + L0) + ‖C(s)Jss‖L1

‖wd‖+ ∆1 (96)

where ∆1 > 0 is any positive constant. From Lemma 5.2, there exists some Ts to make

‖C(s)‖L1
γ1(Ts, ρw, ρη) < ∆1 . (97)

For (94) and (95), we could get the value of the left sides. There must exist a set of ρw and ρΩ,
which could satisfy the inequalities.

Theorem 1. For the system in (2), (6) with the L1 backstepping adaptive controller in (16), choosing
TS to make Lemma 6 hold, if ‖xt1‖L∞ ≤ bx then

‖ws‖L∞
< ρw, ‖Ωs‖L∞

< ρΩ, ‖ηs‖L∞
< ρη . (98)

Proof of Theorem 1. For t = 0, it satisfy that

ws(0) < ρw, Ωs(0) < ρΩ, ηs(0) < ρη . (99)

Using proof by contradiction, assume Theorem 1 is not true, since ws(t), Ωs(t) and ηs(t) are
continuous. There exists some t′ ≥ 0 where

‖ws‖∞ = ρw or ‖Ωs‖∞ = ρΩ or ‖ηs‖∞ = ρη . (100)

Thus,

‖ws‖L∞
≤ ρw, ‖Ωs‖L∞

≤ ρΩ, ‖ηs‖L∞
≤ ρη . (101)

Letting t1 = t′, following from Lemmas 5 and 6 that∥∥wst′

∥∥
L∞

≤ ‖wd‖+
√

C

< ρw (102)∥∥Ωst′

∥∥
L∞
≤ ‖Ωd‖+

√
C

< ρΩ (103)

and ∥∥ηst′

∥∥
L∞

≤
√

C‖Js Am2‖+ ‖JsHs(w)‖L1
+
√

C
∥∥∥JsΨT

s (Ω)
∥∥∥
L1

+‖C(s)‖L1
(Lρw + L0) + ‖C(s)Jss‖L1

‖wd‖
+‖C(s)‖L1

γ1(Ts, ρw, ρη)

< ρη . (104)

These contradict what we get in (101) with the assumptions in (100). Therefore t′ does not exist.
Thus the statement in Theorem 1 holds for all t > 0.
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5.3. Overall Stability Analysis

Theorem 2. If we choose Ωd and design parameters Am1, Am2 to make ρw and ρΩ satisfy the following equation,

i
∥∥d1t1

∥∥ ≤ bd1
∥∥d2t1

∥∥ ≤ bd2 . (105)

ii V̇roll(x) ≤ 0, ∀x ∈ {x| Vroll(x) = b2
xλmin(P)} (106)

iii ‖x(0)‖ ≤ bx , ‖ws(0)‖ < ρw , ‖Ωs(0)‖ < ρΩ (107)

where d1 and d2 are defined in (24) and (25), then the entire system is stable and

‖x‖L∞
≤ bx , ‖ws‖L∞

< ρw , ‖Ωs‖L∞
< ρΩ . (108)

Proof of Theorem 2. We prove this theorem by a contradiction argument, for t = 0, it satisfies that

‖x(0)‖ ≤ bx, ‖ws(0)‖ < ρw, ‖Ωs(0)‖ < ρΩ . (109)

Assume Theorem 2 is not true, since x(t), ws(t) and Ωs(t) are continuous. There exists some
t′ ≥ 0 where

‖ws(t′)‖∞ = ρw or ‖Ωs(t′)‖∞ = ρΩ while ‖x(t′)‖∞ ≤ bx . (110)

Thus,

‖xt′‖L∞
≤ bx,

∥∥wst′

∥∥
L∞
≤ ρw,

∥∥Ωst′

∥∥
L∞
≤ ρΩ . (111)

It follows from Theorem 1 that Equation (98) holds and contradicts with Equation (110). Therefore
t′ does not exist. Thus, the statement in Theorem 2 holds for all t > 0.

Remark 2. The conditions (105), (106) and (107) of Theorem 2 are feasible. In the definition of d1 and d2 we can
readily obtain that ‖d1‖ ≤ ‖sθtθ + cφtθ‖ ρω and ‖d1‖ ≤

∥∥∥J−1
11 (J33 − J22)

∥∥∥ ρω
2 + 2Lρω + L0 noticing that

σ1 is subject to Assumption 1. By reducing the pitch angle operating range θ and the desired angular velocity
ρω, we can always satisfy (107). However, this also limits the operation envelop of the vehicle. The control
parameters and reference input should not violate the conditions. The simulation results in next section also
validating the feasibility condition of Theorem 2.

6. Simulation Results

6.1. Simulation for Roll Angle Stability Analysis

Following the optimum linearization procedure in Remark 1, the numerical solution for optimum
linearization is g2 = 0.89 and g3 = 1.85. The parameter settings for the simulation are

g1 = 2

Q =

[
1 0.8

0.5 1.8

]
d1 = 0.1, d2 = 0.1 .

The simulation results are shown in Figure 3. The region of V̇ > 0 has been reduced by picking
up the suitable coefficients g2 and g3. The blue contour is the one who has max(V̇) = 0. The purple
line give the bounds of φ and wx, which are φ ∈ [−0.7392, 0.7392] and wx ∈ [−0.8987, 0.8987].
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Figure 3. Roll channel stability.

6.2. Pith-Yaw Angle Attitude Control

6.2.1. Simulation Structure

The control law generated by the controller is a desired moment which can not be directly taken
by the AUV. A dynamic control allocation module is brought into consideration to distribute the
moment among these four thrusters. Similar to the study of quadcopters in [20], the total trust and
moment provided by this thruster configuration with 4 thrusters can be expressed as the vector sum of
the force and moment from each individual thruster. Using wi to represent each rotor’s speed, the trust
provided by the ith thruster is

Ti = bω2
i , (112)

where b is the truster coefficient. Thus, the total trust is given by

Tb =
4

∑
i=1

Ti

= b(ω2
1 + ω2

2 + ω2
3 + ω2

4). (113)

Pairwise differences in rotors’ speed drive the vehicle to rotate. The torques about the AUV’s
y-axis and z-axis are generated by the moments

τy = lb(−ω2
1 −ω2

2 + ω2
3 + ω2

4) (114)

τz = lb(ω2
1 −ω2

2 −ω2
3 + ω2

4), (115)

where l is the distance from the thruster axis to the center of mass. Thus, the total trust and moments
in the body frame are

 Tb
τy

τz

 =

 −b −b −b −b
−lb −lb lb lb
lb −lb −lb lb




ω2
1

ω2
2

ω2
3

ω2
4

 = A


ω2

1
ω2

2
ω2

3
ω2

4

 . (116)
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The pseudoinverse is used to calculate the allocation matrix A−1. Then, by using
ω2

1
ω2

2
ω2

3
ω2

4

 = A−1

 Tb
τy

τz

 , (117)

the desired moments command could be distributed into RPM commands for each thruster.
The simulation structure is shown in Figure 4.

Figure 4. Simulation structure.

6.2.2. Closed-Loop Response

In this section, we will present the performance of two control methods. One is the proposed L1

backstepping control, while the other is the PID control. Case 1 presents the simulation results with
the designed reference inputs shown in Figure 5. Case 2 provides the simulation results with step
functions as reference signals. The closed-loop responses of the L1 backstepping control in Case 2 are
shown in Figure 6a,b, while Figure 7a,b are for the PID method.

(a) Pitch command tracking (b) Yaw command tracking

(c) Control commands for water pumps (d) Moment control signal

Figure 5. Case 1: Simulation results of the L1 backstepping control.

The control laws, ηy and ηz, generated by these two controllers are shown in Figures 6c and 7c,
respectively, which are the desired moments with respect to axis y and axis z, namely, moment M and
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N. The RPM commands sent to the four water pumps are shown in Figures 6c and 7c. Comparing
Figures 6a,b, we could see the pitch angle uses less time than yaw angle to achieve the goal. When the
desired angle of the pitch channel is reached, the commands are switched to put more effort into the
yaw angle channel function.

(a) Pitch command tracking (b) Yaw command tracking

(c) Control commands for water pumps (d) Moment control signal

Figure 6. Case 2A: Simulation results of the L1 backstepping control.

(a) Pitch command tracking (b) Yaw command tracking

(c) Control commands for water pumps (d) Moment control signal

Figure 7. Case 2B: Simulation results of the PID control.
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7. Conclusions

In this paper, a robust L1 backstepping attitude control has been proposed for AUVs in a dynamic
environment. Moreover, a Lyapunov function-based optimum linearization method is presented to
analyze the stability of the roll angle in the operation region without active stabilization. Simulation
results have been provided to show the effectiveness of the proposed approach. Further research
will focus on the performance improvement and precise trajectory-following algorithm design,
which eventually will be extended to a fully autonomous underwater robotic network.
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results under the supervision of C.C.; Y.L. wrote the initial draft of the paper; Y.L. and J.C. revised the manuscript.
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Appendix A. AUV Modeling

The design of the prototype used in this paper is presented in Section 2. In this section, we would
give more modeling details.

Appendix A.1. Proof of Concept Testing

The proof of concept system is designed to be passively stable. In initial testing, this criterion has
been sufficiently met with a self-righting time of approximately 1 second from a complete roll over.
Initial testing of the propulsion system in a swimming pool environment has displayed an acceptable
cruising speed and turn radius.

The fluid level and position of the buoyancy control unit is adjustable as shown in Figure A1.
With all motors’ power set to zero, we adjust the fluid level to make the buoyancy force equal.
Additionally, the position of the buoyancy is also adjusted to make the attitude of the AUV straight in
the water.

This static balancing and alignment can make the vehicle naturally closed to the desired system.
Although, the control law from the closed-loop controller can compensate these unbalanced and
misaligned factors, the initial alignment can still reduce the control efforts since control signals are
subject to physical constraints with limited amplitude, like actuator saturation. It also helps to ensure
that the vehicle parameters fall into the fully controllable range.

Figure A1. Prototype side view [9].
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Appendix A.2. Dynamic Model of the AUV

The details of dynamic model are presented in three subsections. The general approaches to
building the model of a remotely operated vehicle (ROV), an AUV or other underwater vehicles
are discussed in [21–23]. Some results are adopted, while further simplification of the modeling are
derived to help design a more efficient control system.

• Actuator Dynamics

The dynamic relation of the setting value from the speed controller and real-time speed of motor
is described in Equation (A1). A single lag model is used to model the real-time speed ωi of the motor
i and the setting input value ui.

ωi(s) =
1

Tms + 1
ui(s). (A1)

• Force and Moment Generation Process

This part analyses how the force and moment are generated and applied to the AUV. There are
three terms applied on the vehicle, which are weight and buoyancy force and moment, water pump
propulsion force and moment and AUV fluid dynamic force and moment.

(a) Weight and Buoyancy

The gravitational force and buoyant force in terms of body coordinate systems are,

Fb
w = mg

[
− sin θ cos θ sin φ cos θ cos φ

]
,

Fb
B = −ρgV

[
− sin θ cos θ sin φ cos θ cos φ

]
, (A2)

where g is the gravitational acceleration, ρ is the fluid density and V is the volume of the fluid displaced
by the vehicle. The moments generated by these forces can be expressed in terms of the positions of
the center of mass C and the center of the buoyancy B [21].

GW = RC × FW , GB = RB × FB, (A3)

where RC and RB are the respective positions of the center of mass and the center of buoyancy in the
local coordinate system.

The AUV is aligned to be neutrally buoyant, which means Fw = FB. It is also aligned to be
naturally stable, which means the two of three Euler angles φ, θ are close to zero. The moment
generated by the buoyancy force and gravity force can be simplified as follows,

τxs = FW · d · sin(φ), τys = FW · d · sin(θ), (A4)

where d is the distance from the gravity center and buoyancy center. The more stabilization moments
τxs, τys is always trying to maintain stability, which means the larger the d, the more stable the vehicle.

(b) Water Pump Propulsion Force and Moment

As discussed in Section 6.2.1, the resultant force Tb and moments, τy and τz, of the proposed
propulsion system can be expressed as the vector sum of the force and moment form each individual
pump in Equation (116).

(c) AUV Fluid Dynamic Force and Moment

The shape of the AUV is complex and therefore the modeling of its behavior is almost impractical.
From the perspective of control, the simplified model at the operation points is desired.
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The drag equation of fluid is

fD =
1
2

ρv2Cd A, (A5)

where ρ is the density of the fluid, v is the speed of the object relative to the fluid, Cd is the drag
coefficient, A is the reference area. In the vector form,

FD = −1
2

ρ

 Cdx Ax 0 0
0 Cdy Ay 0
0 0 Cdz Az


 sign(vx)v2

x
sign(vy)v2

y
sign(vz)v2

z

 . (A6)

Similarly, for the rotational moment, it is

τD = −1
2

 Cωx 0 0
0 Cωy 0
0 0 Cωz


 sign(ωx)ω2

x
sign(ωy)ω2

y
sign(ωz)ω2

z

 . (A7)

To summarize, the overall force f b and moment ηb applied to AUV are

f b = Tb + FD,

ηb = τG + η + τD =

 τxs

τys

0

+

 0
τy

τz

+ τD, (A8)

where Tb, FD, τxs, τys, τy, τz and τD are defined in Equations (116), (A4) and (A6).

• Rigid Dynamics of the AUV Body

Revisiting the notations in [24], the equations of motion for a rigid body subject to body force f b ∈
R3 and torque ηb ∈ R3 applied at the center of mass and specified with respect to the body coordinate
frame is given by the Newton–Euler equation in the body coordinate which can be written as,[

mI 0
0 J

] [
v̇b

ω̇

]
+

[
ω×mvb

ω× Jω

]
=

[
f b

ηb

]
, (A9)

where vb ∈ R3 is the body velocity, ω ∈ R3 is the body angular velocity, m ∈ R is the mass, I ∈ R3×3

is an identity matrix and J ∈ R3×3 is an inertial matrix. The effects of added mass [21] will influence
the total mass m and total moment of inertial matrix J. There will be large uncertainties in those
parameters as discussed in Equations (4) and (5).

The position and velocity of the AUV center of gravity are given by p =
[

x y z
]T

and

v = ṗ ∈ R3, respectively, expressed to the spatial frame in North-East-Down orientation. Let R ∈ SO
be the rotation matrix of the body axes relative to the spatial axes and vector. R can be parameterized
by the ZYX Euler angles with φ, θ and ψ about the x, y and z axes, respectively.

R(Ω) = exp(ẑψ) exp(ŷθ) exp(x̂φ)

=

 cθcψ sφsθcψ− cφsψ cφsθcψ + sθsψ

cθsψ sφsθcψ + cφcψ cφsθsψ− sθcψ

−sθ sφcθ cφcθ

 , (A10)
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where x̂ =
[

1 0 0
]T

, ŷ =
[

0 1 0
]T

, ẑ =
[

0 0 1
]T

. By differentiating R(Ω) respect to
time, we have the state equations of the Euler angles Ω,

Ω̇ = Ψ(Ω)ω, (A11)

where Ψ(Ω) is give in Equation (2). In the ZYX Euler angle parameterization of rotation matrix, there
are singularities at θ = ±π/2. For the following discussion, we assume that the trajectory of AUV
does not pass through the singularities. The motion equations of a rigid body are

ṗ
mv̇
Ω̇
Jω̇

 =


v

RT(Ω) f b

Ψ(Ω)ω

ηb −ω× Jω

 . (A12)

Equation (A12) summarizes the overall dynamic system of the AUV, where f b and ηb are defined
in Equation (A8).
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